ON CERTAIN SINGULAR INTEGRALS

BENJAMIN MUCKENHOUPT

1. Introduction. The purpose of this paper is to consider a modi-
fication of the Hilbert transform and the singular integrals treated by
Calderon and Zygmund in [1] and [3], and to use the results to gener-
alize some standard results on fractional integration. In the one dimen-
sional case the Hilbert transform of a function f(x) is essentially the

integral r f—@-t_——t)dt. In the one dimensional case the transform to
be considered will be a convolution with W%“’ instead of with tl

Throughout this paper v will denote a real number not zero. As in the
Hilbert transform case there is trouble with the definition; for the
Hilbert transform this is solved by taking a Cauchy value at the origin.
The obvious extension of this method was used by Thorin [6] when he
considered a transform of the type

limgwf(x—t)—f(w'l't) dt .

£-0 Je t1+iy

Here and subsequently ¢ will always be greater than 0 and the limits
in ¢ will be one sided. In this case, however, obtaining cancellation by
taking a Cauchy value is unnecessary; the kernel already has sufficient

oscillations to accomplish this. The integral lim Sw(—ggl;-yﬂ dt will not,
g0 €

in general, exist, but by using some suitable summation procedure, it
may be given meaning. Starting with two such methods, it is shown
that this transform has the usual singular integral properties. Specifi-
cally, for functions in a Lebesgue L? class 1 < p < o, it is shown
that the summation procedure converges in L”? and that the resulting
transformation is bounded in L?. For p = 1 substitute results are ob-
tained. Furthermore, for functions in L?, 1 < p < o, the summation
procedure is shown to converge pointwise almost everywhere.

Carried along simultaneously with the preceding is the n dimension-
al extension of the sort considered by Calderén and Zygmund for the
Hilbert transform. In Euclidean n space, E*, let z = (x, x, --- 2,),
|| = (22 4+ ++- 22)* and do = dx, -+ dx,. The transforms to be con-
sidered are of the form

Snf—l(zc’:TpQ(t)dt.
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where Q(t) = Q( ) is integrable on the unit sphere, and the integral

2
[¢]
in the neighborhood of the origin is again defined by a suitable summa-
tion method. In this case, unlike the Calderén and Zygmund results,
the integral of Q(f) on the unit sphere need not be zero. Again for
functions in L?, 1 < p < o, the summation procedure converges in L?,
pointwise almost everywhere, and the resulting transformation is bounded
in L?. Substitute results for L' including pointwise convergence are
also proved although for some it must be assumed that Q(t) satisfies a
continuity condition. The method used to obtain all these results is
first to reduce the summation definition to one more closely resembling
the Cauchy value definition of ordinary singular integrals. After this,
lemmas similar to some lemmas in [1] make the methods of [1] and [3]
applicable to these transformations.

In the last section the preceding results and an interpolation theo-
rem of Stein [4] are used to prove the following theorem.

Let p, q, and ) be positive numbers such that 1 < p < q < o and
% = _;_ 4\ Let f() be in L* in E" and let Qt) = ”Q<|_i_l> be in L,
s , on the unit sphere. Then the integral

E" Itln(l—k)

1
11—

exists for almost all x and ||Dy(f)|l, < Al fll, where A is independent
of f.

For 2(t) = 1 this is a well known theorem on fractional integrals.
See for example [5]. Substitute results are also obtained for p =1 and
q = oo using the proof for the weaker results in [8].

1
2. Summation. A summation method for the integral lim S f(x)da
£€—0 €

of the form lim Sl(pg(a)dagl f(x)dx is a regular method if
g—0 0 @

lim Slque(a)lda — 0 for a >0, limslfps(a) da=1 and S] pa)|da < B
=0 Ja -0 JO

LEmMmA 1. If lim Sl f(x)dx exists, then any regular method of sum-
g0 Je

mation will give the same limit.
This is a standard fact about these summation methods.

LEmMMA 2. If Sl f(x, y)dy converges in L* morm to g(x) as ¢— 0
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and has a uniformly bounded L* morm, them any regular summation
method will also converge to g(x) in L* morm.

Let B be a bound for Sll¢s(a)[da and C a bound for ”Slf(x,y)dy” .
Then given 7 > 0, choose 8 so that

o) - [@nay| <L
for 6 < 8 and v so that

/a
[} 1deiaa < L

and
‘pa)d —1'<-’)_
fr@da—1]<

provided that ¢ < v. The existence of 8 and v follows from the hypo-
theses of the lemma.

It ¢ <, then ||u(@) — |'puadal riz, vy

= ||o@)(x = {7 dat) + ["pu@( 96a) = | 7w dy) da
+ S;svs(a)(g(w) - Sif (w,y)dy> dat||

< 9@l + [[iod@ 1o — '@ v da| da

1 1
+ | 17@l o) - [ sy e
by use of Minkowski’s inequality and Minkowski’s integral inequality.
Observing that [|g(x)||, is also less than or equal to C, this last ex-

pression is clearly less than or equal to gg + B77 + 6% —£:2C = 7. Since

7 was arbitrary, the lemma follows.

