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1. Introduction. Let S, be the space of n-square skew symmetric
matrices over the field F' of real numbers. Let E,(A) denote the sum
of all 2k-square principal subdeterminants of A e S, (the elementary
symmetric function of degree 2k of the eigenvalues of A). It is clas-
sical that if U is an n-square real orthogonal matrix and A € S, then
UAU’ € S, and moreover for each k

(1.1) Em(UAU’) = EZIc(A) .
The correspondence

(1.2) A — UAU’

for a fixed orthogonal U can then be regarded as a linear transforma-
tion on S, onto itself that holds K, (A) invariant. The question we
consider here is the following: to what extent does the fact that (1.1)
holds for some k characterize the map (1.2). In other words, we obtain
(Theorem 3) the complete structure of those linear maps 7' of S, into
itself that for some k > 1 satisfy E,.(T(A)) = E,,(A) for each A e S,.
Our results are made to depend on the structure of linear maps of the
second Grassmann product space AU of a vector space U over F' into
itself.

K. Morita |2| examined the structure of those maps 7 of S, into
itself that hold invariant the dominant singular value a(A) of each
A e S,. We recall that a(A) is the largest eigenvalue of the non-negative
Hermitian square root of A*A. Morita shows that if a(T(4)) = a(4)
for each A € S, then T has essentially the form given in our Theorem 3.

2. Some definitions and preliminary results. Let U be a finite
dimensional vector space of dimension n over F. Let G,(U) denote the
space of all alternating bilinear functionals on the cartesian product
Ux U to F. Then the dual space A’U of G,(U) is called the second
Grassmann product space of U. If x, and x, are any two vectors in U
then f =2, A ¢, € AU is defined by the equation

Ffw) = w(x, 2), we GU).
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Some elementary properties of x, A x, are:
(i) 2, Az, =0 if and only if #, and x, are linearly dependent.
(ii) if » A @ =y, Ay, # 0 then {x,, x,> = {y,, ¥.» where {x,, z,) is
the space spanned by «;, and =z,.
If A is a linear map of U into itself we define C,(A), the second com-
pound of A, as a linear map of AU into AU by

(2.1) Cy(A)x, N\ x, = Ax, N\ Az, .

We remark that if », .-+, 2, isa basisof U then x, A2, 1 <1 <j<n
is a basis of A®U and hence (2.1) defines C,(A) by linear extension.
We first show that A*U is isomorphic in a natural way to S, and under
this isomorphism second compounds correspond to congruence transfor-
mations in S,.

Specifically, let ay, ---, &, be a basis of U and define ¢ by

(2.2) pla; N\ ay) = Eyy — Ej; € S,

where FE,, is the m-square matrix with 1 in position 4, 7 and 0 elsewhere
and extend @ linearly to all of A?U. It is obvious that ¢ is an isomor-
phism since E,;, — E,;, 1 <1 <j <n is a basis of S,. Let T be a linear
map of A?U into itself and define S, a linear map of S, into itself, by

(2.3) S(4) = pTp(A), A € S, .

Let B be a linear map of U into itself. Then

THEOREM 1. T = CyB) if and only if S(A) = B,AB] where B, is
the matrix of B with respect to the ordered basts ay, +++, a,.

Proof. Suppose T = Cy(B). Then for 7 < j
S(E,; — E,;) = oTp~(E,; — E};)
= ¢(Ba; N\ Ba,)
= q)(i by, N i bkjak)
k=1 k=1
= %bsibw (Est - Ets)
= Bx(Eu - Ejz)BI .

The implication in the other direction is similar.
Let L, denote the set of rank 27 matrices in S, and let 2,, denote the
set of vectors >.7_,®; Ay, in AU where dim < 2,,+++,%,, Y, , Y, > = 2r.

THEOREM 2. @(2,,) = L,
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Proof. Let
=20 NY; €2 .
i=1
Choose a non-singular map B of U onto U such that Ba,_, =2, and

Ba,, =y;,5=1,+--,r. Then
= CQ(B)jZ‘;a%—I N Uy,

SO
(2.4) (@) = 9C(B) Xty A

Let S(A) = B\AB] for A € S, where B, is the matrix of B with respect
to the ordered basis a,, +-+, @,. Then by Theorem 1, ¢Cy(B)p~ = S and
from (2.4) we have

(/J(z) = S?) jz:fau_l AN (2291
= S(]Z; (Ezj—uj - 2j.2j-1))
= B(X(Byrss — Eyuy))Bl € L,

The implication in the other direction is a reversal of this argument.

