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l Introduction. Let xό] j = 1, 2, be independent random varia-
bles such that Prob {Xό = 1) = 1 - Prob (Xj = 0) = p3. Let Q = £f(ΣX})
be the distribution of their sum. This kind of distribution is often re-
ferred to as a Poisson binomial distribution. For any finite measure μ
on the real line let | | μ | | be the norm defined by

μ\\ = sup \fdμ\}.

the supremum being taken over all measurable functions / such that
I/I ^ 1. Let λ = Σpj9 let Σp) = Xvr and let a — supip3. Finally let P
be the Poisson distribution whose expectation is equal to λ.

The purpose of the present paper is to show that there exist ab-
solute constants Dx and D2 such that 11 Q — P \ \ <; Dλa for all values of
t h e p/s a n d \\Q - P\\ ^ D2vf if Aa ^ 1.

The constant D1 is not larger than 9 and the constant D2 is not
larger than 16.

Such a result can be considered a generalization of a theorem of
Yu. V. Prohorov [9] according to which such constants exist when all
the probabilities p5 are equal.

The norm \\Q -~ P\\ is always larger than the maximum distance
p(P, Q) between the cumulative distributions. For this distance p a very
general theorem of A. N. Kolmogorov [6] implies that p(P, Q) is at
most of order α1/δ. The improvement obtained here is made possible by
the smaller scope of our assumptions.

The method of proof used in the present paper is not quite ele-
mentary, since it uses both operator theoretic methods and characteristic
functions. The relevant concepts are described in §2.

A completely elementary approach, described in [4] leads to bounds
of the order of 3α1/3 for the distance p. Unfortunately, the elementary
method does not seem to be able to provide the more precise result of
the present paper.

The developments given here were prompted by discussions with
J. H. Hodges, Jr. in connection with the writing of [4].

2. Measures as operators. Let {ξ>, 31} be a measurable Abelian
group, that is, an Abelian group on which a σ-field 51 has been selected

Received December 9, 1959. The author is a research fellow of the A.P. Sloan Foun-
dation.

1181



1182 LUCIEN LE CAM

in such a way that the map (x, y) —• x + y from X x £ to 36 is measura-
ble for the <7-fields 2ί x SI and 21.

Let & denote the set of bounded measurable numerical functions
on {£, 31}. A finite signed measure μ on 21 defines an operator, also
denoted μ, from & to itself. To the function / e ^ the operator μ
makes correspond the element μf whose value at the point x is (μf)(x) =
\f(% + ξ)μ(dξ). Linear combinations of two operators are defined by
the equality

(μμ + βv)f = a(μf) + β(vf) .

The product of two operators will be defined by composition: {μv)f =
μiyf). In other words,

[(M/Ί0*0 = j μidy) \f(χ + ξ + v

It follows from Fubini's theorem that μv — vμ. The product μv cor-
responds to the convolution of the two measures.

For any element / of & let \f | be the norm \f\ = sup \f(x) |. De-
fine the operator norm 11 μ \ \ by

The norm || μ \\ is equal to the total mass of μ considered as a measure.
It is an immediate consequence of the operator representation of μv that
\\μv\\^\\μ\\\\v\\.

Let SDΐ be the system of operators obtained from all the finite signed
measures. What precedes can be summarized by saying that 9Dΐ is
a normed commutative algebra having for identity the operator I which
is the probability measure whose mass is entirely concentrated at the
point x = 0. It is not difficult to show that 3Jί is complete for the
norm, so that 3Jί is in fact a real commutative Banach algebra.

Let φ be a complex-valued function of a complex variable z. Sup-
pose that for I z \ < α, the function φ has a convergent power series
expansion. It is then possible to define φ{A) for every A e 2Jϊ such that
II A || < a by simple formal substitution in the power series expansion
Of φ.

