
SEQUEL TO A PAPER OF A. E. TAYLOR

EARL BERKSON

Introduction* In § 7 of the paper of the title [3], certain questions
are posed. The theorem presented in § 1 of this sequel answers these
questions. The presentation in § 1 proceeds independently of [3] and is
self-contained.

The notions of Mittag-Leffler development and finite type, as intro-
duced in [3], call for some comment; in fact the notion of finite type is
not made entirely clear in [3]. These and related matters are taken up
in §§ 2 and 3 below.

In this sequel to Taylor's paper, all convergence of operators is with
respect to the uniform operator topology.

1. THEOREM. Let X be a complex Banach space, and E19 E2,
an infinite sequence of bounded non-zero projections of X into itself.
Suppose {λj is a sequence of complex numbers such that the series

converges to an operator B. Then

(1.2) λ w - > 0 .

//, in addition to the above hypotheses, EmEn = 0 for m Φ n, and the
Xn's are distinct and non-zero, then:

(1.3) The spectrum of B, o{B), is the set of points {0, λλ, •• , λ n , •••}.
In view of (1.2), 0 is the sole accumulation point of σ{B).

(1.4) The resolvent of B, Rλ(B), is given by

+ ± E n ,
λ w=i λ(λ — λ j

where I is the identity operator and the series converges uni-
formly with respect to λ on each compact subset of the resolvent
set, ρ(B).

(1.5) Each of the points Xn is a simple pole of Rλ(B), and the residue
of Rλ(B) at Xn is En.

Proof. For each n the idempotence of En implies that | |2?n | | <
\\En ||

2, whence, since En Φ 0, \\En\\ > 1. Hence
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(1.6) \\XnEn\\> \Xn\ f o r e a c h n.

Since (1.1) converges, the sequence of its terms, {XnEn}, tends to 0,
and so by (1.6), Xn —> 0. This completes the demonstration of (1.2).

Henceforth in this proof we assume the additional hypotheses that
EmEn = 0 for m Φ n, and that the λw's are distinct and non-zero. We
introduce some notation. For each positive integer k, let

n=i

+ Σ \
λ n=i λ ( λ — Xn)

re , for λ * o, λ1( , λ*.

Obviously each Xn (1 < n < k) is an eigenvalue of Bk. Since the range
of Em for m > k is contained in the null space of Bk, 0 is in σ(Bk).
Thus,

(1.7) {0,λx, . . . , λ J c < 7 ( £ Λ ) .

One sees directly that if λ Φ 0, \, , λΛ,

- Bfc) = (λl - Bk)Tk(X)

But for each n,

jS* 4- n n — 0
X X — Xn X\X — X<n)

Hence

(1.8) Tk(X)(Xl - Bk) = (λJ - Bk)Tk(X) = 7 , for λ *= 0, λ l f , λ, .

We can summarize (1.7) and (1.8) by

(1.9) For each fc, σ(Bk) = {0, \ , . , λ J and Γfc(λ) = Rλ(Bk) .

We now make use of the following theorem due to J. D. Newburgh
[1]: If, in a Banach algebra, {xk} is a sequence convergent to an ele-
ment x of the algebra, and, for all k, xkx = xxk, then σ(xk) —• σ(x) in
the Hausdorff metric for compact subsets of the complex plane.

As a result of this theorem and (1.9),

σ(B) = Km σ(Bk) = lim {0, Xu , λ J = {0, λlf , λn, •} .

This settles (1.3).
For any λ in ρ(B);
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Tk(X)(Xl - B) = Tk(X)(Xl - Bk) - Tk(X) Σ KK
n=k+l

= 1- Tk(X) Σ λn£;M , by (1.9).

λ »=1 λ ( λ — Xn)

1 °°= — Σ
λ, w=fc+

So,

Xw=fc+i

Multiplying by Rλ(B) on the right and transposing,

R\(B) — Tk(X) = —( Σ n̂-2

Since 1/λ and i2λ(5) are bounded on compact subsets of p(B), Tk(X) —*
J?λ(B) uniformly on compact subsets of p(B). This proves (1.4).