3. Definitions of the transform. To give meaning to the integral

Fl@) = S:M_:Q dt

t1+iy

it may be written as

(S)S =1 g S:‘_f(_w_—_t)dt

tl-l-i-y tl+w



242 BENJAMIN MUCKENHOUPT

where the first integral must be obtained by using a suitable method
of summation. For this purpose logarithmic Abel summation defined by

(S)Slg(t)dt = limgltfg(t) dt

or logarithmic Cesaro summation defined by

o = [ofs )

may be used. Both are regular methods for they may be written as
. 1 1
lim S @) daS g(t)dt
3—0 0 7

where @ (@) = ea®** in the case of logarithmic Abel summation and

—1

pa) = { alog s
0 0<a<e

e<a<l

for logarithmic Cesaro summation. That these satisfy the necessary
conditions is clear from their forms.

In either case f(x) may be written as

(S)Sof(x t) dt + Slf(x t) dt

t1+iy t1+i-y

— @[ LE =Dt gy W) [T g

iy 1 AR

By the first lemma the existence of this expression can be shown by
proving the existence of

lim Slf(x —t) — f(») dt .

t1+727

g0
Therefore, showing the convergence almost everywhere of the expression

fim (L@ =D =@ g @), [~ 0 g

tl +4y 'I;'Y tl +iy

= lim H f@ =14, f(ag)e-iv]

£—0 t1+iy 7y

g0

3.1)

will imply convergence almost everywhere for the original definition of
f(x). Furthermore, by Lemma 2 the convergence in L* norm of (3.1)
will imply the convergence in L? norm of the original definition of

f(@).
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4. Convergence in L’ norm. Define

1

t1+12-y

e<t<N

Ky.(t) = , and let

0  elsewhere
Fale) = |7_flo — Kyt — LEZ

Then the transform of f(x) defined before, f(x) = hm hm fN (z) if this

last limit exists. Now if f(x)eL?, it is possible to take Fourler transforms
and obtain

e~ )

vy

where g(x) denotes the Fourier transform of g(x).

Frol@) = F@) Ko@) -

1

LEMMA 8. The expression Ky () — e is in absolute wvalue less

than c(y) = C(—l%_l_-l—ll where C 1s an absolute constant. As M —
the expression converges to « function K.(x) except for x =0. Fur-
thermore, as ¢—0, Kg(x) converges to a function K (x) except for x=0.

From its definition K'N,E(x) i (3:5 5 18 equal to

N pixt N|x| eusgnz a—i')'
[ g A e g
£ tl-c-iy ’b')’&w elz| t1+1:7 1y
Now
b ,itsgn itsgn o N b pitsgnz
e 1 e
4.1) S dt = —° 1+ ”’S —
a grHi tsgnat'+le  tsgna Jo
and
(4 2) Sb eitsgnz - eitsgnr, b Sgn be eu sgnz
a t1+i~/ __i,yti-ya oy a tiy
If necessary, split the integral
B‘lel eitsgnz:
elz| t1+iy

into two parts, the first with limits less than or equal to one, and the
second with limits greater than or equal to one. Then applying (4.2)
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to the first part and (4.1) to the second part, it is clear that the whole

integral is in absolute value less than C%lﬁ for some absolute con-

stant C.
Using (4.1), it is clear that

1 1 ztsg - 6ibsgnz N|zl
lim Ky (@) — 2 = | S dt + lim — &
N—voo iyet elal E1HEY Noo 4+ ggn a0 b
Nlx| pitsgnz
+hm1+w§ ¢ g )—.1.
Now 4 SEN X tr 1yer

and the two limits certainly exist. From this and (4.2) it follows that

tsgnz (1

Wt” eizl Yt sgn & 1 8gN %
it sgnx
+ %J”“'YS  dt) = - ]
tsgnaJ1 Y grye

The limit of the integral clearly exists. The lower limit on the first
integrated part and the last term combined give

hm K (%) = hm l:| x |W

1 it sgnx isgnx
e e
5 dt

HEA

. —iypicx
hmlxli’(— lwl, ¢ )— ,1 = lim ¢ (e“”—l)=0.
a0 — gryet 1Ye e 4y

It follows that

A N > plsgnz s otsgnz 1 it sgnx
K@) = lim K@) = |o(20 4 L2270 4 [ gy
" ¥ sgn x oyt™ sgn x
y oo ,Lilsgnz
+ %J’WS e dt)
1sgna Ji A

(4.3)

COROLLARY 1. If f(x) belongs to L*, them the transformation
Ftay = LG — SO satisfies 1@l < clF@) As o,

t1+iy ?Zy
Fi(x) converges in L norm to a function f(x) which also satisfies

1F @)1l < eI @)1,

i(;'leiv>f (x) converges in L* norm to K.(z)f(x)

because the first part of the product converges boundedly. Con-
sequently, taking Fourier transforms, fy.(x) converges in L? norm to
fi(x). Similarly, since K.(x) f(x) converges in L® norm, the Fourier
transform, f.(x), converges in L* norm to a function f(x). The state-

ments concerning the norms follow immediately from the estimate in
Lemma 3.