The entity φ(A) is then of the form φ{A) = B + iC where both B
and C belong to 501. Other possible definitions can be found in [3], [2], [8].
If μ is the Fourier transform μ(t) — 1 eitx μ(dx) of the measure μ then

φ(μ) is the measure where the Fourier transform is φ(μ).
In most cases of statistical interest, the space X is either the real

line, or the additive group of integers, or the circle, or a Euclidean
space. In those circumstances, as well as in the case where K is an ar-
bitrary Abelian locally compact group, we may replace & by the space
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of continuous functions which tend to zero at infinity without affecting
any of the above properties.

Let M be an arbitrary finite positive measure on X. Then exp (M) =
eM = 1+ M+ ••• + {ljk)\M« + •-.. It follows that exp [M - \\M\\I] =
exp[—1| M ||] exp(ikf) is always a probability measure.

If a random variable X is equal to the origin of X with probability
(1 - p) the distribution £?(X) can be written £f(X) = I + p{M - 1)
where M is a probability measure.

The following theorem, essentially due to Khintchin [5] and Doeblin
[1] is concerned with the distribution Q of a sum ΣX3 of independent
variables having distributions G3 = I + P3(M3 — I) where M3 is a prob-
ability measure. The product T[3G3 is always convergent when λ =
ΣJPJ is finite. Conversely finiteness of λ is necessary to the convergence
of ΊljGj when X is the additive group of integers. More generally,
suppose that 96 is the real line and that there exists an ε > 0 such that
λ, = Σp3M3{[—ε, e]c} = oo. Then TljGj cannot be convergent. This fol-
lows for instance from a result of Paul Levy [7] according to which
any interval containing the sum ΣXό with probability a > 0 must have
a length of the order of εχ/λ7.

A refinement of Paul Levy's theorem can be found in [6], Lemma 1.
However, the finiteness of λ is not generally necessary to the conver-
gence of ΐljGj, This is quite obvious if X is the circle and G± is the
Haar measure of the circle, but the condition is not even necessary on
the line.

THEOREM 1. Let X3\ j = 1, 2, be independent random variables
taking their values in the measurable Abelian group X. Assume that
Jέf(X3) = I + Pj(Mj — I) where M3 is a probability measure and as-
sume that λ = Σp3 < OD. Let p3 = \cjf let τr = Σc3p3 and finally let
M = ΣCJMJ. Then

|| Q - P\\ ̂  2\vf

for P = e x p [ λ ( M - /)].

Proof. The proof is essentially the same as the proof of Theorem 1
in [4], given there in terms of random variables. In terms of operators
one can proceed as follows.

Let Fj = exppjiMj - I) and let R, = Π ^ 2 G > For k > 1 let Rk =
j). Then R.F, = Rk+1Gk+1 so that

Since R3 is a probability measure, this implies
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The difference F3 — G3 can be written

F3-G3 = [e"j - (1 - Pj)]I + Pj(e-*j - 1)M3

Hence || F3 - G3 || ^ 2p3{l - e~*j) ̂  2 $ .
Noting that ΐl3F3 = exp[λ(Λf — /)], this proves the desired result.

REMARK. The literature does not seem to contain any reference to
the fact that Theorem 1 can be proved as in [4] and coupled with
Lindeberg's proof of the normal approximation theorem to obtain a com-
pletely elementary proof of the general Central Limit theorem.

3, Sums of indicator variables and binomial distributions• In all
the subsequent sections of this paper 36 will be the additive group of
integers and {X/,1, 2, ••«} will be a family of independent random
variables such that Prob(X j = 1) = 1 - ?γob(X3 = 0) = P3. The distri-
bution J*f(Xj) can then be written either as I + Pjd or (1 — p5)I + PjH
where Δ is the difference operator Δ — H — I and H is the probability
measure whose mass is entirely concentrated at the point x = 1. The
Poisson distribution whose expectation is λ can be written P = exp(λJ).

Letting Xc3 = p3 and τf = Σc3p3, Theorem 1 implies that if Q —
then the following inequality holds.

PROPOSITION 1. \\Q — exp (XΔ) \\ ^ 2Xvr.