For convenience (1.5) will be demonstrated for n = 1. The details
for arbitrary n are entirely analogous. To begin with, by (1.3), \ is an
isolated point of σ(B), and hence certainly is an isolated singularity of
Rλ(B). Let Ω be an open disk centered at \lf which does not contain
0 or any Xn for n > 2. Then throughout Ω except at Xlf

± ± K En— Xn)

(1.10) = ^ E, + — + Σ — E»
X(X — λ[) λ n=ϊ X(X — Xn)

X — Xλ X X n=2 X(X

Let

Applying our previous results to B\ we have:

σ(B')= {0,λ2, ...,λM, ...}

Rk(B>) = X + λ

Thus the series on the right of (1.10) converges for λ = Xly and the
right-hand side of (1.10) with the term {l/(λ — Xί)}E1 deleted is defined
throughout Ω and analytic there. It is now evident from the preceding
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sentence and (1.10) that the singular part of the Laurent development
of Rλ(B) centered at λx consists of the single term {l/(λ — XjjE^ This
settles (1.5) and completes the proof of the theorem.

2 In this section, free use is made of the notation and terminology
of [3], and explanations of these, except in special instances, are not
repeated. Specific references to [3] are italicized (e.g., "(6.2)" refers
to equation 2 of § 6 in [3]); references to parts of this sequel are not
italicized.

Let A be as described in the first paragraph of [3]. A Mittag-
Leffler development of Rλ(A) is defined in [3] (and we shall follow this
definition throughout this paper) as a representation of the form (1.2)
or (2.3), wherein the series involving the En's converges uniformly on
each compact subset of p(A). We shall refer to this series associated
with the development. A Mittag-Leffler development of the form (1.16)
is defined as a development of finite order p. It is important to note
that the definition of Mittag-Leffler development does not require that
the associated series converge absolutely, or that it converge in every
rearrangement. Such developments will exist, as the classical proofs of
Mittag-Leffler's theorem show; in fact, application of the results of these
proofs yields a Mittag-Leffler development such that the associated series
and all its rearrangements converge to the same function uniformly and
absolutely on compact subsets of ρ(A), but there is no requirement in
the definition that a Mittag-Leffler development be obtained by applying
the results of the classical proofs of Mittag-Leffler's theorem. Indeed,
in § 3 we shall present an example of a Mittag-Leffler development of
order 1 whose associated series has a rearrangement which diverges at
every point of the resolvent set. The fact that a Mittag-Leffler develop-
ment, and, in particular, a development of finite order, can have an
associated series with divergent rearrangements creates difficulties with
the definition of "finite type." Even if Rλ(A) has a Mittag-Leffler
development of the form (1.16), it need not have a development of the
same finite order with respect to a different enumeration of the non-
zero points of o(A), for this is precisely a matter of rearranging the
series in (1.16) without altering its value or affecting uniform convergence
on compact subsets of p(A). Thus the definition of the assertion, "A is
of finite type p," for A as described in the first paragraph of [3], is
not proper, since the defining conditions depend not only on A, but also
on the enumeration of the non-zero points of σ(A). In fact, the operator
of the previously mentioned example will be of finite type 1 with respect
to one enumeration of the non-zero points of its spectrum, but will not
be of finite type 1 with respect to the enumeration corresponding to
the rearranged series which diverges at every point of the resolvent
set.
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These difficulties disappear as soon as one includes the dependence
on enumeration in the concept of finite type. Specifically:

Let A be a bounded linear operator mapping a Banach space into
itself and possessing a denumerably infinite spectrum with 0 as sole
point of accumulation. Further, let each non-zero point of o{A) be a
simple pole of the resolvent. We enumerate these poles in some definite
order Xlf λ2, •••, and we let En be the residue at λn. Then A, relative
to this enumeration, is said to be of finite type if there exists a positive
integer p such that

Rλ(A) = -£.+ . . . + ^ _ + Σ — K ,

where the series converges uniformly on compact subsets of the resolvent
set. The minimal p for which this situation holds is then the type,
relative to the enumeration λΊ, λ2,

It is to be noted that in §§ 1-5 the author of [3] has a fixed
enumeration in mind, and so no serious difficulties arise. Consider now
the operator B as described in the first paragraph of § 6. In [3], the
question is posed, 'Ίs B of finite type 1?" This question is ambiguous,
as it stands. It is evident, however, from the statement of Lemma
6.1 that the intent of the question is:

Is it true that σ(B) consists of 0 and the λΛ's and that B is of
finite type 1 with respect to the given enumeration X19X2> ?