For later proofs there is a more convenient form for K (). Adding

The expression (K’N,E(x)—
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the identity

0= — Ix[” + lwli)'eisgnx _ Ix'iysgnxsleusgnxdt
17 0% v 0

to (4.3) gives
1 t—i)’ — 1
0

. 1 + ,i,Y Sco eusgum ]
7e'%%°% son dt | .
+ gn e+ gsgnxJr P+

K(x) — — l.w |i’Y + l 2 lwl:sgn xS eit sgn zdt
(24

(4.4)

Now for |y| < 1 the expression in brackets is uniformly bounded. This
is obvious for the last two terms. Furthermore,

log tgyt“‘” du
0

-y __
|t 1): <|logt|
b4

so that the first integral is also uniformly bounded. This leads to the
following.

COROLLARY 2. The tramsform F(x)=lim %—S &]—E‘l‘%)glldt’
- g0 1t1>3
7] <1, satisfies ||F(x)|l, < Allf(x)||], where A is independent of v and
f. As v—0, Fy(x) converges in L* to the ordinary Hilbert transform
of f(%).

F () may be written in the form

lim—l—Swf(x*t)dt__ f() _S"Ef(w—t)dt_‘_ f(=)

g0 T Je PAREE] 'ifye“ o (_t)uw 'ifye” ‘

Now observing that

- ixt N pi(—=z)t
Sg—i—_dtzs ¢ " g,
_N(_t)l-l-w e {ltiy

it is clear that

F@) = Llim lim ( By .(z) — KN,E(—x)) Fz) = %(K(x) — K(—x)) f@) .

TT -0 Nooo

From (4.4) it is clear that K (x) — K(—w) is bounded uniformly in «
since the unbounded terms cancel. Letting v — 0 in (4.4) then gives

lim (K(z) — K(—2))

1 oo
:—Zisgan10gtcostdt+2isgnwcosl+ _ 2 S cost 4y
0 tsgnx i 2
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N—oo JO

= 21 sgn x<lim SN SI: t

dt> =Tisgn i .

Therefore,

lim If'y(oc) = if(x)sgn x .
Y—0

The Fourier transform of the Hilbert transform of f(x) may be
written as

llim lim <SNfit—Tt—£t—dt> F@) = if(x)sgnzx .

7T e—0 N-0 g

Thus, the two transforms are the same.

5. The N dimensional case. Most of the important results for
the n dimensional case can be obtained from one dimensional results
quite simply by the method of rotation which is treated in §8. Rota-
tion methods, however, fail in certain cases, and for these a direct ap-
proach must be used. This will be similar to the one dimensional
methods and is actually just a generalization of them.

In n dimensions the transforms will be of the form

Ffl@) = S S@ = DAY 3 where Q(t) = Q(-t—)
" ]tln-l-iy ltl
is a function only of angle and is integrable on the unit sphere, 2.
The part of the integral for which 0 < |¢| < 1 is obtained by using the
same summation methods as before. The same reasoning shows that
the existence of

(.1) lims F@—8020) 34 _f_(ﬂg ot)do
e-0 Jize [ E]RrY 1ye" )=
where do is the element of ‘‘area’’ of the unit sphere, implies the ex-
istence of the original definition. The convergence in norm implies the
convergence in norm of the original definition.
In n dimensions define

20 e<ti<N
Ky (t) = {Itln+ Y
0 elsewhere .

LEMMA 4. The expression K’N,e(w) — —ﬁleTyLQ(t)dcr 1s in absolute

vvlue less than c(y) = Cﬂ(ﬂl;_#y | 2(t) |do where C s an absolute
=
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constant. As N — oo the expression converges to a function K;(w) except
for x = 0. Furthermore, as ¢ — 0, K}(w) converges to a function K ()
except for x = 0.

Let ¢ be the angle between « and ¢. Then using polar coordinates

Ko ol) — irylaw a0 do

- SZQ(t)dG(SNMdr _ _1_-> .

¢ 7.1 +iy ,1:,), eiy

(5.2)

The inner expression is the same at the one dimensional Fourier trans-
form except that = has been replaced by |x|cosd. Hence by Lemma

3 it is in absolute value less than CM, The convergence.as

N — o, and ¢ — 0 follow from this. Applying Holder’s inequality then
shows these conclusions hold for the whole expression.

COROLLARY 3. If f(x) belongs to L? the transform

Flw) = S f@ —0)0¢) 4, _ @) S ) do
) iyet Js

wze ¢

satisfies || f;(oo)]l2 < ef(®)|),. As €—0, f;(w) converges in L® norm to
a function f(w) which also satisfies || f‘(w)ll2 < e f ()],

The existence almost everywhere of fg(x) follows from the reason-
ing of [3] p. 292. The result then follows from Lemma 4 in the same
way that Corollary 1 followed from Lemma 3.