We see then that a map T of AU into itself is a second compound
of some linear map of U into itself if and only if @T¢~' is a congruence
map of S,; and T(2,,) € Q,. if and only if Ty '(L,,) C L,,.

3. E,, preservers. Let S be a linear map of S, into itself such that

E,.(S(A)) = E,(A) for all A e S,, where k is a fixed integer, k > 2.
Then

LeMMA 1. S is non-singular.

Proof. Suppose S(A) = 0. Then

(3.1) Ew(A + X) = E,(S(A + X)) = E(S(X)) = Exw(X)
for all X e S, .

Obtain a real orthogonal P such that

(3.2) Pap =37 (%, G +o,.

i1

where 0,_,, is an (n — 2r)-square matrix of zeros and p(A) = rank A = 2r.
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Here 3, and + indicate direct sum. Now if p(A) > 2k simply set
X =0 and from (3.1) and (3.2) we see that

0 < Egk(A) = EIC(H?’ M) 93) = Ezk(o) =0

a contradiction. On the other hand, if p(A) < 2k select X € S, such
that

PXP' =0, + S (By— Eu) 4+ 0, o
where K, is a 2-square matrix. Then
E.(A + X) = E,(PAP' + PXP") = [[ ¢ .
J=1

But E,.(PXP') = E,(X) =0, since k — r < k. Hence the proof is com-
plete.

LEMMA 2. If A e S, and deg E,(xA + B) <2 for all B e S, and
A # 0 then p(A) = 2.

Proof. Suppose p(A) = 2r and select a real orthogonal P such that
PAP’ has the form given in (3.2). Select B such that

n

2

PBP,:OZ)'+ }: (El2_ 21)+C
2

where if n is even C doesn’t appear and if » is odd C is a 1-square zero
matrix.
Now if k< »

E,(xA + B) = x*E\ (¢, ---, 62) + lower
order terms in x.

tEk>r

E,(xA + B) = Gcnl_zl,r— T)O? «oo 022" + lower order terms in z. Thus
deg E,.(xA + B) is either 2k or 2r.

But this implies 2 = 2 and p(A4) = 2.

LemMmA 3. If E,(S(A)) = E,(A) for all A e S, then S(L,) < L,.

Proof. Let p(x) be the polynomial E, (xA -+ B). Then if p(4)=2it is
easy to check that degp(x) < 2 for all Be S,. Hence deg E,,(xS(A) + S(B))<
2 for all Be S,. But S is non-singular by Lemma 1 and thus by Lemma 2,
©(S(4)) = 2.
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THEOREM 3. If E,(S(A)) = E,(A) for all A€ S,, where k is a
fixzed integer satisfying 4 < 2k < n and nm > 5 then there exists a real
matrix P such that

3.3) S(A) = aPAP’ for all A e S,

where aPP’ = I1f 2k < n and aPP’is unimodular if 2k = n. If 2k =
n = 4 then either S has the form (3.8) or

0 s, Aoy Qg
— 0 Q .
(34) S(A) = P A3, 1 Qi P’
— Qo —Qyy 0 a,,
Oy —Uy3 —Uyp 0
0 Uy Gy Gy
— 0 Uy A . .
where A = 2 B "1 and PP’ is unimodular.
_als -axgg 0 a34
—Qyy — Ay —Ayy 0

Proof. By Lemma 1, S™' exists and we check that
E,(S7(A)) = Ex(SS7(A)) = E.W(4) ,
for any A € S,. Hence by Lemma 3
S(L,) € L, and thus S(L,) = L, .
Now define T, a mapping of A2U into itself, by (2.3)
T=q¢'Sp .

By Theorem 2

T(Q,) = 7'Sp(L2,)
= ¢7'S(L,)
= p~'(L,)
=0,.

