COLLECTIONS AND SEQUENCES OF CONTINUA IN THE PLANE. II

C. E. Burgess

1. Introduction. This paper includes a study of some convergence properties of sequences of mutually exclusive continua in E^{2}, and these results are used to obtain some restrictions on the types of continua in an uncountable collection of mutually exclusive continua in E^{2}. The concept of width of a tree-like continuum is introduced, and it is shown that E^{2} does not contain uncountably many mutually exclusive tree-like continua with positive widths. This gives a generalization of R. L. Moore's result that E^{2} does not contain uncountably many mutually exclusive triodic continua [13]. The author has presented some related results in [7].

Definitions of trees, chains, tree-like continua, and triods can be found in [8].
2. The width of a tree-like continuum. If G is a tree, then a number $\mathscr{\mathscr { V }}(G)$ is associated with G as follows. For each chain C in G and each element X of G, there is a distance ${ }^{1} \rho\left(X, C^{*}\right)$ from X to C^{*}. Let,

$$
\mathscr{W}(G)=\min _{\sigma \text { in } G}\left[\max _{x \in G} \rho\left(X, C^{*}\right)\right]
$$

where each maximum is obtained with C fixed. A number w is called the width of a tree-like continuum M if, for any cofinal sequence $G_{1}, G_{2}, G_{3}, \cdots$ of trees defining M, the sequence $\mathscr{W}\left(G_{1}\right), \mathscr{W}\left(G_{2}\right), \mathscr{W}\left(G_{3}\right), \cdots$ converges to w.

Theorem 1. Every tree-like continuum has a width.
Proof. Suppose that some tree-like continuum M does not have a width. Then there exist two nonnegative numbers w_{1} and $w_{2}\left(w_{1}<w_{2}\right)$ and two cofinal sequences $G_{1}, G_{2}, G_{3}, \cdots$ and $H_{1}, H_{2}, H_{3}, \cdots$ of trees defining M such that the sequence $\mathscr{W}\left(G_{1}\right), \mathscr{W}\left(G_{2}\right), \mathscr{W}\left(G_{3}\right), \cdots$ converges to w_{1} and the sequence $\mathscr{W}\left(H_{1}\right), \mathscr{W}\left(H_{2}\right), \mathscr{W}\left(H_{3}\right), \cdots$ converges to w_{2}. Let ε be a positive number such that

$$
\begin{equation*}
3 \varepsilon<w_{2}-w_{1} \tag{1}
\end{equation*}
$$

[^0]Let i be an integer such that the mesh of G_{i} is less than $\varepsilon / 2$ and

$$
\begin{equation*}
\left|\mathscr{V}\left(G_{i}\right)-w_{1}\right|<\varepsilon . \tag{2}
\end{equation*}
$$

There exists an integer j such that H_{j} is a refinement of G_{i} and

$$
\begin{equation*}
\left|\mathscr{W}\left(H_{j}\right)-w_{2}\right|<\varepsilon . \tag{3}
\end{equation*}
$$

Let C be a chain in G_{i} such that

$$
\begin{equation*}
\mathscr{W}\left(G_{i}\right)=\max _{x \in G_{i}} \rho\left(X, C^{*}\right) \tag{4}
\end{equation*}
$$

There is a chain D in H_{3} such that each link of C contains a link of D. Let Y be an element of H_{j} such that

$$
\begin{equation*}
\rho\left(Y, D^{*}\right)=\max _{x \in H_{j}} \rho\left(X, D^{*}\right) \tag{5}
\end{equation*}
$$

and let Z be an element of G_{i} that contains Y. Then

$$
\begin{equation*}
\rho\left(Y, D^{*}\right) \leqq \rho\left(Z, C^{*}\right)+\varepsilon . \tag{6}
\end{equation*}
$$

It follows from (2) and (4) that

$$
\begin{equation*}
\rho\left(Z, C^{*}\right)<w_{1}+\varepsilon . \tag{7}
\end{equation*}
$$