COROLLARY 4. If LQ(t)da = 0 and 2(t) belongs to Llog* L on %,

then the transform F(x) = limS i-(il;—_l%?—@)—dt Sor |v| < 1 satisfies
g0 Jt|>e

| K x) |, < A||f(x)]l, where A is independent of v and f. As v—0,
F(x) converges in L* to the ordinary Calderon and Zygmund singular

integral lims S =99 4,
-0 Jitl=¢e ltln

Using the one dimensional formula (4.4) in (5.2) shows that
6.3 K@ =S .Q(t)(M)do+§ Q()H(| ) cos 0, v) do
s Ty b

where H(|x|cos 8, v) is uniformly bounded in both arguments. The
first term may be written as

_ %LQ@)( |cos 6’(!;’ =)o

since LQ(t)do =0. Now
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log | cos 0| Syil cos 0 |*du
0 < log

v lcos 6] ’

|eos 0] — 1 !=
7

and since Q(t) belongs to Llog* L on X, an application of Young’s in-
equality’ shows that the first part of (5.3) is also uniformly bounded.
Convergence follows from the pointwise convergence of the expressions
in the integral signs and the bounded convergence theorem. The first
part converges to 0 and the second part as in Corollary 2 converges to

Lfri sgn (cos 0)2(t)do. That the Fourier transform in the case of the

ordinary singular integral converges to the same value follows by ex-
pressing the transform in polar coordinates and again applying the re-
asoning of Corollary 2.

6. Convergence in norm. Let B’(y) = sup|S| where all sets S

such that S f(x)dxe > |S|ly are considered. Further, given a function
S

Q(x) of the type considered in the last section, let w(r) be its modulus
of continuity; that is w(r) = sup |2(x) — 2(y)| where z and y both lie
on the unit sphere and |x — y| < 7.

LEMMA 5. Let f(x) be mon mnegative and belong to L*,1 < p < 2,
t

i E". Let 2(t) = Q(l—tl> be such that its modulus of continuity satis-

fies Sl$ dr < . Let E, be the set where
0

6.1) ﬁ(x):S Q(t) f(x—t)dt—%gzg(t)do

le12e | ]2+
exceeds y in absolute value. Then |E,| < %lg JLf@)de + e(v)B (),
E

where [f(x)], = min (f(x), y) and c(y) = C(_lvllﬁr_l)? where C depends
only on 9.

Note. The primary use of this lemma will be for the one dimen-
sional case where the continuity condition is automatically satisfied and
the constant C is an absolute constant.

This lemma is the same as Lemma 2, Chapter I of [1] except that
the transform

S 20) o — tydt

ierza |t
has been replaced by (6.1) and » by 1/e. The proof is almost identical,
and therefore will not be repeated. The few minor differences will be

1 See [7] Vol. I, p.{16.
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mentioned.
When f(x) is split into the two parts g¢g(x) and h(x), the proof for
the one in L2 h(x), is a consequence of Corollary 3. The proof that

) =§ Q) _ gz — tydt

le1ze | |mY

satisfies
S_,lk(w)ldw < CS l9(x)| dw
Dy Dy

is the same except where the expression for the difference of the
kernels is obtained. The principal difference there is that the expression

1 1
|t|n+z'y !tklnny
arises instead of
I 1 1
[t [t

However, using the fact that

1 1 =_S°n+irydu

an+iy bn+i7 a un+1+i'y

the same inequality can be obtained. Now
§.(@) = k(z) — L”?_S o) do
- 1Y€e Y Js

so that
[, Ja@lde = | @) az < o 1g@))da .

From this point the proofs are again identical. Following the details
closely also shows that the constants are of the desired form.

From this result Theorems 1 through 7 of Chapter I of [1] follow
immediately, either with the same proofs or with minor modifications.
In some cases where only norms are concerned it is more convenient to
carry through the proof for

S OO — tyat

1tl>e Itl"""”

and then to add in the other term for which the theorems are obviously
true. Lemma 5 is also obviously valid for just this term of the
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transform. Thus, for example, the following are true.

THEOREM 1. Let f(x) belong to L*,1 < p < o, in E". Then with
the continuity condition on 2 of Lemma 5, the fumction fa(w) of (6.1)
also belongs to L*. Furthermore, Hfg(x)ll,, < e(v, p)|f(®)]|, where c(y, p) =
C (lv] + 1)
[7l(p — 1)
The form of ¢(v, p) can be obtained by using the reasoning of the
remark on page 99 of [1], following the constants through the proof,
and using the fact that for

and C depends only on Q.

(v +12V> _ (o] + 1)
p>1, (PEN)7 < AXEEE

THEOREM 2. Let f(x) be a function such that
[ @I+ Tog?f(@) ) da < o .

