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1. Introduction* This paper includes a study of some convergence
properties of sequences of mutually exclusive continua in E2, and these
results are used to obtain some restrictions on the types of continua in
an uncountable collection of mutually exclusive continua in E\ The
•concept of width of a tree-like continuum is introduced, and it is shown
that E2 does not contain uncountably many mutually exclusive tree-like
continua with positive widths. This gives a generalization of R. L.
Moore's result that E2 does not contain uncountably many mutually ex-
clusive triodic continua [13]. The author has presented some related
results in [7].

Definitions of trees, chains, tree-like continua, and triods can be
found in [8],

2. The width of a tree-like continuum* If G is a tree, then a
number "W(G) is associated with G as follows. For each chain C in G
and each element X of G, there is a distance1 p{X, C*) from X to C*.
Let

= min [max p(X, C*)l ,

where each maximum is obtained with C fixed. A number w is called
the width of a tree-like continuum M if, for any cofinal sequence
O19 G2, G3, • • • of trees defining M, the sequence ^ ( G J , 5^"(G2), 2^(G3), • • •
•converges to w.

THEOREM 1. Every tree-like continuum has a width.

Proof. Suppose that some tree-like continuum M does not have a
width. Then there exist two nonnegative numbers wx and w2 {wx < w2) and
two cofinal sequences Gu G2, G3, • • • and H19 H2, H3, • • • of trees defining
M such that the sequence ^ (Gj ) , W"(G2), W'(G3), • • • converges to wx and
the sequence ^(H^, ^{H2)f W{H^} • • • converges to w2. Let £ be a
positive number such that

(1) Se < w2 — w1 .
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1 The point set which is the sum of the elements of C is denoted by C*.
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Let i be an integer such that the mesh of G% is less than e/2 and

(2) I <%r(Gi) - w x \ < s .

There exists an integer j such that H5 is a refinement of Gt and

(3) | ^ ( i J , ) - w 2 | < s .

Let C be a chain in G« such that

(4) <%r(Gt) = maxp(X, C*) .
X€G

There is a chain D in jff̂  such that each link of C contains a link of
D. Let Y be an element of H3 such that

( 5 ) p ( )
X€Hj

and let 2T be an element of Gt that contains Y. Then

(6) p(Y,D*)^p(Z,C*) + e.

It follows from (2) and (4) that

(7 ) p(Z, C*)<wx + e.

Now (6) and (7) imply that

(8) P(Y,D*) <wx + 2e.

Hence D is a chain in H3 such that

( 9 ) max p(X, J5*) < wx + 2e ,

and since

(10) 2^(fl,) ^ max ̂ (Z, D*) ,
xH

it follows from (9) that

(11)

Now a combination of (3) and (11) gives

(12) w2 < wx + 3s ,

and this is contrary to (1).

COROLLARY. Every linearly chainable continuum has width zero.

REMARK. There exists a tree-like continuum which has width zero*
and which is not linearly chainable. A continuum which is the sum of a
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simple triod T and a ray spiralling around T is such an example. Any
tree-like continuum which is almost chainable [9] has width zero.

THEOREM 2. If the tree-like continuum M has width zero, then
every homeomorphic image of M has width zero.

Proof. In order that a tree-like continuum K should have width
zero it is necessary and sufficient that, for every positive number s,
there should exist an £-tree G covering K and a chain C in G such that
every point of K is within a distance £ of some link of C. Hence,
Theorem 2 follows from the fact that every homeomorphism of M is
uniformly continuous.

THEOREM 3. Every tree-like triod has a positive width.

Proof. Suppose that some tree-like triod M has width zero. Then
for each positive number e, there exist an s-tree G covering M and a
chain C in G such that every point of M is within a distance e of some
link of C. A contradiction can be reached by using an argument simi-
lar to the proof of Theorem 6 of [9].

3* Convergent sequences of continua in E2. A sequence of con-
tinua M19 M2, M3, • • • is said to converge homeomorphically to a con-
tinuum M if, for each positive number e, there exists an integer k such
that, for n > k, there is a homeomorphism of Mn onto M that moves
no point more than a distance e.

THEOREM 4. / / Mu M2} M3, • • • is a sequence of mutually exclusive
tree-like continua in E2 converging to a continuum M and, for each
if w% is the width of Mif then the sequence wx, w2, w3, • • • converges to
zero.

The following lemma will be used in the proof of this theorem.

LEMMA. If n is a positive integer, H is a collection consisting of
n mutually exclusive closed disks in E2, and K is a collection consist-
ing of n3 mutually exclusive dendrons in E2 such that each element of
K intersects every element of H, then some element of K contains an
arc which intersects every element of H.