From now on we shall assume that X < °o and that a = sup p3

does not exceed 1/4.
It may be expected that Q would be approximable by a binomial

distribution much more closely than by a Poisson distribution. Letting
X = yτ2r,.a binomial distribution with v trials and probability of success
vf can be written

B = (I+ -&Δf - (1 - vf)\I + pH)v

with p = Tar/I — vf, at least when v is an integer. If v is not an in-
teger the expression

B = (1 - vr

where
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still possesses a precise meaning as long as p < 1. However, B is not

a probability measure even though I ldB = 1. Let n be the integer such

that (n — 1) < v ^ n. The coefficients (jΛ of order k = (n + 1), (n + 2)

are alternately positive and negative.

Let S = (1 - Όf)v £ f ̂ V ^ The norm of S is equal to

S\\=(l-vry Σ

The term inside the absolute value symbol is simply the remainder of
the expansion of (1 — p)v. By Taylor's formula | | S | | is equal to the
absolute value of

φ l ) ( y )(

n\

Therefore, since n — 1 < v <

fp/i-p

A (-ιytn(
Jo

S II ^ (1 - ^ ) v ( l - p)λPll'Ptn(l + t)-χdt
J

1 / n \n+1

(i vf)\\ - py I ^ >n + l \l-p.
λ

n ~ 1 <(1 2vry
n+l ~ v + 1

In the cases considered here v — (Σp^Σp^)'1 is always larger than or
equal to unity. In all cases where v is large and τar is small \\S\\ will
be rather negligible.

Note that λ = vτrf = \ xdB and vτrr(l — vf) = \ (α? — X)2dB. How-

ever, this last quantity may not be treated as a variance, since 5 pos-

sesses negative terms.
In spite of this it will be convenient to bound the remainder term

for large values of m, by Chebyshev's inequality. Assuming λ < m ^ n

the terms

Therefore

the terms (1 - ^)v(jc)p1c are smaller than (1 - vt)v-n (1

» Σ (1 -
fcl

| | ( ) | |^^ + ( ) Σ
V + 1 fc-m+l

Finally, by Chebyshev's inequality applied to the binomial [1 + τϊJ]n,
•one obtains
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II S(m) || £ i 5 £ l + (1 v)
v + 1 [m

In particular, if m ^ 2w©' < m + 1

^ [4tD-v+2 + 1] — .

To show that Q can be approximated by the Poisson distribution P
in the cases where λ is too large for Proposition 1 to have any significance,
we shall first show that Q can be approximated by B and then show
that B is very close to P. The argument will be divided into three
parts according to the values of λ and λα2 for a2 = Σc3{pό — vf)2. If X
is large but λα2 is small, bounds will be obtained through operator
theoretic methods. If λ is so large that λα2 becomes large, bounds will
be obtained through computations on characteristic functions.

4 Approximations by binomial distributions• In this section, it will
be assumed throughout that λ Ξ> 3 and that a ^ 1/4.

For the distributions Q and B defined in the preceding section we
can write

logQ - logB = Σ l o g ( / + V5Δ) - vlog(I+ -&Δ)

\— log (/ + P3Δ) - — log (I + vrJ)\

with

fc=2 k + 1

a n d βt = ΣIJCJPJ - tErs ^ 0.

Since (—l)kΔ*= Σ ( o )("~ 1)SHS, the measureM assigns negative masses
s =0 \*> /

to the odd positive integers and positive masses to the even nonnegative
integers.

The norm of M is precisely equal to

Letting u = 2vr and v3 = 2{pό — vf) this can also be written
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= [ΣcM - - ~\}dt .
Jo JIL1 -t(u + v}) 1-tujf

Since ΣCJVJ = 0 and Σc}v) = 4α2 while

[1 - t(u + Vj)]-1 - (1 - tu)-1 = (1 - tuf{l + (tv})[l -t(u + v3)Yx}tv}

one can write

rlf

"J [1 - t(u + Vj)] / (1 - tu)2

< > ' Γ ^2 ^
~ l - 2 α J β (1 - ""

<

ίu);

4α2

3(1 - 2a)

Hence | | M | | = ha2 with

< 4

~3(l-2α) I
+

One can also write M = z/il̂  = J2M2 with || M \\ = 2|| Mx || = 4|| M21|.
It results from these equalities that

Q = Bexp[λJM] .