Now (6) and (7) imply that

$$
\begin{equation*}
\rho\left(Y, D^{*}\right)<w_{1}+2 \varepsilon . \tag{8}
\end{equation*}
$$

Hence D is a chain in H_{j} such that

$$
\begin{equation*}
\max _{x \in H_{j}} \rho\left(X, D^{*}\right)<w_{1}+2 \varepsilon, \tag{9}
\end{equation*}
$$

and since

$$
\begin{equation*}
\mathscr{V}\left(H_{j}\right) \leqq \max _{x \in H_{j}} \rho\left(X, D^{*}\right), \tag{10}
\end{equation*}
$$

it follows from (9) that

$$
\begin{equation*}
\mathscr{W}\left(H_{j}\right)<w_{1}+2 \varepsilon . \tag{11}
\end{equation*}
$$

Now a combination of (3) and (11) gives

$$
\begin{equation*}
w_{2}<w_{1}+3 \varepsilon \tag{12}
\end{equation*}
$$

and this is contrary to (1).
Corollary. Every linearly chainable continuum has width zero.
Remark. There exists a tree-like continuum which has width zero and which is not linearly chainable. A continuum which is the sum of a
simple triod T and a ray spiralling around T is such an example. Any tree-like continuum which is almost chainable [9] has width zero.

Theorem 2. If the tree-like continuum M has width zero, then every homeomorphic image of M has width zero.

Proof. In order that a tree-like continuum K should have width zero it is necessary and sufficient that, for every positive number ε, there should exist an ε-tree G covering K and a chain C in G such that every point of K is within a distance ε of some link of C. Hence, Theorem 2 follows from the fact that every homeomorphism of M is uniformly continuous.

Theorem 3. Every tree-like triod has a positive width.
Proof. Suppose that some tree-like triod M has width zero. Then for each positive number ε, there exist an ε-tree G covering M and a chain C in G such that every point of M is within a distance ε of some link of C. A contradiction can be reached by using an argument similar to the proof of Theorem 6 of [9].
3. Convergent sequences of continua in E^{2}. A sequence of continua $M_{1}, M_{2}, M_{3}, \ldots$ is said to converge homeomorphically to a continuum M if, for each positive number ε, there exists an integer k such that, for $n>k$, there is a homeomorphism of M_{n} onto M that moves no point more than a distance ε.

Theorem 4. If $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of mutually exclusive tree-like continua in E^{2} converging to a continuum M and, for each i, w_{i} is the width of M_{i}, then the sequence $w_{1}, w_{2}, w_{3}, \cdots$ converges to zero.

The following lemma will be used in the proof of this theorem.

Lemma. If n is a positive integer, H is a collection consisting of n mutually exclusive closed disks in E^{2}, and K is a collection consisting of n^{3} mutually exclusive dendrons in E^{2} such that each element of K intersects every element of H, then some element of K contains an arc which intersects every element of H.

Proof. The case where $n=1$ is trivial, so suppose that $n>1$. Each element of K contains a dendron which is irreducible among the elements of H. Hence there exists a collection K^{\prime} consisting of n^{3} mutually exclusive dendrons such that each element of K^{\prime} is irreducible among the elements of H and is a subset of an element of K. Now
since n^{3} is greater than the product of $2 n$ and the number of pairs of elements of H, it follows from [7, Theorem 3] that there exist two elements D_{1} and D_{2} of H and a collection $K^{\prime \prime}$ consisting of $2 n$ elements of K^{\prime} such that each element of $K^{\prime \prime}$ intersects each element of H and is a subset of $\mathrm{cl}\left[E^{2}-\left(D_{1}+D_{2}\right)\right]$. Now it follows from [6, Theorem 4] that some element of $K^{\prime \prime}$ contains an arc which intersects every element of H. Hence some element of K contains such an arc.

