ANOTHER 1-DIMENSIONAL HOMOGENEQUS
CONTINUUM WHICH CONTAINS AN ARC

JAMES H. CASE

In [3] R. H. Bing characterized the homogeneous continua than can
be imbedded in the plane and contain arcs by showing that any such
continuum is a simple closed curve. The principal result of the present
paper pertains to the related problem of characterizing the 1-dimensional
homogeneous continua which contain arecs but which are not necessarily
imbeddable in the plane. In the paper mentioned above, R. H. Bing
also asked if the continua in this larger class might be precisely the
simple closed curves, the universal curves, and the solenoids. According
to the title there is presented here a construction of another continuum
having these properties. The author was motivated in making this
construction by conversations with C. E. Burgess and by an abstract [8]
of Jack Segal’s.

[In this paper a topological space will be called a continuum provided
that it is connected, bicompact, and metrizable. Also, a topological space
will be called homogeneous provided that for any two points x and ¥ in
the space there exists a homeomorphism % of the space onto itself such
that h(x) = y. Moreover, according to R. D. Anderson’s characterization
in [2], a universal curve will denote a 1-dimensional locally connected
continuum with no local cut points which has no open subset which can
be imbedded in the plane.]

A simple pattern through the somewhat complicated construction
which follows may be seen by considering the inverse system

(*) {Xi, ddiz

where for each nonnegative integer 4, X, is a continuum, X,,, is a cover-
ing space [5] of X, relative to the projection ¢;, the inverse image in
X,:, under ¢, of any point in X, consists of exactly 7, points, and r; is
an integer greater than 1. More briefly, the continuum X;,, is an 7;-
fold covering space of the continuum X, relative to the projection ¢;.
Let X denote the limit [4; Chapter VIII] of the inverse system (%). It
is known [4; Chapter VIII] that X is also a continuum. In the construc-
tion to follow each X, will be a universal curve and the limit space X
will be the desired continuum. However, the author was unable to
establish the desired properties (in particular the homogenity) of the
continuum X by means of the information already given about the system
(¥). In order to proceed the author constructs particular universal curves
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X, and mappings ¢, in terms of the first universal curve X,—this is the
reason for the complexity of the construction.

The only case treated here is that in which 7, = 2, that is, the case
in which X;,, is a 2-fold covering space of X, relative to the projection
¢, for all . It will be evident to the reader how the construction could
be modified for arbitrary 7.

1. Preliminary definitions and conventions. Let S denote Euclidean
3-space, L the z-axis, C the circle in the xy — plane having radius 1
and center the origin, e the point (1,0, 0), M a universal curve which
is a subspace of S — L and contains C, I the closed unit interval [0, 1]
of real numbers, and @ the set of all nonnegative integers.

A continuous function ¢ from I into n space Y is called a path in
Y. If o is a path in Y then ¢(0) is called the initial point of o, a(1)
is called the termimal point of ¢, and o is said to be a path from ¢(0)
to (1) in Y. If o isa path in Y such that 6(0) = o(1) then o is called
aloopin Y. If a is a path from a to b in Y and B is a path from b
to ¢ in Y then the function a8 defined by

(aB)(t) = a(2t) for 0=t =1)2
and
(aB)t) =B2t —1) for 1/2=t=<1

is clearly a path from a toc¢cin Y. If o is a path from a to b in Y
then the function ¢! defined by ¢7'(t) = o(1 — t) for all t in I is clearly
a path from b to @ in Y. For any continuous function o from a closed
interval of real numbers to S — L let the winding number, W(a), of ¢
with respect to L be defined by the formula