For every measure //, Taylor's formula gives

ê  = /+ μ\
Jo

Hence

Jo

Finally

\\Q-B\\ ^

and

One can also note that there exist probability measures F and G such
that if ε = || M\\ then

Q exp [λε(i^ - J)] = B exp [Xε(G - 2)] .



1188 LUCIEN LE CAM

According to the foregoing expressions, to obtain bounds on || Q — B \\
it will be sufficient to evaluate | |ΛI?| | and ||zfJB||.

Let fix) = (ϋWx(l — Ήy-χ and consider only values x such that
\x/

x ^ n — 1. In this range/ achieves its maximum at a value x such that
X + vr — 1 < x ^X + vr. It follows that (Δf){x') is positive for xf g x
and negative for xr > x. Finally

Let x = vξ. An application of Stirling's formula leads to the inequality

with

Since vr(l + Ifv) — 1/v < ξ ^ ^ ( 1 + 1/v) the quantity f/τεr(l — f) is larger
than

Consequently,

0 \ i / 2

and

\\ΔB
' Vx x

Thus, we have shown the validity of the following proposition.

PROPOSITION 2. Let X ^ 3 and a ^ 1/4, then

|| Q - B | | ^ 2 k V λ

with
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h <±(-±-)h + 8 * 1 < -82
~ 3 V1 - 2a /L (1 - 2-&Y -1 ~ 3

and

357Γ/ - τ/3

A computation using the fact that AM — J 2 ^ and the bounds for
Δ2B\\ can be carried out as follows.

Let u = x + 1 — vτcr and let /(%) be the probability of x =
+ ^ — 1 f or the binomial J3. Let δ"1 = vτsr(l — tcr) and let β = tεrδ

and γ = (1 - tar)δ. Then

+ 1) = 1 - yβ(̂  - 1)

The second differences of the function / f o r x ^ n are equal to some
positive quantity multiplied by

g(μ) = u2 - (2tar - l)u - (v + 2)tar(l - tar) .

Let rx and r2, rx < r2 be the roots of this polynomial. The second
differences (Δ2f)(u) are negative for u e (r19 r2) and positive otherwise.
Letting φ(u) = (Δf)(v) it follows that

11 A2B 11 ^ φ(U\) + I ̂ (^2) ~ Φ(W>I — 1) I + φ(u — λ + 1) — φ(u2 — 1)

The values ut are determined by the condition that the correspond-

ing x values, say xλ and x2, are respectively the largest integer not

exceeding rλ + λ and the smallest integer as large as r2 + λ. The roots

τx and r2 are given by the expression

(v + l)α>(l - ω) + i j .

If λ ^ 3 the value ux is negative while u2 — 1 is positive.
In this case

~ τ/λ ' λ(l - •or)
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Similarly,

1 + yu2 J

— tar

Note that 1 ^ - 1 1 ^ 1 + 1/2 + y W ( l - vr) + 1/6 ^ 5/3 + τ/λ(l - vf).
Hence

= 4λ

The other terms can be bounded in a similar manner giving

II J2B || < 9— + ϋ wv+2 < A l

Finally the following result holds.

PROPOSITION 3. J / λ ^ 3 and a <; 1/4 then

|| Q - B || ^ (2.7)ft exp [2/̂ λα2]α2

^iίfe fc ^ 32/3.
It is possible to obtain bounds on the third difference ||Λ3.B|| by

similar procedures. The algebra becomes somewhat more cumbersome..
Nevertheless, it is not difficult to see that bounds of the type

Q - £ || ^ C-^pAexp [2λα%]α2

Λ

can be obtained in this manner.
The bounds given in Propositions 2 and 3 will be of value if λα2 is

small. When λ is so large that λα2 is large, better inequalities than
the preceding may be obtained through the use of Fourier transforms.

Let μ be the Fourier transform of the measure μ. For instance

Q(t) = \eίtxQ(dx). Note the following inequalities.

First

11 + p(eu — 1) I2 = 1 — 2p(l - p)(l - cosί) .

