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1. Introduction* Let Sn be the space of ^-square skew symmetric
matrices over the field F of real numbers. Let E2k(A) denote the sum
of all 2&-square principal subdeterminants of A e Sn (the elementary
symmetric function of degree 2k of the eigenvalues of A). It is clas-
sical that if U is an ^-square real orthogonal matrix and A e Sn then
UAU' e Sn and moreover for each k

(1.1) EJJJAU') = EM(A) .

The correspondence

(1.2) A->UAU'

for a fixed orthogonal U can then be regarded as a linear transforma-
tion on Sn onto itself that holds E2k(A) invariant. The question we
consider here is the following: to what extent does the fact that (1.1)
holds for some k characterize the map (1.2). In other words, we obtain
(Theorem 3) the complete structure of those linear maps T of Sn into
itself that for some k > 1 satisfy E2k(T(A)) = E2k{A) for each A e Sn.
Our results are made to depend on the structure of linear maps of the
second Grassmann product space /\2U of a vector space U over F into
itself.

K. Morita [2] examined the structure of those maps T of Sn into
itself that hold invariant the dominant singular value a(A) of each
A e Sn. We recall that a(A) is the largest eigenvalue of the non-negative
Hermitian square root of A*A. Morita shows that if a(T(A)) = a(A)
for each A e Sn then T has essentially the form given in our Theorem 3.

2* Some definitions and preliminary results* Let U be a finite
dimensional vector space of dimension n over F. Let G2(U) denote the
space of all alternating bilinear functionals on the cartesian product
U x U to F. Then the dual space h2U of G2(U) is called the second
Grassmann product space of U. If x1 and x2 are any two vectors in U
then f = x1 A x2 ^ A2U is defined by the equation

f(w) = w(x19 x2) , we GJJJ) .
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Some elementary properties of xx A x2 are:
( i ) xx A x2 = 0 if and only if xx and x2 are linearly dependent.
(ii) if xx A x2 = Vi A y2 Φ 0 then <&„ £2> = ζylf y2y where <#!, #2> is

the space spanned by x1 and x2.
If A is a linear map of U into itself we define C2(A), the second com-
pound of A, as a linear map of f\2U into tfU by

(2.1) C2(A)^ Λ £2 = Aα?! Λ Ax2 .

We remark that if x19 , $w is a basis of ί7 then x% A xj9I < i < j *<n
is a basis of A 2 ^ a n d hence (2.1) defines C2(A) by linear extension.
We first show that /\2U is isomorphic in a natural way to Sn and under
this isomorphism second compounds correspond to congruence transfor-
mations in Sn.
Specifically, let a19 , an be a basis of U and define φ by

(2.2) φ{μ% A aό) = Ei3 - En e Sn

where Ei5 is the ^-square matrix with 1 in position i, j and 0 elsewhere
and extend ψ linearly to all of /\2U. It is obvious that φ is an isomor-
phism since Eυ — EJt, 1 < i < j < n is a basis of Sn. Let T be a linear
map of A 2 ^ i n to itself and define S, a linear map of Sn into itself, by

(2.3) S(A) = φTφ-\A), Ae Sn.

Let B be a linear map of U into itself. Then

THEOREM 1. T = C2(B) i/ and owẐ / i/ S(A) = i^AI?! ^feβrβ Bi is
matrix of B with respect to the ordered basis au •••, an.

Proof. Suppose T = C2(B). Then for i <j

S(Eυ - En) - φTφ-\Eυ - En)

= ψ{Ba% A Bcέj)

δ**«fc Λ Σ bk1

t1(Est — Et8)

The implication in the other direction is similar.
Let L2r denote the set of rank 2r matrices in Sn and let Ω2r denote the

set of vectors Σϊ=i χι Λ yt in A2U where dim < x19 , xr, ylf , yr > = 2r.

THEOREM 2. 9^(β2r) = L2r
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Proof. Let

T

1 = 1

Choose a non-singular map B of U onto Z7 such that Ba2)-X = Xj and
Bα2 j = yj9j = l, . . . , r. Then

s = C2(B) Σ nr2J_! Λ o:2; ,

SO

(2.4) ?>(«) = ΨCIB) Σ α w - ! Λ α2 j .