Then with the continuity condition of 2 of Lemma 5 f‘e(oc) 18 wntegrable
over any set S of finite measure and

| [ @ldw < o 17 (@)ld
+ c(fy)gEn f@)log* (1S %1 (@) d + ()™
where c(v) = CQ{YII_;—IE and C depends only on L.

THEOREM 3. Let f be integrable in E™ and 2 satisfy the continuity
condition of Lemma 5. Then if S is a set of finite measure,

[ JA@rdr< Li81(] If@lda)”
8 (44 E
where ¢ is a constant independent of a, S, ¢ and f.

THEOREM 4. Let p(x) be a mass-distribution, that s a completely
additive function of Borel set in E™, and suppose that the total varia-
tion V of p in E™ is finite. Let p'(x) denote the derivative of ()
which exists almost everywhere. Then if R satisfies the continuity
condition of Lemma Sand if

Foy=| 2O dpw—1)- -ié}j%}LQ(t) do ,

1ei>e | ¢ |m e

over every set S of finite measure
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[ @) p-edw < EiSpev-e.
8 (24

THEOREM 5. Let f(x) belong to L?,1 < p < oo, and let 2 satisfy
the continuity condition of Lemma 5. Then fi(x) converges in the
mean of order p as € — 0 to a function f(x).

From this last theorem it follows by use of Lemma 2 that the
original summation definition of f(x) also converges in L* norm if f is
in L? and 1 < p < o,

7. Pointwise convergence.

THEOREM 6. If f(x) belongs to L?,1 < p < oo, then f.(x) converges
almost everywhere to a function f (x) as € — 0. Moreover, the function
sup |£.(x)] belongs to L* and ]]sup ]fg(x)H]p < c¢||f(x)]],, ¢ being a constant

whwh depends on p, v, and 2 only
The proof is similar to that of Theorem 1, Chapter II of [1]. Define
2(x) |
Ks(m) == {lxln+iy
0 el < €.

x| >¢

Let H(x) be non negative, zero outside the unit sphere, have continu-

ous first derivatives, and have S JH(z)dz = 1. Denote by F(x) the limit
~ E

in norm of f.(x) and define

i =1 B(E=t)ivat.

By the lemmas in Chapter II of [1], fs(ac) converges almost everywhere
to f(2) and [[sup fu@)ll, < ellf(@)ll, < ell /@I, As in [1] every con-
stant not depending on f will be denoted by ¢ simply.

Using the fact that f.(x) converges in norm to f(x),

Fz) = limg 1 (9“ - t)ﬁ F(t — v)Ky(v) dv

-0 JE?E

:; g? S Q(w)dw] dt .

This may be considered as the difference of two integrals and written

A =tim[{ [ ZE(Z=L)5¢ - ko) dtdv

A0 en

(T i ]
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Making the substitutions ¢t =x—wu-+v in the first integral and t=2—u
in the second gives

for= ] o] L ()i L2

en 1Y

= lim SE flx — u)[gwm K\(v) H(“ —v )dv

A—0 er 15

] () () L

e L € Tyentiy

Since H(zx) is differentiable, the limit may be taken inside the integral
signs to give

fg(x) - SEnf(x B u){glvlze K(v) H<u - Q))dv

er &

0Q
o, Oy (e, - KGN

where K(v) = K(v).
Now it is also true that

fitey = | rw —wf | KL B (L= 2)ay au — SO o

Tyt Jz

since the integral S J@de =1. For |u| > 3e it is clear that
E

[, A m(2 )i - | KL p(2=t)an|

SEne‘"H(u : v)(KB(v) — K(u)) dvi
U — ,U\Cw(%‘i) dv = cw(i]) .

<o —
=" e / Jul [u]"

As before w is the modulus of continuity of 2 and ¢ is independent of
¢. The last inequality for |K.(v) — K.(u)| is the one used in the proof
of Lemma 5; it is valid here because |u — v| < & when the integrand
is not zero.

For |u| < 3¢ it is clear that both

SEn K;(f) H(“ = ”)dvj and

XEW K;au) H(u 5_ v)dvk
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are less than or equal to

SI,,,SNSSWH(u . )dv < __x(o 5)(|Zl> )

Here X5 is the characteristic function of the interval (0, 5).

Similarly
oo e B () — () Jao] < of || F2 e (T

c u
< & (121,
& &

Combining all of these results

e
A, (1)

[l

)+ ()
[ 2 e o)

From this the lemmas of the second chapter of [1] give

@ - F@ < | 1r@— u)l[

Isup |f(@) — Fu@)ll, < ell F@)l, -

Then since llm fi(x) = f(x) almost everywhere and || sup] F@)ll, <cllf@)l,
and fE —F 1n mean of order p, the theorem follows

THEOREM 7. Let p(x) be a mass distribution, that is, a completely
additive function of Borel set in E™ and suppose that the total varia-
tion V of p(x) in E™ is finite. Then the expression

fy={ 2O auw 1) - LD g

e|t|P+i 1yt )=

where p'(x) is the derivative of p(x) where this exists, has a limit f
almost everywhere as ¢ tends to zero, and over every set S of finite

measure Ssl Fa)peds < L|Spvi-e,

This corresponds to Theorem 2, Chapter II of [2]. The proof is the
same except that Theorem 6 is used to obtain the convergence of the
integral involving g(x).