Hence, if 11 \ ̂  ττ/2
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1 + p{elt - 1 ) |2 ^ 1 - 2 p ( l - p ) — \t\ .
π

If I ί I ̂  π/2 then

with I ξ I ̂  1.
Consequently, for 11 | fg π/2

and for | ί | ^ ττ/4

- 2p(l - p) | .
Δ

2 V 192
η.

It follows that | B(t) \ ̂  1 and
(1) For π/2 ^ 11 | ^ π

max {\B(t) I, | Q(ί) |} ^ exp — {λ(l — tar)(2/ττ)| ί |}.
(2) For π/4 ^ | ί | ^ π/2

max {| B(t) |, | Q(ί) |} <̂  exp [ — (&2/2) λί2]
with b2 = (1 - tar) - π2/48.

(3) For | ί I ̂  π/4 ̂

max {| B(ί) I, I Q(ί) |} ^ exp [-(/32/2) λί2]
with /S2 = (1 - τf)(l - π2/192).

In addition, for 11 \ S ^/4 and for z — eιt — 1 one can write

logQ - logB - XΣc\— log(1 + pόz) - — log(1 + ^2)Ί
i-Pj τf J

with Cj = pjX and δj =
This gives

— -©'.

where

= sup sup Jo
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I2 = I (1 - ξvf) + ξvfeu I2

= 1 - 2fτzr(l - ξvr)(l - cos t)

1 + ξvrz |2 ^ 1 - (2 - i/2")—
4

V 9 V 9

Hence

llogQ - logJ3| ^

with

= ~3 V" 2 / V" 2

It follows that, for | ί | 5Ϊ π/4 one can write

- JB(ί) I Xa2K2 \ 113 exp [XaK2| 113]

^ λα2iP I ί |3 exp Γ-i-λγ 2ί 2 l
L £ -I

with γ2 = /92-α2iί27r/4^ 0.
Let V = (Q — B). The individual terms of V are given by the

formula

Applying to this formula the above inequalities one obtains:

2π I V(fc) I ̂  2λα2jK:2(O°f sup Γ - — λ γ v l i t
Jo L 2 J

Γ ί 2 1
exp — λo 2 — dί

/4 L ^ —I

expΓ-λ(l - tar)—Ίdί .

Therefore,
o 7Γ e χ p [ _ ( 1 _
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Noting that xe~x <̂  e~x for x ^ 0, this gives

5x32 , 2π 11

r3c64 (1 — τcr)2e J λ

Let m be an integer such that m ̂  2̂ τcr < m + 1 with n — 1 < v ^ n.
The sum of the first m terms of | V(k) \ is inferior to

16x32

From this and Chebyshev's inequality it follows that

, 16x32 , 2π

π

+ + [ + ]

As a summary, one can state the following.

PROPOSITION 4. Assume λ ^ 3 and a ^ 1/4. Then, there exist con-
stants Cλ and C2 such that

5 Approximation of the binomial by a Poisson distribution. A
theorem of Yu. V. Prohorov [9] states that the binomial B = [I + vfJf
and the Poisson P —exp(λJ) differ little. Explicitly, there is a con-
stant Co such that || P - B \\ ^ C o ^.

Prohorov's result is proved in [9] only for integer values of v. For
this reason we shall give here a complete proof which happens to be
somewhat simpler than Prohorov's original argument. This proof leads
to an evaluation of the constant Co which may not be the best availa-
ble but will serve our purposes.

Let R(x) be the ratio of the binomial probability B[{x}] to the
Poisson probability P[{x}]

R(x) = v{v - 1) . (y - x

Let us restrict ourselves to the interval 0 rg x ^ n. Since

R(x + 1) _ v — x
R(x) ~ v(l - tar)

the ratio R achieves in this interval a maximum at the point x such
that x — 1 g.λ < x.