Let S(A) = BλAB[ for A e S , where B1 is the matrix of B with respect
to the ordered basis al9 , αw. Then by Theorem 1, φC2(B)φ~ι = S and
from (2.4) we have

?>(s) = S^ Σ α2j_! Λ α2 j
J l

The implication in the other direction is a reversal of this argument.
We see then that a map T of A 2 ^ ίn^o itself is a second compound

of some linear map of U into itself if and only if φTφ~λ is a congruence
map of Sn; and T(Ω2r) c β2 r if and only if φTφ'\L2r) c L2r.

3 E'sfc preservers. Let S be a linear map of Sw into itself such that
E2k(S(A)) = S2fc(A) for all A e Sn, where A; is a fixed integer, k > 2.
Then

LEMMA 1. S ΐs non-singular.

Proof. Suppose S(A) = 0. Then

(3.1) E2k(A + X) - #2&(S(A + X)) - E2k(S(X)) -

for all X e Sn .

Obtain a real orthogonal P such that

(3.2)

where 0w_2r is an (n — 2r)-square matrix of zeros and p(A) — rank A = 2r.
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Here Σ a n d + indicate direct sum. Now if p(A) > 2k simply set
X = 0 and from (3.1) and (3.2) we see that

0 < E2k{A) = Ek{θ\, , θl) = E2k(0) = 0

a contradiction. On the other hand, if p(A) < 2& select X e Sn such
that

PXP' = 02, + Σ V i * - #*) + 0n_ΪJt
1

where Eu is a 2-square matrix. Then

E2k(A + X) = E2k{PAP> + PXPf) = Π θ) .
7

But E2k{PXPf) = ^ ( Z ) = 0, since k - r < k. Hence the proof is com-
plete.

LEMMA 2. If A e Sn and deg E2k(xA + B) < 2 /or αZZ JB € Sn

A Φ 0 ίfeew |O(A) = 2.

Proof. Suppose ρ(A) — 2r and select a real orthogonal P such that
' has the form given in (3.2). Select B such that

[j]~r

PBPf - 02, + Σ {En - En) + C
2

where if n is even C doesn't appear and if n is odd C is a 1-square zero
matrix.

Now if k < r

E2k(xA + B) - x*kEk(θl, , θl) + lower

order terms in x.

If k>r
ί\nl2] r\

E2k(xA + B) — [\ ' J

/v, )θ\ θ2

rx
2r + lower order terms in x. Thus

degE2k(xA + B) is either 2/c or 2r.

But this implies 2r = 2 and p(A) = 2.

LEMMA 3. If E2k(S(A)) = #2fc(A) /or αZί A e Sn then S(L2) c L2.

Proo/. Let p(ίc) be the polynomial E2k(xA + B). Then if ρ{A) = 2 it is
easy to check that degp(^) < 2 for all B e Sn. Hence degΐ;2&(^S(A) + S(B))<
2 for all B e Sn. But S is non-singular by Lemma 1 and thus by Lemma 2,
p(S(A)) - 2.
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THEOREM 3. If E21c(S(A)) = E21c{A) for all A e Sn, where k is a
fixed integer satisfying 4 < 2k < n and n > 5 then there exists a real
matrix P such that

(3.3) S(A) = aPAP' for all A e Sn

where aPP' — I if 2k < n and aPPf is unimodular if 2k — n. If 2k —
n = 4 then either S has the form (3.3) or

(3.4) S(A) - aP — α34 0 α u α13

#24 #14 0 #12

_α23 _αi3 _αi2 o /

where A —

/ 0 α 1 2 α 1 3 α 1 4 \

— a 1 2 0 α 2 3 α 2 4

#13 —#23 0 #34

\ — α 1 4 — α 2 4 — α 3 4 0 /

and aPP' is unimodular.

Proof. By Lemma 1, *S-1 exists and we check that

En{S-\A)) - En(SS-\A)) = E2k(A) ,

for any A e Sn. Hence by Lemma 3

S-!(L2) c L2 and thus S(L2) = L2 .

Now define T, a mapping of A 2 ^ into itself, by (2.3)

T = φ-'Sφ .

By Theorem 2

= Ω2.