The theorem in § 1 of this sequel gives an affirmative answer.

3* We shall now give a concrete example of a Mittag-Leffler
development whose associated series has divergent rearrangements; to be
more precise, we shall obtain a Mittag-Leffler development of finite order
1 for the resolvent of a certain operator B, and show that the series
associated with this development has a rearrangement which diverges
at every point of the resolvent set of B.

Consider the Banach space I1. For each positive integer n, define
the bounded linear functional /„ on I1 by:

J) = ( — l)n Σ ( — I)**** > f° r e a c h sequence of complex

number {ak} belonging to I1.

Also, for each positive integer n, let en = {a?5}, where

a ^ } = (1, for k = ti

V for k Φ n .

Finally, for each positive integer w, let En be the following bounded
linear operator mapping I1 into itself;
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En(x) = fn(x)(en + en+1) , for each vector x in l\

One verifies directly that each En is idempotent and non-zero and that
EmEn = 0 if m Φ n (consider the cases m < n and m > n separately).
Note that

(3.1) En(em) = 0 , if m > 7i.

Consider now a sum of the form

^n+iEn+1 + Xn+2En+2 + + Xn+pEn+p ,

where w, p are arbitrary positive integers, and the complex numbers
λn+1, , Xn+P are arbitrary. If 1 < k < n + 1,

v

If we collect coefficients for each en+J in the last sum, we get:

/ P \ p p

+ (-l)*+ιλW? f l+,+1].

Thus

(3.2) || (Xn+1En+1 + + Xn+pEn+p)ek | | = | λm+11 + | λn + 2 — λM+11

f or 1 < fc < w + 1 .

Ifn + l<k<n + p, then by (3.1),

(Xn+1En+1 + + Xn+pEn+p)ek = (Xfc£7fc + + Xn+pEn+p)ek .

If we adapt (3.2) to the operator XkEk + + Xn+pEn+p acting on ek,
we obtain an expression for || (XkEk + + Xn+pEn+p)ek || which is easily
seen to be majorized by

Combining this result with (3.2) we have:

(3.3) !| (Xn+1En+1 + . . + Xn+pEn+p)ejc | |

< 2( sup I λw + i |) + Σ I K+j+i - K+JI ,

for 1 < k < n + p .
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By (3.1), each ek for k > n + p is in the null space of Xn+ίEn+ι + +
Xn+pEn+p. Certainly, then, (3.3) holds for every ek. It is well known
(see, for example, [4], §4.51) that if T is a bounded linear operator
mapping I1 into itself, then

Hence,

(3.4) || Xn+1En+1 + + Xn+pEn+p ||

< 2( sup I Xn+j |) +
\l<j<p / j-1

for a r b i t r a r y n, p and complex n u m b e r s λw + 1, •••, Xn+P.

Also, from (3.2) we easily infer
p-l

(3.5) || Xn+1En+1 + + Xn+pEn+p || > Σ I ̂ n+j+i ~~ \+j I
3=1

Recalling that an infinite sequence of complex numbers {Xn} is said to
be of bounded variation if and only if

Σ I K+i — K\ is convergent,

we can utilize (3.4) and (3.5) together with the first conclusion of the
theorem in § 1 to obtain (for the present particular En'a):

(3.6) If {Xn} is a sequence of complex numbers, then Σ ^ Λ Λ ^Λ converges
if and only if {Xn} is of bounded variation and tends to 0.

Consider now a sum of the form

μΛlEni + μnβn2 + + μnβnk, where nx < n2 < . < n* and the
scalars μni, , μnjB are arbitrary.

If for each j < k we interpose OEnj+1 + + OEnj+i^ between the
terms μnjEnj and μn.+iEnj+i and apply (3.5), we get

(3.7) || μniEni + μnβn2 + + μΛjEnh II

> I μ n i I + 2 I μ»21 + + 2 I μnh_χ \ + | μn J
> I μ n i I + I Λ 2 I + + I μn J .

for nλ < n2 < < nk and μni, , μnjc arbitrary.