For this particular value of x, Stirling's formula leads to the ine-
quality
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logΛφ^--ίlog(l-f)
Lt

with

v < ξ ̂  w( l + —)

Finally for λ ̂  3 and 4w ^ 1,

VI-ξ - 2 i / l -

1/2

Let / be a nonnegative function such that 0 ̂ / ^ 1. The above ine-
qualities imply that

[fdB rg i ^ l H
J v + 1

~ v + 1 V3

Similarly,

J (1 - f)dB = l-\fdBφ- f)dP

Consequently:

PROPOSITION 5. If λ ̂  3 α^d 4tar <: 1,

Collecting the inequalities established in the preceding sections one
obtains the following statement.

THEOREM 2. Let {XJ;j = l92f •••} be a family of independent
random variables. Assume that jSf(X3) = I + p3Δ and that X = Σpt is
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finite. Let pό = Xcό and vf — ΣCJPJ and a = swβjPj. Denote by Q the
distribution Q = J5f(ΣXj) and P the Poisson distribution P = exp (XJ).

There exist constants Dλ and D2 such that
(1) For all values of the p3 one has

\\P - Q\\ ^

and

(2) // 4α ^ 1 then

The constant Dx is inferior to 9 and the constant D2 is in-

ferior to 16.

Proof. The proof of Theorem 2 consists essentially of an evaluation
of the constants involved in the bounds given by Propositions 2, 3 and
4. To these propositions one must add the following remarks.

The quantity α2 = Σcj(p3 — vrf can be written

Hence

a* <L avfil - ^ U (±

In particular a2 <; avf and a ^ α/2 ^ 1/8 for a ^ 1/4. The bound
|| Q — P || ίg D-fiί is operative only when Da ^ 2 . It is therefore sufficient
to prove that \\Q - P\\ ^ Dλa for a ^ 2A"1 and 2λ ^ A A constant
Dλ can then be obtained through application of Proposition 2 for Xa2 ^
/̂2 and Proposition 4 for λα2 Ξ> τ/2, the quantity ?/2 being adjusted to give

the best value available.
Similarly, the second inequality can be proved by use of Proposi-

tions 3 and 4, assuming 2λ ^ 16 and tar <£ 1/8.
Note that the constants 9 and 16 are certainly much too large.

For very small values of a or tεr one can obtain much better values of
Dλ and D2.

Statement 2 of Theorem 2 implies that the approximation by a Pois-
son distribution will be good even though a few of the probabilities P3

may be close to the bound α ^ 1/4. This will happen provided only that
these large values contribute relatively little to the value of λ, the bulk
of λ being due to very small values of the p3.
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6 Concluding remarks •

REMARK 1. It would be highly desirable for the applications to
lower the values of the coefficients A and D2 to a more reasonable level.
When a is fixed, this can be achieved for D2 by restricting the range
of values of vf to which the inequalities apply. For instance, taking
4α = 1 but vf — 10~2, the coefficient D2 can be taken approximately
equal to 8. Such a value being still too large one may inquire whether
there is a lower bound to the acceptable values of D2.

In this connection the following remarks may be of interest. When
λ becomes very large the distance (1/tar) \\Q — B\\ becomes rapidly negligi-
ble. This can be seen for instance by using the inequalities which led
to Proposition 4 and the bounds in α2logλ/τ/λ" obtained through the
use of third differences.

The main contribution to (1/τcr) || — P\\ is then attributable to the
difference between the binomial B and the Poisson measure P.

Prohorov's theorem implies that (1/vr) \\ B — P || cannot be much
smaller than (.483). Therefore, one cannot expect to obtain a result
of the type \\Q — P\\ ^ D2τf where D2 would be substantially smaller
than 1/2.

REMARK 2. The result of Theorem 1 cannot be materially improv-
ed unless one is willing to restrict further the measures M3 or the
group 36.

A slight modification of the proof given here leads to the inequality

where β3 is taken equal to p3(l — e pή. The bound so obtained is
actually reached for certain choices of the measures M3. An example
of this can be constructed when 36 is the real line. It is sufficient to
take Mj to be the probability measure giving all its mass to a point
Xj and select the values {x3;j = 1, 2, •••} to be rationally independent.
For any fixed ε>0 one may find values p3 < e such that 2[1 — Π ( l — βj)] >
2 — ε and such that λ = Σ3p3 be finite.
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