1 { 2dy — ydo
W(a) = EES‘—‘—x —iis,

The fact that W is a well defined real valued function is verified at
length by Newman [7]—as are the following facts: If a and 3 are two
paths from a to b in S — L such that one can be deformed into the
other in S — L keeping the end points fixed then W(a) = W(B). If ¢
is a loop in S — L then W(o) is an integer. If a is a path from a to
bin S—L and B is a path from b to ¢ in S— L then W(aB) =
W) + W(B) and W(a™?) = —W(a). If a is a path from a to b in
S— L, Bis a path from b to ¢ in S — L, and v is a path from ¢ to d
in S— L then W((aB)y) = W(a(BY)) and therefore the real number
W(aBy) is well defined. Finally for any loop ¢ in S — L and any integer
n, W(o") is well-defined and W(o™) = nW (o) provided that ¢° is inter-
preted as the path having constant value ¢(0), o = (6" "o for n > 0,
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and 0" = ("o for n < 0.

2. Construction of the inverse system. The construction of the
spaces X; will be carried out in the same way as the classical construc-
tion [6] of the universal covering space except for the fact that a different
equivalence relation will be defined on the space of paths. Let the
space of paths 2 be the set of all paths in M having initial point e.
Define the element 7 of 2 by the formula

7(t) = (cos 2rt, sin 27¢, 0)

for all ¢ in I. Note that W(z*) = z for any integer z. Where n € @
and a € 2 let c(a, n) be the set of all v in 2 such that

a(l) = (1)
and
W(a) = W(v) mod (27) .

Where n € ® let X, be the family of all sets ¢(g, n) such that ¢ e Q.
Then X, is a decomposition of 2 into non-empty, mutually disjoint
equivalence classes. Also, for any nonnegative integer n define the
function ¢, from X,,, to X, and p, from X, to M by the formulas

¢c(a,n + 1) = c(o,n)
and
Pae(0, m) = (1)

Tor afl o in 2. Note that p, is a one-to-one mapping of X, onto i,

The definitions of the topologies for the spaces X, require further
construction. Let U be the family of all non-empty, connected, open
subsets U of M such that for any loop o in U, W(p) =0. Note that
U is a basis for the topology of M and if @ and 8 are paths in the
same member of U with the same initial and terminal points then
W(a) = W(B). Let Q be the set of all ordered triples (U, o, n) such
that 0 e 2, 6(1) e Ue 11, and n e . Where (U, o, n) € Q let N(U, a, n)
be the set of all points in X, of the form c(08, n) such that 8 is a path
in U and a(1) = 8(0). Also, if ¢ = (U, g, 1) € Q then it is assumed that
N(U, 0, n) may be denoted by N(g) or N,. Finally, if n e w let B, be
the family of all N(@)nX, for ¢ e Q. It will be seen later that the
topology assigned to X, will have B, as a base.

LemmA 2.1. If (U,0,n) e Q, o is @ path in U, and o(l) = p(0)
then N(U, o,n) = N(U, op, n).

Proof. After assuming the hypothesis listed above take any path
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§ in U such that o(1) = 8(0). Then c¢(g8,n) is a typical element of
N(U, g,n). It follows that

¢(a8, n) = c((a0)(07'9), n) € N(U, 0p, n) .

Similarly, take any path & in U such that (g0)(1) = 8(0). Then ¢((c0)8, n)
is a typical element of N(U, op,n). It follows that

c((00)8, n) = c(a(pd), n) € N(U, g, n) .
Therefore N(U, o,n) = N(U, oo, n) .

LEmMMA 2.2. Ifnewandxe A, Be B, then there exists an element
C of B, such that xe CCc AN B.

Proof. Suppose that n ¢ w and x € A, Be B,, say A = N(U, a, n),
B=NV,8mn), (U, aneQ, (V,B3n1neQ,cc, and z = ¢c(o,n)e ANB.
Take a path v in U and a path & in V such that a(1) = ¥(0), B(1) = §(0)
and c(o, n) = c(av, n) = ¢(B8,n). Theno(l)=7v1) =81)e UN V. Take
an element W of Il such that 6(1)e WcUN V. Let C = N(W, g,n). Let
¢ be any path in V such that ¢(1) = p(0). Then c(oy, n) is an arbitrary
element of C and

clop, m) = c(a(vp), n) = ¢(B(p),m) e AN B.