Proof of Theorem 4. Suppose that the sequence $w_{1}, w_{2}, w_{3}, \cdots$ does not converge to zero, and for convenience suppose that there is a positive number δ such that each w_{i} is greater than δ. Let ε be a positive number less than $\delta / 4$. There exists a finite set B consisting of n points of M such that every point of M is within a distance ε of some point of B. There exist a collection G of open disks of diameter less than ε and a subcollection G^{\prime} of G such that
(1) G is an essential covering of M,
(2) G^{\prime} is an essential covering of B, and
(3) the closures of the elements of G^{\prime} are mutually exclusive.

Let $G^{\prime \prime}$ denote the collection of all closed disks which are the closures of the open disks of G^{\prime}. There exists an integer k such that, for $i \geqq k$, G is an essential covering of M_{i}. Now for each $i\left(k \leqq i \leqq k+n^{3}\right)$, there exists a tree G_{i} such that
(1) G_{i} is an essential covering of M_{i},
(2) each element of G_{i} is an open disk,
(3) G_{i} is a refinement of G,
(4) no element of G_{i} intersects an element of G_{j} for $j \neq i$,
(5) if C_{i} is a linear chain in G_{i}, some element of G_{i} is a distance greater than δ from C_{i}^{*}, and
(6) the nerve of G_{i} can be realized by a dendron K_{i} which is covered essentially by G_{i} and which has a width greater than δ.
It follows from the above lemma that for same integer $s\left(k \leqq \mathrm{~s} \leqq k+n^{3}\right)$, there is an arc T_{s} in K_{s} which intersects every element of $G^{\prime \prime}$. Requirement (6) implies that some point p of K_{s} is a distance greater than δ from T_{s}. Let q be a point of M_{s} such that $\rho(p, q)=\rho\left(p, M_{s}\right)$, let r be a point of M such that $\rho(q, r)=\rho(q, M)$, and let u be a point of B such that $\rho(r, u)=\rho(r, B)$. Now since $\rho\left(p, M_{s}\right)<\varepsilon, \rho(q, M)<\varepsilon, \rho(r, B)<\varepsilon$, and $\rho\left(u, T_{s}\right)<\varepsilon$, this leads to the contradiction that $\rho\left(p, T_{s}\right)<\delta$. Hence, the sequence $w_{1}, w_{2}, w_{3}, \cdots$ converges to zero.

THEOREM 5. If $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of mutually exclusive tree-like continua in E^{2} converging homeomorphically to a continuum M_{0}, then the width of each M_{i} is zero.

Proof. Let ε be a positive number. It follows from Theorem 4 and
the homeomorphic convergence of the sequence $M_{1}, M_{2}, M_{3}, \cdots$ that there exist a positive integer n, a tree G_{n} covering M_{n}, and a homeomorphism f of M_{n} onto M_{0} such that $\varepsilon / 3$ is greater than each of the width of M_{n}, the number $\mathscr{W}\left(G_{n}\right)$, the mesh of G_{n}, and the distance any point of M_{n} is moved under f. Let C_{n} be a chain in G_{n} such that

$$
\begin{equation*}
\mathscr{V}\left(G_{n}\right)=\max _{x \in G_{n}} \rho\left(X, C_{n}^{*}\right) \tag{1}
\end{equation*}
$$

Now let G denote the tree which is the collection of all images, under f, of elements of G_{n}, and let C denote the chain in G which consists of all images, under f, of elements of C_{n}. It follows that the mesh of G is less than ε and that for each element Y in G_{n},

$$
\begin{equation*}
\rho\left(f(Y), C^{*}\right)<\rho\left(Y, C_{n}^{*}\right)+2 \varepsilon / 3 \tag{2}
\end{equation*}
$$

A combination of (1) and (2) gives

$$
\begin{equation*}
\rho\left(f(Y), C^{*}\right)<\mathscr{W}\left(G_{n}\right)+2 \varepsilon / 3 \tag{3}
\end{equation*}
$$

Now since $\mathscr{V}\left(G_{n}\right)<\varepsilon / 3$, it follows from (3) that

$$
\begin{equation*}
\rho\left(f(Y), C^{*}\right)<\varepsilon \tag{4}
\end{equation*}
$$

Hence it has been shown that for each positive number ε, there is an ε-tree G covering M_{0} such that $\mathscr{W}^{-}(G)<\varepsilon$, and from this it follows that M_{0} has width zero. That the width of each M_{i} is zero follows from Theorem 2.