8. Other theorems. With this basis all the basic theorems in [2]
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and [3] can easily be shown to have their analogues for transforms of
the type considered here. The periodic and discrete cases can be done
simply; in the discrete case the subtracted term even disappears.

The rotation method as presented in [3] can also be applied in this
case but the proof is much simpler. The method that applies only to
odd kernels in the ordinary case applies to all kernels in this case. To
illustrate this the following important theorem is given.

THEOREM 8. Let f(x) belong to L*,1 < p < o, in E". Let 2t) =

Q( lil) be merely integrable on the unit sphere 3. Then if

fs(x)=§ D) e t)dt—{T(ZZ—L.Q(t)do,

I t ’n+iy
it satisfies

i@, < COLED iy,
[7Id — )
where C depends only on Q. As ¢ — 0, fu(x) converges in L* morm to
a function f(x). Furthermore, Hsup |7e@) |11, < cllf @)|l, where ¢ is in-

dependent of f, and f.(x) converges almost everywhere to f(x) as ¢ — 0.

That f.(z) exists almost everywhere is shown on page 292 of [3].
Let the norm symbol || ||, apply to the variable x. To write the
integrals in polar coordinates let ¢t = rt’, ¢’ on the unit sphere. Then

lIsup | fu@)ll, = sgp” 2O _f@ — tyds — L& (x)g 0

ltize |§|P+Y Tyet Jz

= ||sup IS Q(t')ala(se S =rt) 4. L(@_)

LY 'i'yei"

S IQ(t’)Ido(supI S f@—rt) 4. @)

l+i‘)’ ,yszy

p

D
Using Minkowski’s integral inequality this is less than or equal to

[ o) 1do sup||"LE=1E) g )

1 +3y 'ws”

IA

.
}4

V4

Using the one dimensional version of theorem 6 on the inner integral
by first integrating x parallel to ¢ and then over the space of such
lines gives

Isup 7)1, < ([ | 2@ 1o )ellr @, < ellF@ls -

The inequality for || ﬁ(x)ll,, follows using the same method and the one
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dimensional version of Theorem 1. The rest of the proof is the same
as that of Theorem 3 of [3] once convergence for continuously differ-

entiable f vanishing outside a bounded set is shown. Writing fg(x) as

J?'E(x) — SES|“<1f(x — 1) — f(®) Qt) dt

lt [n+iy

+S Mt f(x)gg
1t1>1 i’)/

lt|n+iy b3
shows clearly that it converges pointwise in this case.

9. Transforms of fractional integral type.>

o(t)
[el"

DEFINITION.  T.(f) = czS ns(t)( ) f(z — t)dt for 0 < R(2) < 1,

1@)| sty do

(nz — n)en=-"

EthQgSld(ﬁUfw—wﬁ—

for R(z)=1 and z+1, and Ty(f) = -% f(x)Sis(t)H(t)do, where ¢, =

(: — ;)2 ,0° is taken as 0, 0(t) = 6’( | tl) > 0 is integrable on the unit

sphere 2, s(t) = s(

real part of z.

To obtain the principal theorem of this section a theorem of Stein
[4] p. 483 will be used. For this purpose it will be necessary to show
that the operators T, as defined above satisfy the conditions of this
theorem. Using the terminology of [4], the following lemma may be
proved.

| t|) has absolute value one, and R(z) denotes the

LEMMA 6. Consider the set T, as a family of operators from
Sfunctions in E™ that are zero off the sphere |x| < D to functions in
E". The set T, is then an analytic family of operators of admaissible
growth in the strip 0 < R(z) <1. For a simple function ¢ in the

szl lpll, for 1 < p < o, and

1 Tyyplle < l@|l, hold where C depends only on 6(t) and not on D.
Throughout the proof ¢ and + will be simple non negative functions
and M the maximum of ®. Since any simple function can be written
as the difference of two such functions, it will be sufficient to prove
the assertions for these. The lemma will be proved in parts as indicated.
a. Simple functions in the given set are transformed into measurable
functions for 0 < R(z) < 1. For R(z) =1 this follows from the preced-

2 The method of this section was suggested by A. P. Calderon.

given set, the tnequalities (| Ty, ®ll, <
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ing sections. To consider the case 0 < R(z) < 1, let r = [t]| and t'=t/|t].
Then changing to polar coordinates

9.1 T(p)=c¢c S (&) (O ))de-S f(x ’i"t)

,rl n+nz
Using this,
, 2 dr
7)< m([ @+ ownao)(['—2)
where A is the greater of || — D and 0 and B = |¢| + D. Both in-
tegrals are obviously finite so that T,p exists. The measurability follows
from the Fubini theorem.

b. If R()=1and 1 >¢>1/3n, then |T,.«(p)| is bounded by a
constant that is independent of z and ¢. For e =1