Therefore x € Cc A (N B.

This lemma allows us to define a topology on X, such that B, is a
base of open sets.

LEmMMA 2.3. For any n € w the space X, is arc-wise connected.

Proof. Let a be that element of 2 which maps Iontoe e C. Let
a = c(a,n) e X,. It will suffice to show that any other point in X, can
be connected to @ by a path in X,. Suppose that ¢ € 2. Then c(o, n)
is a typical point in X,. For any s e I define p, € 2 by p,(t) = o(st) for
all t € I. Now define a function % from I to X, by the formula h(s) =
c(0s, m) for all s € I. Clearly h(0) = a and (1) = c¢(o, n). It remains to
show that & is continuous. Take any U and o such that (U, g, n) € Q.
Then N(U, o, n) is a typical basic open set in X,. Take any s € I such
that A(s) € N(U, o,n). Then p,(1) = a(s) € U and for some path § in U
from o(1) to a(s)W(ad) = W(o,). Let G be that component of ¢ *[U]
which contains s. Then G is an open neighborhood of s in I. It will
suffice to show that h[G]c N(U, g,n). Take any r € G. Then p(1) =
o(r) € U. Define a path v in U by

Y(t) = (1 — t)s + tr)
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for all t e I. Then 7 is a path in U from p,1) to p,(1) in U. Take 8
as above then &v is a path in U from (1) to 0.(1) and

W(a(d7)) = W((ad)7) = W(os) = W(o,) .
Therefore h(r) = ¢(p,, n) € N(U, o, n).

LEmmMA 2.4. If (U, 0,n) € Q then

(A) ¢, maps N(U, o,n + 1) onto N(U, ¢,n) in a one-to-one fashion
and

(B) p, maps N(U, o,n) onto U in a one-to-one fashion.

Proof. Suppose that (U, o,n) € Q. Take any two paths v and 8§
in U such that ¥(0) = §(0) = g(1). Then c(ov,n 4 1) is a typical ele-
ment of N(U, g,n + 1) and ¢(c8, n) is a typical element of N(U, g, n).
Since ¢ and 7 are fixed and v and & are paths in U e U then ¢(a7y, n + 1)
and ¢(g8, n) depend only upon the choice of terminal point of v and &
respectively. Moreover, ¢,c(07,n + 1) = ¢(08, n) if and only if (1) =
8(1). Therefore ¢, maps N(U, g,n + 1) onto N(U, ¢,n) in a one-to-one
fashion. Also p,(68,n) =wu e U if and only if 8(1) = u. Therefore p,
maps N(U, g,n) onto U in a one-to-one fashion.

LemMMA 2.5. If (U,0,n) € Q and r = 2" then

(A) (P)7'[N(U, g, n)] is the union of the two disjoint open sets
N(U, tag,n + 1) for 1 =0,1
and

(B) (v.)7'[U] s the union of the 2" mutually disjoint open sets
N(U, g, n) for 1 =0,1, ..., 2% — 1.

Proof of (A). It follows from Lemma 2.4 that
&[N (U, "0, n + 1)] = N(U, "¢, n) = N(U, o, n)

for ¢ = 0,1. Therefore the union of these two open sets is contained
in (¢,)'[N(U, 0,7n)]. In order to establish the opposite inclusion take
any x € ¢,'[N(U, g,n)], say © = c¢(0o,n + 1) where pe 2 and p(1) e U.
Since ¢,(x) = ¢(0, n) € N(U, o, n) there is a path § in U from ¢(1) to
©(1) such that c(o, n) = c(¢8, n). Then for such a path, W(o) = W(ad)
mod 2" and there is an integer k such that W(o) — W(ad) = k2". There
is yet another integer s such that k = 2s + ¢ where 4 is either 0 or 1.
Then

W(0) — W(a8) = (25 + 1)2" = s2"** 4 ¢
and

W(0) = [W(a8) + ri] mod 2
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Therefore
W (o) = W(r"a8) mod 2"+
and
z =c(o,n + 1) = ¢(t"08,n + 1) € N(U, %o, n + 1) .