THEOREM 6. If $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of mutually exclusive continua in E^{2} converging homeomorphically to a continuum M_{0}, then no M_{i} has more than two complementary domains.

Proof. Suppose that M_{0} has three complementary domains. Let a, b, and c be three points in the complement of M_{0} such that no two of them are in the same complementary domain of M_{0}, and let ε be a positive number that is less than the distance from M_{0} to $a+b+c$. There exists an integer k such that, for $n>k$, there is a homeomorphism f_{n} of M_{n} onto M_{0} that moves no point more than a distance $\varepsilon / 2$, and hence, for $n>k, M_{n}$ does not contain one of the points a, b, and c. Now let h and j be two integers greater than k. It follows from a theorem proved by Eilenberg [10, Theorem 5] that each of the continua M_{h} and M_{j} separates each two of the points a, b, and c in E^{2}. On the other hand, M_{h} and M_{f} are mutually exclusive so that M_{h} would lie in some complementary domain of M_{j}, and hence some two of the points a, b, and c would not be separated by M_{h}. From this contradiction, it follows that M_{0} does not have more than two complementary domains. Consequently, no M_{i} has more than two complementary domains.

TheOREM 7. If $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of mutually exclusive continua in E^{2} converging homeomorphically to a continuum M_{0} that separates E^{2}, then each M_{i} irreducibly separates E^{2} into two components.

Proof. It follows from Theorem 6 that M_{0} separates E^{2} into two components, so suppose that some proper subcontinuum of M_{0} separates E^{2}. Then some proper subcontinuum K of M_{0} would irreducibly separate E^{2} into two components. Let p be a point of $M_{0}-K$, let q be a point that is separated in E^{2} from p by K, and let ε be a positive number less than the distance from K to $p+q$. Let D be an open circular disk with center at p and with radius $\varepsilon / 3$. There exist integers h and j such that the continua M_{h} and M_{j} are carried onto M_{0} by homeomorphisms f_{h} and f_{j}, respectively, that move no point more than a distance $\varepsilon / 3$. Let K_{h} and K_{j} denote the continua $f_{h}^{-1}(K)$ and $f_{j}^{-1}(K)$, respectively. Each of the continua M_{h} and M_{j} intersects D and, by [10, Theorem 5], each of the continua K_{h} and K_{j} separates q from D in E^{2}. Since K_{h} and K_{j} are mutually exclusive, it follows that one of them, say K_{h}, separates the other, K_{j}, from D in E^{2}. This involves the contradiction that M_{j} intersects both K_{j} and D but does not intersect K_{h}. Hence, it follows that each M_{i} irreducibly separates E^{2} into two components.

Theorem 8. There does not exist in E^{2} a sequence of mutually exclusive triods converging homeomorphically.

Proof. Let $M_{1}, M_{2}, M_{3}, \ldots$ be a sequence of mutually exclusive continua in E^{2} converging homeomorphically to a continuum M. It is sufficient to show that M is not a triod.

Case 1. The continuum M separates E^{2}. By Theorem 7, M irreducibly separates E^{2} into two components so that no proper subcontinuum of M separates M [12]. Hence M is not a triod.

Case 2. The continuum M does not separate E^{2}. Then M is treelike as it contains no open subset of E^{2} [2]. By Theorem 5, M has width zero, and hence it follows from Theorem 3 that M is not a triod.
4. Uncountable collections of mutually exclusive continua in E^{2}. Roberts [14] has shown that every linearly chainable continuum has uncountable many mutually exclusive homeomorphic images in E^{2}. However, this is not the case for tree-like continua with width zero as the continuum described in the remark in $\S 1$ has width zero and contains. a simple triod. Anderson [1] has indicated the existence of an uncoun-
table collection of mutually exclusive tree-like continua in E^{2} such that no one of them is chainable. By Theorem 9, for any uncountable collection G of mutually exclusive homeomorphic continua in E^{2}, there exists a sequence of elements of G converging homeomorphically to an element of G. This suggests the following question, which is left unanswered. If M is a tree-like continuum in E^{2} such that there exists a sequence of mutually exclusive continua in E^{2} converging homeomorphically to M, does M have uncountably many mutually exclusive homeomorphic images in E^{2} ?