At this point we invoke a theorem of Chow [1, pp. 38]. Let T" be
the mapping of 2-dimensional subspaces of U into themselves induced by
T; that is, let T"(ζx, y}) — ζu, v) whenever T(x Λ y) = u Λ v, (assum-
ing of course that x and ?/ are linearly independent). Then T" is well
defined and it follows from the above that it is a one-to-one onto ad-
jacence preserving transformation: if two 2-dimensional subspaces of U
intersect in a subspace of dimension 1 then their images under T" in-
tersect in a subspace of dimension 1. Therefore V is induced either
by a correlation or a collineation of the subspaces of U. If dim U > 5
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T" is induced by a collineation. If dim U — 4 and if T" is induced by
a correlation then (TTΊ)" is induced by a collineation. Here Tλ maps A 2 ^
into itself and satisfies

(3.5) Tl(Xί Λ Xjϊ = ®ι Λ ^m '

{i, i , Z, m} = {1, 2, 3,4} and i <j,l <m .

Now, assuming T" is induced by a collineation we show that

(3.6) T = αC2(P)

for some a e F and some linear transformation P: U—> U. The funda-
mental theorem of projective geometry states that there is a one-to-one
semi-linear transformation Q: U—+ U such that

(3.7) T"«x, »» = <Qx, Qy> .

Let xιt * ,xn be a basis of U and let Qxt — yt. Then

T(a?i Λ Xj) = α ^ , Λ % α υ e F .

1 < if j < n, ί Φ j .

Then for s, A:, ^ distinct integers in 1, , n and K e F.

T((xs + xt) A xk) = K(Q(xs + xt) Λ Qxk)

= K(ys + yt) A yk ,

But

T((xs + xt) A xk) = T(xs A xk) + T(xt A xk)

= {pLΛky9 + atkyt) A yk .

Hence ask = atk and thus ask = αtfc = akt — an — a for any four distinct
integers s, fc, r, ί. Hence

Γ(aj4 Λ Xj) = αj/ί Λ % = aC2(P)Xt A x, ,

where P: ί7—> Z7 is a linear transformation with Px3 — yt. Since {xtAXj 11 <
i < j < n} is a basis of A2U, T = aC2(P).
Now by Theorem 1,

S(A) - aPAP' for all A e S w

for n > 5 where P is an w-square non-singular matrix. If 2k = n then
clearly <xPP' is unimodular. Hence assume 2k < n.
We next show that

aPP' - / .

From the hypothesis,
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and hence

E2k(aPAP') = E2k(A), A e Sn

a™tr{C2k(PP')C2k(A)} = trC2k(A) .

By the polar factorization theorem let P = UB, where U is real or-
thogonal and B is positive definite symmetric. Let B — VDV, D
diagonal with positive entries and V real orthogonal. Then since VΆV
runs through all of Sn as A does we have

(3.9) a™tr{C2k(D*)C2k(A)} = trC2k(A) .

We assert that any diagonal C%A-squa,τe matrix is a linear combina-
tion of matrices C2k(A) for A e Sn. For, let 1 < ilf < < i2k < n. Let
A e Sn and consider the 2fc-square principal submatrix B of A where

Baβ =
aβ

and suppose A has 0 entries outside of B. Then define B as follows:

B2k-a,Λ+1 = - 1 , α = 0, , fc - 1

and 5 0 = 0 elsewhere. Then C2fc(A) = ± Eh...hic, where Eh...hΊc is the

(^W S ( * u a r e matrix with the single non-zero entry 1 in the ((t^ •••, iafc),

(iif * » is*)) position ordered doubly lexicographically in the indices of
the rows and columns of A. Returning to (3.9) we have

tr{C2k(aD2)X} = trX

for all ί 2 .̂Vsquare diagonal matrices X and hence C2k(aD2) — /, aD2 =

± I. From this we easily see that

aPP' = I,

and (3.3) follows. The mapping 2\ on h2U induces the map S1 on S4

where
0 α12 α18 α14\ / 0 au a2i α23\

d12 U €ί2,

— α 1 3 — α 2 3 0

\ #14 #24 #3- 0

0

\—«23 —

α 1 4 α 1 3

0 α 1 2

— α 1 9 0

This completes the proof.
We remark that Theorem 3 is no longer valid if k = 1: for consider the
transformation which interchanges positions (i, i) and (i, i) in A for
a fixed pair of integers 1 < i < j < n. This clearly preserves ^(A) but
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does not have the form irL Theorem

/ 0 1
- 1 0

0 - 1
\ - l 0

3. For

0

1

0

- 1

example

1\

0

1

0/

is non-singular but interchanging the 1, 2 and 2, 1 entries results in
a singular matrix.
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