In order to complete the proof of part (A) it remains to show that
these two open sets are disjoint. Suppose that

xe N(U, "o, n + 1) N N(U, t7c,n + 1)

where 4,7 € {0,1}. Say x = ¢(p,n + 1) where p € 2 and p(1) € U. Take
paths §; and §; in U from ¢(1) to p(1) such that

x = ¢(t0d;, m + 1) = ¢(t™ed,n + 1).

Since §; and 9§, are paths in U € Ul having the same initial and terminal
points then W(S,) = W(3,). Also

W(zra8,) = W(tad,) mod 2"+ ,
Therefore

W) + W(o) + W(8,) = [W (™) + W(o) + W(§,)] mod 2** ;
W) = W(r™)mod 2™ ; ¢ = rfmod 2***; and 4 =jmod?2.

Since in addition ¢, j € {0, 1} then < = 5 and the two given open sets
containing 2 have to be identical.

Proof of (B). Clearly (B) is true for » = 0. Since p,¢, = P,+, then
(D)™ = (@) '(p)"". Therefore (B) follows from (A) by induction on n.

LeEMMA 2.6. For each n e w, X, is a 2"-fold covering space of M
relative to the projection p, with coordinate neighborhoods N and X, .,
18 a 2-fold covering space of X, relative to ¢, with coordinate neighbor-
hoods B,.

Proof. Take any n € w. Since U is a base for the topology of M,
in order to show that (p,)'[U] is open in X, for any U e 11, take any
U e U. According to Lemma 2.5, (p,)'[U] is the union of a finite number
of elements of ®,. Since, in addition, B, is a base for the topology of
X,., (p,)7[U] is open in X,. Therefore p, is continuous. Applying Lemma
2.4 again, it follows that p, maps any B € B, topologically onto »,[B] € U.
'Therefore, in view of Lemma 2.5, for any U e Ul there exists € B,
such that & is a disjoint family and for any E € €, p, maps E topologi-
cally onto U. Since in addition M is locally arc-wise connected and X,
is connected then X, is a covering space of M relative to the projection
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P, With coordinate neighborhoods 1. It follows from Lemma 2.5 that
P, is 2"-fold.

The proof that X,,, is a 2-fold covering space of X, relative to the
projection ¢, with coordinate neighborhoods B, is strictly analogous to
the above proof.

LEMMA 2.7. For each n € w, X, 18 a universal curve.

Proof. Take any n € w. The preceding Lemma gives that X, is a
covering space of the universal curve M. Therefore X, is locally homeo-
morphic to M, since M is locally connected so is X,, and since M is
metrizable so is X,. From the additional fact that p, is 2"-fold it follows
that X, is compact. Therefore X, is a curve (compact, connected, locally
connected, and metrizable) which is locally homeomorphic to M. In [2;
§ 5] R. D. Anderson characterized the universal curve up to topological
equivalence by local properties. Therefore X, is a universal curve.

3. Construction of the limit space X. Let X be the limit of the
inverse system {X,, ¢;}ic.. Since each ¢; is onto and each X, is non-
degenerate then X is a non-degenerate continuum [4; Chapter VIII]. It
also follows from [4; Chapter VIII] that the dimension of X cannot
exceed 1. Therefore, since X is a non-degenerate continuum of dimen-
sion less than or equal to 1, it is a 1-dimensional continuum.

Recalling the definition of inverse limit [4; Chapter VIII], X is the
set of all sequences = = {%;};c, such that z, € X; and ¢(x;,,) = =, for all
1 € w. For each 7 € w a projection mapping 7; from X to X, is defined
by 7w(x) = x; for all x € X. From [4; Chapter VIII] it follows that each
7, is continuous and onto. Let  be the collection of all (z,)*[B] for
Be®, and n e w. Then 9 is a base of open sets for the topology of
X. For each ¢ = (U, 0,n) € Q let

H, = H(U, 0,n) = (7,)'[N(U, o, n)]

then $ = {H,|q € Q}.
The 1-dimensional continuum X has now been defined but in order
to establish its properties some auxiliary machinery is needed.