Teie)] < | ot — )]t

and is obviously bounded. For 1 >¢ > 1/3n

L)) < loel] () ot — ya

by use of Holder’s inequality. The second integral is certainly bounded.
Writing the first integral in polar coordinates shows that it is in abso-
lute value less than

S a+ G(t’))das %ﬁr_

so that it too is bounded. Since the exponents are between 0 and 1
the whole expression is bounded.

c. If R(z)=1 and 1/3n > ¢ > |I(z)|, where I(z) denotes the im-
aginary part of 2, then |7, .(9)| is bounded by a constant that is in-
dependent of z and ¢. Using polar coordinates,

| To-e(p)| < le,- 8|S [0t~ edo.g f(ﬂl; rt’) dr
> M ir

lne

< 2ef (1 + awnao| 2L
< 255 (1 + o)) do-2 (2D)’“

<4DM S A + o)) do .
n
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d. If R(z) =1, e < |I(2)] and ¢ < 1/2n, then the integral

9.2) CZ_ESMZIS(t)[<%)L->Z_E — %Jﬂx —t)dt

is uniformly bounded. For z = 1 it converges to 0 as e approaches 0.
2(1 4 0(¢)) o — t)dt

The integral of (9.2) is clearly dominated byS | =
ltl=>1 n-3

which is finite. Since c¢,_. is bounded, the expression (9.2) is bounded;

convergence follows from the dominated convergence theorem.

e. If R(z)=1, e<|I(z)] and ¢ < 1/2n, then the integral

(9.3) c,_sglneam-ldQX SO "p@ — ) 4,

1tz [t]™

has uniformly bounded L? norm. For z # 1 it converges in L* to T,(¢)
as ¢ approaches 0.

As before, let the norm symbol || ||, apply to the variable x. Then
changing to polar coordinates the L* norm of (9.3) is
=@ — rt')dr

NZ=1+1
r

“cz_ggzs(t’)(ﬁ(t’))"fdaS:nea"E'ldaS

2 2

Then applying Minkowski’s integral inequality twice shows that this is
less than or equal to )

|Came IL(I + 6(t")) ddslmans’_lda

S“’ p(x — rt’)dr

,,m,z-n+1

@ 2

Using Corollary 1 and performing the integration of z first over lines
parallel to ¢’ and then over the space of such lines shows that the whole
expression is bounded by

2@ N deCAAIT@M ) ,
1+ lI(z)lz Sz(l + o(t ))dO' 11(2)] lle]ls ZCHQ)”zSE(l + 0@t do .

To prove the convergence consider the expression

(9.4) c,_ESzs(t')(e(t'))zdoS:mans-ldag:%Q dr .
This converges in L? norm to T,(®) by Corollary 8 and Lemma 2 since
its limit is the Abel summation definition of T,(¢) written in polar co-
ordinates. The reasoning used above to show that (9.3) had bounded
L? norm can be applied to the difference of (9.3) and (9.4). This shows
that the L? norm of the difference is less than or equal to

2¢{ o)~ — @) |dalill.,
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and this converges to 0 as ¢ approaches 0. Consequently, (9.3) converges
to T,(p).

£, F(z) = S«pT,(cp) do is analytic in 0 < R(z) < 1. For 1 — R(2) >
|I(z)] or 1 — R(z) > 1/3n this follows immediately from the majorizing
expressions for T,(o) in parts b and c. Since T,(p) is a uniformly con-
vergent integral of an analytic function in these cases, T,(®) and hence
F(z) are analytic. For 1 — R(2) < |I(?)| and 1 — R(z) < 1/3n observe
that T,(®) is the sum of (9.2) and (9.3). By the same reasoning as in
the other case, the integral of the product of 4 with either (9.2) or
(9.3) is analytic. Therefore, the sum of these parts, F'(z), is analytic.

g. F(z) = S«}rTz(tp) dx is continuous on R(z) =1. By its definition
T.(p) is the product of ¢, and the transformation of the previous sec-
tions where s(t)(6(¢t))’ has replaced 2(t) and (nz — m)/t has replaced 7.
Using Fourier transforms then gives .’ll(g)) = c,K,qﬁ where K, is the
function K of Lemma 4 with v = (nz—n)/i, provided that z = 1. Using
the expression (4.4) in (5.2) gives an expression for C,Kz. Its form shows
that csz is uniformly bounded in 2 and z. Furthermore, for 0 <a <
x < b< o, it is also clear that ¢, K is continuous in z, uniformly in «.

Both statements remain valid if —%S s(t)é(t)do is used for ¢, K,. Using

this, it is also clear that T(p)=c.K.p.