Proof. The case where n = 1 is trivial, so suppose that n > I-
Each element of K contains a dendron which is irreducible among the
elements of H. Hence there exists a collection K' consisting of nz

mutually exclusive dendrons such that each element of Kf is irreducible
among the elements of H and is a subset of an element of K. Now
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since nz is greater than the product of 2n and the number of pairs of
elements of H, it follows from [7, Theorem 3] that there exist two ele-
ments A and A of H and a collection K" consisting of 2n elements of
K' such that each element of K" intersects each element of H and is
•a subset of cl [E2 - (A + A)]. Now it follows from [6, Theorem 4]
that some element of K" contains an arc which intersects every element
of H. Hence some element of K contains such an arc.

Proof of Theorem 4. Suppose that the sequence w19 w29 w3f • • • does
not converge to zero, and for convenience suppose that there is a posi-
tive number 8 such that each w% is greater than S. Let e be a positive
number less than 8/4. There exists a finite set B consisting of n points
of M such that every point of M is within a distance a of some point
of B. There exist a collection G of open disks of diameter less than
£ and a subcollection G' of G such that

(1) G is an essential covering of M,
(2) Gr is an essential covering of B, and
(3) the closures of the elements of Gr are mutually exclusive.

Let G" denote the collection of all closed disks which are the closures
of the open disks of G\ There exists an integer k such that, for % ^ fc,
G is an essential covering of M«. Now for each i (k <L i ^ k + nz),
there exists a tree Gt such that

(1) Gt is an essential covering of Mt,
(2) each element of G% is an open disk,
(3) Gi is a refinement of G,
(4) no element of G« intersects an element of G5 for j =£ i,
(5) if Ci is a linear chain in Gi9 some element of Gt is a distance

greater than 8 from Cf, and
(6) the nerve of Gi can be realized by a dendron Kt which is

covered essentially by Gt and which has a width greater than 8.
It follows from the above lemma that for same integer s (k ^ s ^ k + nz),
there is an arc Ts in Ks which intersects every element of G". Require-
ment (6) implies that some point p of Ks is a distance greater than 8
from Ts. Let q be a point of Ms such that p(p, q) = p(p, Ms), let r be
a point of M such that p{q, r) = |O(g, M), and let u be a point of B such
that p(r, u) = ^(r, JS). Now since ^(p, M5) < s, ^(g, j|f) < e> p( r, 1?) < s,
and p(u, Ts) < e, this leads to the contradiction that p(p, Ts) < 8. Hence,
the sequence wlf w2, wB, • • • converges to zero.

THEOREM 5. If Mlf M2f M^ • • • 'is a sequence of mutually exclusive
tree-like continua in E2 converging homeomorphically to a continuum
MQ, then the width of each Mt is zero.

Proof. Let e be a positive number. It follows from Theorem 4 and
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the homeomorphic convergence of the sequence M19 M2, M3, • • • that there
exist a positive integer n, a tree Gn covering Mn, and a homeomorphism
/ of Mn onto Mo such that e/3 is greater than each of the width of Mn,
the number W"(Gn), the mesh of Gnf and the distance any point of Mn

is moved under / . Let Cn be a chain in Gn such that

( 1 )

Now let G denote the tree which is the collection of all images, under
/ , of elements of Gn, and let C denote the chain in G which consists of
all images, under / , of elements of Cn. It follows that the mesh of G
is less than s and that for each element Y in Gn,

< 2 ) p{f( Y), C*) < p( Y, Ct) + 2s/3 .

A combination of (1) and (2) gives

(3 ) P(f(Y), C*) < V(Gn) + 2s/3 .

Now since c^(Gn) < e/3, it follows from (3) that

<4) p(f(Y),C*)<e.

Hence it has been shown that for each positive number e, there is an
s-tree G covering Mo such that W{G) < e, and from this it follows that
Mo has width zero. That the width of each Mt is zero follows from
Theorem 2.

THEOREM 6. If Mlf M2J M3, • • • is a sequence of mutually exclusive
continua in E2 converging komeomorpkically to a continuum Mo, then
no Mt has more than two complementary domains.

Proof. Suppose that Mo has three complementary domains. Let
-a, 6, and c be three points in the complement of Mo such that no two
of them are in the same complementary domain of MQf and let s be a
positive number that is less than the distance from Mo to a + b + c.
There exists an integer k such that, for n > k, there is a homeomorphism
fn of Mn onto Mo that moves no point more than a distance s/2, and
hence, for n > k, Mn does not contain one of the points a, 6, and c.
Now let h and j be two integers greater than k. It follows from a
theorem proved by Eilenberg [10, Theorem 5] that each of the continua
Mh and M5 separates each two of the points a, 6, and c in E\ On the
other hand, Mh and M5 are mutually exclusive so that Mh would lie in
some complementary domain of Mj9 and hence some two of the points
a, b, and c would not be separated by Mh. From this contradiction, it
follows that Mo does not have more than two complementary domains.
Consequently, no Ml has more than two complementary domains.
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THEOREM 7. If Mu M2, M3, • • • is a sequence of mutually exclusive
continua in E2 converging homeomorphically to a continuum Mo that
separates E2, then each Mt irreducibly separates E2 into two com-
ponents.