4. Establishing the properties of X. As in some developments of
set theory we will identify any n € @ with the set of all nonnegative
integers less than n. Then for any » € @ consider 2" as a topological
space having the discrete topology and 2" points. For any » € w define
Yr,: 2711 — 27 by the condition +,(2) = 2 mod 2* for all z € 2***. Then v,
maps 2"+ continuously onto 2" and the inverse image of any point under
4, consists of exactly two points. Let D = lime, {D;, y»;} where D, = 2’
for all 2 ¢ w. Then D is topologically equivalent to the Cantor dis-
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continuum. For each n € w let 7, be the projection of D onto 2" defined
by

for all d € D. [The projections defined on D and those defined on X
should not be confused.] For any n e w and z € 2"x;'[{z}] is a basic
open set in D and, moreover, it is a closed subset of D which is top-
ologically equivalent to D.

LEmMmA 4.1. If ¢ = (U, 0,n) € Q then H, is topologically equivalent
to U x m;'[{0}] and hence any basic open set im X 1s topologically
equivalent to the product of a basic open set in M with the Cantor
discontinuum. Furthermore, X contains arbitrarily small arcs, even
arbitrarily small simple closed curves and universal curves but is not
locally connected. Therefore X is meither a solenoid nor a wuniversal
curve.

Proof. Suppose that ¢ = (U, ¢, n) € Q. For any integer z let exp (2)
denote 7* and for each u ¢ U pick a path 8, in U from ¢(1) to u. Define.
the function

h:UXx m;[{0}]] - X
by the formula
h(ur d)z = c(exp (di)o'Sw ’L)

for all v € w, u € U, and d € 7;[{0}].
Clearly this definition is independent of the choice of path §,. Take
any u € U, d € 7;'[{0}], and 72 € . Then

i((u, d);1,) = Pic(exp (d;4,)08,, © + 1)
= c(exp (d;+,)03,, 1)
= 0(exp (di)asm 7’)
= h(u, d);
and therefore h(u, d) e X.

It is desired that » map U x 7,'[{0}] onto H, in a one-to-one fashion.
Take any u € U, d € 7;'[{0}]. Then

Th(u, d) = h(u, d), = c(exp (d,)0d,, n)
= c¢(exp (0)ad,, n) = c¢(ad,, n) € N(U, o, n)

and hence

h(u,d) e H, = 7;)[N(U, a,n)] .
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Therefore hlu x m,'[{0}]] € H,. In order to establish the opposite inclu-
sion take any x € H,, say x;, = c(0;, ¢) for all 1 e w. Let u = p,(1) and
let d e 7,;'[{0}] be defined by

d, = W(0,8;'¢7") mod 2°
for all < € w. Then h(u, d); = c(exp (d;)a3,, 7);

[exp (d,)a8,](1) = 8,1) = w ; W(exp (d;)08,)
=d, + W(ad,) = W(08.,'07") + W(ad,) = W(0))

all modulo 2'; and hence h(u, d); = «, for all 7 € w. Therefore h(u, d) = x
and H,C h[U x =;'[{0}].

In order to show that & is one-to-one take any u, r € U and
d, f € ©;*[{0}] such that h(u, d) = k(r, f). Then for all 7 € w:

c(exp (d,)ad,, ©) = c(exp (f1)a8,, 1) ;
u = [exp (d,)od,](1) = [exp ()03, ](1) = r;
W (exp (d;)o8,) = W(exp (f1)03,) mod 2° ;
d; + W(ad,) = f; + W(03,) mod 2 ;
d,=fimod2; and d,=/f,.

Therefore (u, d) = (r, f) and hence & is a one-to-one function.