At this point we invoke a theorem of Chow [1, pp. 38]. Let 7" be
the mapping of 2-dimensional subspaces of U into themselves induced by
T, that is, let T""({x, ¥>) = <{u, v> whenever T(x A y) =u A v, (assum-
ing of course that 2 and y are linearly independent). Then T” is well

defined and it follows from the above that it is a one-to-one onto ad-
jacence preserving transformation: if two 2-dimensional subspaces of U

intersect in a subspace of dimension 1 then their images under 7" in-
tersect in a subspace of dimension 1. Therefore 7" is induced either
by a correlation or a collineation of the subspaces of U. If dimU > 5
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T" is induced by a collineation. If dim U =4 and if T is induced by
a correlation then (7'T})” is induced by a collineation. Here T, maps AU
into itself and satisfies

(8.5) Tz, A ) =, A %, ,
{1, 7, , m} = {1,2,3,4} and 1 < j,l <m .
Now, assuming 7" is induced by a collineation we show that
(3.6) T = aCyP)

for some a € F and some linear transformation P: U — U. The funda-
mental theorem of projective geometry states that there is a one-to-one
semi-linear transformation @Q: U — U such that

(3.7 T"(x, y)) = <Qw, Qy) .
Let x, +-+,x, be a basis of U and let Qx, = y,. Then

T, Nx) =y, NY; ;€ F.
IS@, ]Sny 74:/:].
Then for s, k, ¢t distinct integers in 1, ---, 7 and K € F.
T((x, + x,) N ) = K(Q(z; + x,) A\ Quy)
= K®Ys + ¥) N Yx »

But

T((x; + x) A x) = T(s A ) + T, A )

= (a¥s + auY) N Yy -

Hence «,, = «,, and thus «,;, = a,;, = a;, = «,, = « for any four distinct
integers s, k, r,t. Hence

T(x; A x)) = ay; A\ y; = aC(P)x; A\ x;,

where P: U— U is a linear transformation with Px, =y,. Since {x,Az,|1<
1 < j<n} is a basis of AU, T = aCy(P).
Now by Theorem 1,

S(A) = aPAP’ for all Ae S,

for n > 5 where P is an m-square non-singular matrix. If 2k = n then
clearly aPP’ is unimodular. Hence assume 2k < n.
We next show that

aPP’' =1.
From the hypothesis,
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E,(aPAP’) = Ey(A),A € S,
and hence
a’tr{Cy(PP")Cy(A)} = t”'CZk(A) .

By the polar factorization theorem let P = UB, where U is real or-
thogonal and B is positive definite symmetric. Let B = VDV', D
diagonal with positive entries and V real orthogonal. Then since V'AV
runs through all of S, as A does we have

(3.9) a?tr {Cy(D)Coi(A)} = trCu(4) .

We assert that any diagonal (g’k>-square matrix is a linear combina-
tion of matrices C,,(A) for AeS,. For, let 1 <, < +++ <14y, < n. Let
A € S, and consider the 2k-square principal submatrix B of A where

B‘,ﬁ:A

iglg

and suppose A has 0 entries outside of B. Then define B as follows:
B2k—w.w+1 =-1, a=0, ""k -1
sz—a.w+1: 1 ’ CK:]C, cty 2k

and B;, = 0 elsewhere. Then C.,(A)= + E;..,,, where E;., is the

(g’k>—square matrix with the single non-zero entry 1 in the ((iy, -, x%),

(%1, **+, 1)) position ordered doubly lexicographically in the indices of
the rows and columns of A. Returning to (3.9) we have

tr{Cup(aD)X} = trX
for all @’k)-square diagonal matrices X and hence C,(aD? = I,aD’ =
+ I. From this we easily see that
aPP' =1,

and (3.3) follows. The mapping T, on AU induces the map S' on S,
where

0 Q3 Az Ay 0 P34 Qg g

St — Gya 0 Aoz Ay | __ | — gy 0 Ay Qg

— Oz — Oy 0 ay Qg — Oy 0 ay,
—Qu —Qy —dy 0 —Qyp —Qy —a O

This completes the proof.

We remark that Theorem 3 is no longer valid if k¥ = 1: for consider the
transformation which interchanges positions (¢,5) and (4,¢) in A for
a fixed pair of integers 1 <4 < j < mn. This clearly preserves E,(A4) but
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does not have the form in Theorem 3. For example

0 1 01
—1 0 1 0
0 —1 01
-1 0 -1 0

is non-singular but interchanging the 1, 2 and 2, 1 entries results in
a singular matrix.
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