Theorem 9. If G is an uncountable collection of mutually exclusive homeomorphic continua in E^{n}, then there exists a sequence of elements of G which converges homeomorphically to an element of G.

By using Borsuk's theorem that, under the metric $d(f, g)=$ $\max _{x_{\mu} \epsilon_{\mu}} \rho(f(x), g(x))$, the space of all continuous transformations of a compact metric space M into a separable metric space is separable [5, Theorem 2], Theorem 9 can be proved by the method Bing [4] has indicated for the case where G is a collection of arcs in E^{2}.

Theorem 10. If G is an uncountable collection of mutually exclusive tree-like continua in E^{2}, then all except a countable number of continua of G have width zero.

Proof. It is sufficient to show that some continuum of G has width zero. Suppose that no continuum of G has width zero. It follows from Theorem 1 that there is a positive number δ and an uncountable subcollection G^{\prime} of G such that each continuum of G^{\prime} has a width greater than δ. But this is contrary to Theorem 4 since there is a convergent sequence of elements of G^{\prime}.
5. A remark on homogeneous decomposable plane continua. F. B. Jones [11] has shown that every nondegenerate homogeneous decomposable plane continuum has a continuous decomposition G such that G is a simple closed curve with respect to its elements and each element of G is a homogeneous tree-like continuum. Jones' question as to whether each element of G would be a pseudo-arc has not been answered, but Bing [3] has shown that this would be the case if each element of G were linearly chainable. It follows from Theorem 10 that each element of G has width zero. This suggests the following question. Is a homogeneous tree-like continuum chainable if it has width zero?

Added in proof. The author has recently shown that every homogeneous tree-like continuum in E^{2} has width zero hereditarily and that a tree-like continuum has width zero hereditarily if and only if it is
atriodic. These results will be presented in another paper.

Bibliography

1. R. D. Anderson, Hereditarily indecomposable plane continua, Bull. Amer. Math. Soc., Abstract 57-3-236.
2. R. H. Bing, Snake-like continua, Duke Math. J., 18 (1951), 653-663.
3. —, Each homogeneous nondegenerate chainable continuum is a pseudo-arc, Proc. Amer. Math. Soc., 10 (1959), 345-346.
4. —, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math., 12 (1960), 209-230.
5. Karol Borsuk, Sur les rétractes, Fund. Math., 17 (1931), 152-170.
6. C. E. Burgess, Continua and their complementary domains in the plane, Duke Math. J., 18 (1951), 901-917.
7. Collections and sequences of continua in the plane, Pacific J. Math., 5 (1955), 325-333.
8. __, Chainable continua and indecomposability, Pacific J. Math., 9 (1959), 653-659.
9. ——, Homogeneous continua which are almost chainable, Canad. J. Math., 13 (1961).
10. Samuel Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math., 26 (1936), 61-112.
11. F. B. Jones, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc., 6 (1955), 735-740.
12. R. L. Moore, Concerning the common boundary of two domains, Fund. Math., 6 (1924), 203-213.
13. -, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci., 14 (1928), 85-88.
14. J. H. Roberts, Concerning atriodic continua, Monatsh. Math., 37 (1930), 223-230.

University of Utah

[^0]: Received May 26, 1960. Presented to the American Mathematical Society, November 21, 1959, and August 30, 1960, under different titles. This work was supported by the National Science Foundation under G-5880.
 ${ }^{1}$ The point set which is the sum of the elements of C is denoted by C^{*}.