Finally it is desired to show that % is bicontinuous. Take any
m,2z € w such that m = n, z€ 2®, and z=0mod 2". It is clear that
7'[{#}] is a typical basic open set in 7,;*[{0}]. Suppose in addition that
Vell, Vc U, and ¢ is a path in U from (1) to a point in V. Let
r = (V, %0y, m). It will now be shown that H, is a typical basic open
set in H, It is clear that if s = (V, p¢t, m) where p(1) = d(1) and
W(o) = W(o) mod 2" then H, is a typical basic open set in H,. If z¢ 2™
were taken so that 2 = W(0o™) mod 2™ then z = 0 mod 2°; N(U, o, m) =
N(V, o, m) and H, = H,. Therefore H, is a typical basic open set in H,.

In order to establish the bicontinuity of % it will be sufficient to
show that [V x 7.'[{z}] = H, and h7'[H,] = V x w,'[{z}]. Therefore it
will be sufficient to show that for any

(u, d) e U x m'[{0}], (u, d) € V x m,'[{2}]

if and only if h(u,d) € H,. For any r € V let v, be a path in V from
p@) to r. If (u,d) e V x m,'[{z}] then

(U, d) = h(u, d),, = c(exp (d,,)08,, m)
= c(T*o Uy, m)
e N(V, t°ou, m)

and therefore h(u,d) € H, = n;)[N(V, t?o¢, m)]. Now Suppose that
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h(u, d) € H.. Then
nmh’(ur d) = h(ur d)m = C(eXp (dm)aﬂyu’ m) € N( v, oL, m)
and therefore [exp (d.,)otv,](1) = 7. (1) =ue V. Also,

W(exp (d,)ouy,) = W(r*op) mod 2™ ;
dw + W(opy,) = 2z + W(opy,) mod 2™ ;
d, = zmod 2™ ;

and
d, = 2.
Therefore

(u,d) e V x m'[{z}] .

LEMMA 4.2. If U and V are any two elements of U such that
UN V is connected and not empty then UU V e U.

Proof. Suppose that U, Vel and UN V is connected and not
empty. Clearly, UU V is connected. Since, in addition, U N V is open
and M is locally arc-wise connected then UN V is arc-wise connected.
Let o be any loop in U U V. If either o[I] C Uor o[I]C V then W(s)=0.
Suppose that neither o[I]c U nor ¢[I]c V. By a change of parameter
adjust ¢ so that g(0) = d(1) e U— V. Let % be the collection of all
components A of o7 [UN V] such that o[A*] meets both U — V and
V — V. From the fact that the distance from o[I] — V to d[I] — Uis
positive it follows that 2 is finite. Let {4;}~, be an indexing of the
elements of 2 such that A, < 4;;, for ¢ =1,2, .., n. [Each element
of A; is less than each element of A,.,.] Take {a;}7’; < I such that a, =0,
apy; =1, and a; € 4; for 1+ =1,2, -++,n. Then

O=a,<a, <a, <+ <, <p;, =1.

For ¢ =0,1, -+-,n let o, be the restriction of ¢ to the interval [a;, a;.,.]
Note that g(@) e UNnV forall t=1,2,-++,n. Fori1=1,2,++-,m—1
let o;: [a;, a;1,] — UN V be a continuous function such that p,(a;) = d(a,)
and 04(a11) = 0(a;). Let o, =0, 0, =0, and p=p0,Up, U +++ U pP,.
Obviously W(p,) = W(a,) and W(p,) = W(o,). Suppose ¢ is any integer
from 1 to n — 1. Either ofa,, ¢;.] € U or ola,, a;..] € V for otherwise
there would be A € 2 between A; and A,., contrary to the indexing of
A, If ofa;, a;,] € U then o, and p, are, modulo an order preserving
change of parameter, paths in U from ¢(a;) to o(a;,) and hence W(g;) =
W(p). If ola;, a;,] © V then o, and p, are, modulo an order preserving
change of parameter, paths in V from o(a,) to o(a;.,) and hence W(a,) =
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W(o;). Therefore

W(o) = 3 We) = 3 W(o) = W(o) -

It is already clear that pla,a,]CcUN VcU. Also pla, a]c U for
otherwise there would be A e between 0 and A,. Analogously,
ola,, a,+;] € U. Therefore p is a loop in U and W(s) = W(p) = 0.