Now let z be a complex number with R(z) =1, and let ¢ > 0 be
arbitrary. Choose real numbers a and b so that if S consists of points
in £ whose distance from the origin lies between a and b, and S’ is
the complement of S in E”, then

(1, oras) < 4||~,zrnzsip AN

Let w be another complex number with R(w) =1. Then
|F(2) — F(w)| < |9l Top — Tuplls < 1011 Top — Tl
1 A A
—é H\P‘H2<S gﬁde)Z sup [Csz - chwl
S’ €S’

N 1 . N
+ ([ 9z )t sup ek, — o -

The first part is less than ¢/2 and the second part approaches 0 as w
approaches z. This shows the desired continuity.

h. F(z) is continuous and bounded on 0 < R(z) < 1. From parts
b through e it is clear that F'(z) is uniformly bounded in 0 < R(z) < 1
and IEIHOI F(z —¢) = F(z) for R(z) =1 and z+ 1. These facts, together

with the analyticity and continuity on R(2) =1, give the desired con-
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tinuity and boundedness.

L (Twplle <llell and [[Thupll, < Ap{)_ TPl 1 <p < e,

where y is real and A depends only on 6(¢) and not on D or . The first
is trivial. The second follows from Theorem 8 since (1 + |y |*)|ci+sy ]/l Y] i
bounded.

This completes the proof of the lemma.

THEOREM 9. Let p, q, and )\ be positive numbers such that

1<p<g< and—;—=%—~x. Let f be in L* on E™ and 2(t) =

, on the unit sphere. Then the integral

Q(—t—> be in L%, s =

1
2] i—x

AUF{ 2O e tyds

B® ] t ln(l—)\)

exists for almost all x and
1/ pg
1)l < C{ S22 ) Tl

where C depends only on Q.
Applying the theorem of Stein [4] p. 483 to the T, with p, =1,
g, =,0,=¢,=¢q(1 —2A), z=1—\ gives for simple ¢,

IT.ell, < A(=22) el .

2

Now let 4(t) = IQ(t)]l_if, and s(t) = sgn 2(tf). Then dividing the above
inequality by c¢,-, gives

1Dl < A(FOT )T 2N g,

_ 4(PAL =)L
= A(ZL =)L g,

< 242 ) el

Now if 2 > 0 all the integrands are positive. Given an arbitrary posi-
tive function f in L?, take a sequence of simple functions ¢, that
vanish off bounded sets and converge in L® norm to f. Then taking
the limit in the inequality above gives
1-A
DA < 2 (2L gl -
M \p—1
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From this D,(f) exists almost everywhere. In the case where f and 2
are not positive the integrand of D,(f) is majorized by a positive func-
tion that does satisfy the desired inequality. This completes the proof.
It is known that the usual fractional integration theorem and, as a
result, Theorem 9 fail for the cases p =1 and ¢ = . Zygmund [8]
p. 605-6 proved substitute results for the usual fractional integral case,
and these results can be extended to the present case. The proof of
Theorem 10 is an adaptation of the corresponding proof in [8].

THEOREM 10. Let p = 1/n be a positive number greater than 1.
Let f be in L? on E™, vanish off a bounded set R and ||f|l, <1. Let
Q) = (|i|> be in Lf,s = 11)\'
pression D,\(f) exists for almost all x. Furthermore, if @(x)=
e” — x* — 1, there exist constants a and A, independent of f and R,
such that

on the unit sphere. Then the ex-

[ e@pinn < ar.
Using Theorem 9

SEn@(al-DA(f)l) < g S [_D (f) lns

oo 2 ns
< n aC ns
—§ ((n—l)(l ))(x) 15,
where p, = 1_—{&_‘_—% Now using the fact that <l ng If I”)l’ in-

creases with p shows that the preceding sum is less than or equal to
Z (@’ Dn) ———L_|R|||flI** where D is a constant independent of =, f, and R.
Then usmg the fact that ||f||, <1 and Stirling’s formula shows that

for a* = 1/(2¢D) the series converges to a constant A.

THEOREM 11. Let q =1/(1 — \) be a positive number, 1 < q < .
Let T(x) = A + 2)[log (1 + x)]** and f be a function in E" such that
S U(fD s finite. Let Q(t) = <| |> be in L%, s = 1/(1 — \) on the unit

Eﬂ

sphere. Then the expression D,(f) ewxists for almost all x, and over
any set R of finite measure

(o) < a1+ was)

where A is independent of f and R.
By differentiating it is clear that Z'(x) is greater than the function
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conjugate to @(x) = e*® — 2* — 1 in the sense of Young.! Consequently,
for real positive numbers b and d, bd < @(b) + ¥(d) by Young’s inequ-
ality. Now consider a function ¢ in L?, p = 1/A, vanishing outside R
and with ||g|[, < 1. Then using Theorem 10
D 1 1/
D@ <=\ an@lifi< (| e@pa@n)+ | wirh
E B a \JE E

a

1
< L(ari+{ wasm).
a E
However, by interchanging the order of integration

[, 20| = |{ gDutr)] -

Since g is an arbitrary function in L? on R, the least upper bound for
.. . / . .
this integral is (S | D( f)|q>1q by the converse of Holder’s inequality.

R

Therefore (| D))" < ABLL [ wg) .
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