Proof. It follows from Theorem 6 that Mo separates E2 into
components, so suppose that some proper subcontinuum of Mo separates
E2. Then some proper subcontinuum K of Mo would irreducibly separate
E2 into two components. Let p be a point of Mo — K, let q be a point
that is separated in E2 from p by Kf and let £ be a positive number
less than the distance from K to p + q. Let D be an open circular
disk with center at p and with radius £/3. There exist integers h and
j such that the continua Mh and Mj are carried onto Mo by homeo-
morphisms fh and fjf respectively, that move no point more than a dis-
tance e/3. Let Kh and K3 denote the continua fir\K) and ff\K),
respectively. Each of the continua Mh and M5 intersects D and, by [10,
Theorem 5], each of the continua Kh and Kj separates q from D in E2*
Since Kh and K3 are mutually exclusive, it follows that one of them,
say Kh, separates the other, Kj9 from D in E2. This involves the contra-
diction that Mj intersects both K3 and D but does not intersect Kh.
Hence, it follows that each Mt irreducibly separates E2 into two com-
ponents.

THEOREM 8. There does not exist in E2 a sequence of mutually
exclusive triods converging homeomorphically.

Proof. Let M19 M2, M3, • • • be a sequence of mutually exclusive
continua in E2 converging homeomorphically to a continuum M. It is
sufficient to show that M is not a triod.

Case 1. The continuum M separates E2. By Theorem 7, M irre-
ducibly separates E2 into two components so that no proper subcontinuum
of M separates M [12]. Hence M is not a triod.

Case 2. The continuum M does not separate E2. Then M is tree-
like as it contains no open subset of E2 [2]. By Theorem 5, M has
width zero, and hence it follows from Theorem 3 that M is not a triod.

4. Uncountable collections of mutually exclusive continua in E2..
Roberts [14] has shown that every linearly chainable continuum has
uncountable many mutually exclusive homeomorphic images in E2. How-
ever, this is not the case for tree-like continua with width zero as the
continuum described in the remark in § 1 has width zero and contains
a simple triod. Anderson [1] has indicated the existence of an uncoun-
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table collection of mutually exclusive tree-like continua in E2 such that
no one of them is chainable. By Theorem 9, for any uncountable col-
lection G of mutually exclusive homeomorphic continua in E2, there
exists a sequence of elements of G converging homeomorphically to an
element of G. This suggests the following question, which is left un-
answered. If M is a tree-like continuum in E2 such that there exists
a sequence of mutually exclusive continua in E2 converging homeo-
morphically to M, does M have uncountably many mutually exclusive
homeomorphic images in E21

THEOREM 9. / / G is an uncountable collection of mutually ex-
clusive homeomorphic continua in En, then there exists a sequence of
elements of G which converges homeomorphically to an element of G.

By using Borsuk's theorem that, under the metric d(f, g) =
m.2iKxeMp{f(x), g(x)), the space of all continuous transformations of a
compact metric space M into a separable metric space is separable [5,
Theorem 2], Theorem 9 can be proved by the method Bing [4] has
indicated for the case where G is a collection of arcs in E2.

THEOREM 10. If G is an uncountable collection of mutually ex-
clusive tree-like continua in E2, then all except a countable number of
continua of G have width zero.

Proof. It is sufficient to show that some continuum of G has width
zero. Suppose that no continuum of G has width zero. It follows from
Theorem 1 that there is a positive number S and an uncountable sub-
collection Gr of G such that each continuum of Gf has a width greater
than S. But this is contrary to Theorem 4 since there is a convergent
sequence of elements of G\

5, A remark on homogeneous decomposable plane continua* F. B.
Jones [11] has shown that every nondegenerate homogeneous decom-
posable plane continuum has a continuous decomposition G such that G
is a simple closed curve with respect to its elements and each element
of G is a homogeneous tree-like continuum. Jones' question as to
whether each element of G would be a pseudo-arc has not been answered,
but Bing [3] has shown that this would be the case if each element of
G were linearly chainable. It follows from Theorem 10 that each ele-
ment of G has width zero. This suggests the following question. Is a
homogeneous tree-like continuum chainable if it has width zero?

Added in proof. The author has recently shown that every homo-
geneous tree-like continuum in E2 has width zero hereditarily and that
a tree-like continuum has width zero hereditarily if and only if it is
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atriodic. These results will be presented in another paper.
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