LEMMA 4.3. If A is any arc in M then there exists an element U
of 1 such that AcC U.

Proof. Let E be any open cover of A by elements of U. Since A
is an arc in the locally connected continuum M there exists a finite
chain {U;}7., of connected open sets which covers A and refines E. In
particular U, N U, is non-empty if and only if |7 —j| <1 for 4,5 =
1,2, .--,n. Moreover, this chain may be taken so that the diameters
of its elements are small enough so that any three consecutive members
are contained in some one element of E. Take a nonnegative integer
k such that » = 2k + » where r =0orr =1. Let U,= U, and U, =
U,. Also let

V’L = Uzz—1 U U,uU Uzt+1

for al © =1,2, .-+, k. Now {V;}f, is a new chain of connected open
sets which covers A. Since each element of this new chain is the union
of three consecutive members of the origin chain then each such element
is a connected open subset of a member of I and hence is also a member
of 1l. Moreover the intersection of any two adjacent elements of the
new chain is an element of the origin chain and hence is connected.
Let U=V, UV,U - UV,. Then U is a connected open set which
contains A and, moreover, by repeated application of the preceding lemma.
it follows that U e 1.

LEMMA 4.4. For any two points x and y in M there exists a home-
omorphism h of M onto itself such that h(x) =y and W(ho) = W(a)
for any loop o im M.

Proof. Suppose that x and y are any two points in M. Let C be
an arc in M with ends « and y. Take an element V of U, according
to the preceding lemma, so that C — V. Take a connected open set U
such that Cc Uc U*c V. Then U is also an element of 1.

According to the proof of Theorem XVII, page 15 of [2] there exists
a homeomorphism % of M onto itself such that h(x) =y and h is the
identity map on M — U.
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Let o be any loop in M. If o[I] c V then W(ho) = W(s) =0. In
the other case we may reparameterize ¢ so that ¢(0) = o(1) ¢ V. Let
A be the collection of all components A of 67 [V — U*] such that ¢[4*]
meets both M — V and U*. From the fact that the distance from U*
to M — V is positive it follows that 2 is finite. Let {4,}", be an index-
ing of the elements of A such that A4, < 4,,, for 1=1,2, .-+, n — 1.
Let {a;}¢%¢ < I be such thata, = 0;a,,, = 1;anda; € A, fori =1,2, :--, n,
Note that

O=a, <, <+ <, < Upr; =1.

For ¢+=0,1,2,.-+,n let o, be the restriction of ¢ to the interval
[asy aii].  Clearly ofa,, a,]c M — U for otherwise there would be an
element 4 of A between @, and A,, contrary to the indexing of U.
Analogously it follows that ola,, a,.,]© M — U. Suppose that ¢ is any
integer from 1 to n — 1. Then either ofa;, a;.. ] © M — U or gla;, e ]V
for otherwise there would be an element A of 2 between A, and A4,
contrary to the indexing of 2. If ofa,, ;.. ] M — U then ho, = o, and
W(ho) = W(a,). If ola;, a;;,] © V then ho, and g, are, modulo an order
preserving change of parameter, paths in Vel from o(a;) to o(a;:)
and therefore W(ho,) = W(o;). Therefore

W(ho) = g,’ Wi(ho)) = g,) W(o,) = W(o) .
LEMMA 4.5. The continuum X is homogeneous.

Proof. Take any z,y € X. According to the preceding lemma take
a homeomorphism % of M onto itself such that h(p,(x,)) = p«(¥,) and
W (ho) = W (o) for any loop ¢ in M.