Now let {Xn} be any sequence of complex numbers with the fol-
lowing properties:

( 1 ) The Xn

ys are distinct and non-zero.
( 2 ) {Xn} is of bounded variation.
( 3 ) λ n - * 0 .
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(4) Σ£=i|λ 2 n | diverges.
For example, we could take the sequence {1/n}. By (3.6), Σn=
converges to an operator B. By the theorem of § 1, σ(B) = {0, X19

λn, •••} and Rλ(B) has the Mittag-Leffler development of order 1:

(3.8) = f + Σ
X w=i λ ( λ

We shall now show that the series in (3.8) has a rearrangement which
diverges at every point in p(B). Consider the series Σ»=il^2»l Since
it is a divergent series of positive terms, there is a strictly increasing
sequence of positive integers nlt nlt such that

( 1 ) % = 1
( 2 ) I λ M j I + I λ 2 n f + 21 + + I X2nj+1^ I > 1, for each j .

For each X in ρ(B), let d(X) = infn | l/(λ - Xn)
and for arbitrary j , we have by (3.7)

(3.9)

Then for each λ in p(B)

λ ( λ — λ 2 W j ) λ ( λ — λ 2 W j +

λ>2,

X(X — X2n . _:
J+l"

χ(χ - λ 2 B p

d(X) r | . ,

X(X — X{X

0 .

Consider now the rearrangement of the series in (3.8) obtained by writ-
ing down alternately

Xv-i

X\X — X2J—1)

and the "block"

λ ( λ — X27lj)
,

X(X —
_l I

λ(λ —
p

taking j successively to be 1, 2, etc. It follows from (3.9) that this
rearranged series diverges for every X in p(B).

Before closing, we state and prove a theorem which gives conditions
on an operator A sufficient to insure that any series associated with a
Mittag-Leffler development of Rλ(A) will have the property that it and
all its rearrangements converge uniformly to the same function on com-
pact subsets of p(A).

THEOREM. Let A be a bounded linear operator mapping a complex
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Banach space X into itself, and let A satisfy the following conditions:
(1) o(A) is denumerably infinite with 0 as sole point of accumu-

lation.
(2) Each non-zero point of σ(A) is a simple pole of Rλ(A).
(3) There is a constant M such that if S is any finite set of

non-zero points of σ(A), and if Eβ is the residue of Rλ(A) at β, then

Σ <XβEβ < Msup I aβ I , for arbitrary scalars {aβ}βes .
Wβes || βes

Under these hypotheses, if an enumeration X19 λ2, of the non-zero
points of σ(A) is given, and the residue of Rλ(A) at Xn is denoted by
En, and if Rλ(A) then has the Mittag-Leffier development

(3.10) Rλ(A) = Σ * 7 ' Λ E5 + Φ(X) ,

then we can conclude that every rearrangement of the series in (3.10)
converges uniformly to Rλ(A) — Φ(X) on compact subsets of p(A).

Proof. We state first a theorem of Orlicz [2] which will be needed:
If a series of vectors in a Banach space has the property that it and
all its rearrangements are convergent, then it and all its rearrangements
have the same sum.

Now let K be a compact subset of p(A). Since the series in (3.10)
converges uniformly on K, we have

-E, • 0 as j —> oo, uniformly on K.

Since | | ^ | | > 1,

-> 0 uniformly on K.

It is easily seen that any rearrangement of the sequence

XnJ(X - X

tends uniformly to 0 on K. From this remark and from Condition (3)
of the hypotheses, it is easily seen that the sequence of partial sum of
any rearrangement of the series in (3.10) is uniformly Cauchy on K.
Hence every rearrangement of the series in (3.10) converges uniformly
on K. We now need only show that every rearrangent converges to
Rλ(B) — 0(λ) pointwise on K. As is easily seen, it suffices to show that
if μ is an arbitrary but fixed point of K, then every rearrangement of
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(3.11)

converges to Rμ{A) — Φ(μ). By what has already been shown, we know
that (3.11) and all its rearrangements converge. By the theorem of
Orlicz, all the rearrangements of (3.11) converge to the value of (3.11),
which, by (3.10), is precisely Rμ{A) — Φ(μ). This completes the proof
of the theorem.

We remark, in closing, that if X is an infinite dimensional Hubert
space, if A satisfies conditions (1) and (2), and if the residue of Rλ(A)
at each non-zero point of σ(A) is self-adjoint, then the hypotheses of
the theorem are fulfilled.
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