Note. If a and 8 are paths in M from a to b then W(ha) — W (hB) =
W(a) — W(B) and therefore

W(ha) = W(hBS) mod 2" if and only if W(a) = W(B)mod 2" for any
n € .

For any n € w take v, € ,, take 8, € y,, and define a mapping %,
from X, to itself by the formula

huc(a, n) = c(8,(h7,)"ha, 7)

for all ¢ € Q.

In order to show that %, is a well defined function take any
o, 0* € ¢(o, n), any 7y € x,, and any §} € Y,. Then W (o) = W(c*) mod 2*,
W) = W(vF)mod 2", and W(S,) = W(8}) mod 2". Also, according to
the above note, W(hy,) = W(hvy}) mod 2" and W(ho) = W(ho*) mod 2”.
Therefore
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[8.(h7,)*ho](1) = [ho](1) = R(a(1)) = k(o™ (1))
= [82(hvz)*ha*](1)
and
W (S.(hy,)*ho) = W (8} (hy})*ho™) mod 2" .
Therefore
¢(@u(h7a)tho, m) = (87 (hvy)*ha™, n)

and h, is well defined.
Similarly, define the function ¢, from X, to itself by the formula

2.¢(0, m) = c(h((hv,)87°0), m)

for all 0 € 2. It happens that ¢, and %, are inverse functions. Take
any o € 2. Then

qnhnc(0, n) = q,6(8,(hY,)*ha, n)
= c(h7'((h74)3784(h7,) " ha), M)
= c(h~((R7,)87"8.(hY,) )R~ ha, 1)
= ¢(o,n) .

Take any pe 2 then

1aQuC(0, 1) = hue(B((7Y,0)870), M)
= ¢(8,(h7,) TR ((R7,)857 0), m)
= ¢(8,(h7n) " (hY,) 650, M)
= ¢(o, n) .

Therefore ¢, is the inverse of h, and &, is a one-to-one mapping of X,
onto itself.

If (U, 0,n) is any element of @ then
kN(U, 0, )] = N(R[U], 8,(r,) ko, n)
and if (U, o, n) € Q then
R IN(U, p, m)] = N [U], B ((h74)+8,70), m)

Therefore both &, and k;' are continucus and hence £, is a homeomor-
phism of X, onto itself.

In order to apply the theory of [4; Chapter VII] about constructing
the mapping on the limit space X from the mappings k, it is necessary
to establish the commutivity relation k,$, = ¢,h,.,. For any ne w and
oce

h.pac(o, n + 1) = h,e(o, n) = c(8,(hy,) " ha, 1)
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and

Suhn110(0, 1 + 1) = $,c(p11(AVns) ha, m + 1)
= C(8n+1(h7n+l)—lhov n)
= ¢(8,(hYn)ha, m) .

Therefore h,p, = ¢,h,., for all ne w.
Now define the mapping h* from X to itself by the formula

h* (z)n = hn(zn)

for all ne w and ze X. From the commutivity relation established
above, the fact that h, is a homeomorphism onto, and the results in
[4; Chapter VIII] it follows that A* is a homeomorphism of X onto
itself. Moreover

h*(x)n = hn(xn) = hnc((ynv ’I’L) = C(Bn(h')’n)—lh’)/n, n) = C(Snv n) = Yu

for all n e w. Therefore h*(x) = y.

5. Additional remarks. If the following proposition were known
to have been true this paper could have been materially shortened.

PROPOSITION 5.1. If Y is the limit of the inverse system
{Yiv 0@}:10

where for each nomnegative integer 1, Y; is a homogeneous continuum
and Y., 18 a covering space of Y, relative to the projection 6, then Y
is also a homogeneous continuum.

This is a special case of a theorem abstracted by Jack Segal [8].
However, to the author’s knowledge the validity of Proposition 5.1 and
of Segal’s Theorem are open questions.

Another Question. Are the homogeneous l-dimensional continua
which contain arcs those continua which are inverse limits of simple
closed curves or inverse limits of universal curves where in either case
the bonding mappings are covering mappings.
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