STRONGLY CONTINUOUS MARKOV PROCESSES

S. R. FOGUEL

Introduction. This paper is a continuation of [3]. We deal here
with Markov processes with continuous parameter, while in [3] the dis-
crete parameter case was studied. The notion of a ‘‘Markov Process’’
(here and in [3]) is different from the standard one: A stationary pro-
bability measure is assumed to exist, but the Chapman-Kolmogoroff
Equation is replaced by a weaker condition. The exact definitions are
given in §1.

All problems are discussed from a Hilbert space point of view and
convergence will mean, always, either strong of weak convergence.

1. Notation and background. We shall repeat here, for comple-
teness, the notation of [3] and some of the results.

Let (2, 2, 1) be a given measure space where (2) =1, and ¢ = 0.
The measure will be called the probability measure. The space of real
square integrable functions is denoted by L,.

Let X,(w) be a family of measurable real functions where 0 <t < oo
and we Q. This will be called the Markov process and we assume:

If A is a Borel set on the real line and t, < t, < t, then the con-
ditional probability that X, e A given X, and X, is equal to the con-
ditional probability that X, e A given X,,.

Also we assume that the process is stationary. Namely:
A{‘L(th“l's eA N X-t2+s €A,) = #(th €A N -Xt2 € A,)

for all ¢, t,, s positive real numbers and A,4, Borel sets.

For any set o C 2, y, denotes the characteristic function of this
set. Let B, be the closed subspace of L, generated by the functions
Ax,ea- The self adjoint projection on B, is denoted by E,. Finally, let
T, be the transformation from B, to B, defined by

TtXXOGA = theA
where we used additivity to extend it to whole of B,. In [3] the follow-
ing equations are proved:
1.1 EtlEtzEt3 = E"lEtS if tl < tz < ts .
1.2 a. NTxll=|l=], for xe B, .
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b. T.B,= B, .

c. (Tt1+sx, Tt2+sy) = (Ttlm’ Tt2y) ’ for x e Bo Yye BO .
See Theorem 2.1 and Lemma 2.4.

Let P, be the operator on B, defined by P, = E,T.,.

THEOREM 1.1. The operators P, form a semi group of contractions
on B,. The adjoint semi group is given by P} = T E,.

Proof. It is clear that || P,|| < 1. Let x and y be vectors of B
and choose ze B, so that Tz = Eyy. Thus z = T;'Ey. Then

(PP, y) = (E,TETwx, y) = (TETx, y)
= (T.E T2, Ey) = (BT, 2) = (T, 2) .
Where we used Equation 1.2c. On the other hand
(Psre, y) = (B T2, y) = (BB Ty, y) = (B Tsi, y)
= (T, Eyy) = (T, Tiz) = (T, 2) .
Here we used Equations 1.1 and 1.2¢c. Now
(P, y) = (T, y) = (Tyx, Ey) = (%, 2) = (x, T,'Ey) .

The fact that P, is a semi group is our version of the Chapman-
Kolmogoroff Equation,

In most of this paper it will be assumed that the semi group P, is
strongly continuous. We shall say, in this case that the Markov process
is strongly continuous.

THEOREM 2.1. The Markov process is strongly continuous if -and
only if

ltir?y(XoeA N X, ed)=mXecA).

Proof. Note that

UXoe A) = || Xrpea
H(Xo eAN X,e A) = (TtXXOEA! XXOGA) = (PtXXOEA, Axoca) -

Thus
#(Xo eA) - X, eAN X, eA) = (XXOGA = i)Y x.e4 XxoeA)

and this converges to zero if P, converges to the identity operator
strongly. On the other hand
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|| PtXXOEA - XX0€A |[2 = || PtXXOEA Hz + H XXOGA H2 - 2(PtXX0€Ay XXOGA)
= 2| Lrpea I’ = (Pilxyens xyes)
=2UX,e A) — X, e AN X, e A)) .

Thus the condition of the Theorem implies that P,z converges to x
for a set of functions, x, that span B, and because || P, || <1 this must
hold for every x in B,.

2. Limit of transition probabilities as ¢t — o. This section is an
extension of §3 of [3]. Throughout this section we assume:

CONDITION D. There exist a finite o measure @, on the real line,
and an € > 0 such that if A is a Borel set and P(A) < ¢ then

EYxica # Yxiea -

This condition was given in ]3] and is similar to Doeblin’s condition
as given in [1] page 192. Another form of the condition is: if @(A4)<e
then

” TtXXOEA > = | Ax,e4 H2 > H PtXXoeA I* .

In this form it is seen immediately that ¢ can be replaced by any larger
number. Thus one can choose ¢ to be of the form #8 for any fixed
6> 0. (n a positive integer). For a fixed § > O X,; form a discreet
Markov process for which a Doeblin condition holds. Let H; be the
space of all functions in B, such that

meﬁBnS’ TksxeﬁBna k = 1,2,.-- .
n=0 n=0

In [3] Theorem 3.7 it was proved that if x is orthogonal to H; then
T,s x tends weakly to zero as k tends to infinity (& integer).

THEOREM 1.2. wxe H; tf and only if T.x =2 for somet > 0. Thus
Hj is the same for all 6 and will be denoted by H. The space H is
generated by a finite number of disjoint characteristic functions and
18 invariant under T, for all t > 0.

Proof. It is enough to prove first statement for the rest follows
from Theorem 3.8 and Corollary 2 of Theorem 3.11 of [3].

In Corollary 2 of Theorem 3.11 of {3] it was shown that if xe H;
then T,sx = = for some x. Thus it is enough to show that if T,z =
for some ¢t > 0, then x e H;. Now if T,x = x then

(Tiso, Tor) = (T, @) = || @ |" = || Tox ||
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Thus

T =T
In particlar

v=Tx=Tw=

Thus

%€ ﬁB,k

k=0
But by Theorem 2.2 of |3]
Now
Tost = Trsii® = Tpp @ = =+

or

Tmﬁx GIQ)BMB-I—M =anBn5 .
Again by Theorem 2.2 of [3]. Thus it suffices to show that T,sx € B,
for then T,sx e N,B,s by the same Theorem. Now
sup (T,;x,2) = su (Thssri, 2Y)
2€ By, |Izl|=1 € By, f12ll =1
= " sup (T, 2") = || Tpo ||

1€By, 1121 1=1

for

T,xe OBy C B if kit > msd .

n=m

Thus
T..xeB, and xe Hs.

Notice that on H P, = T,, and P, is a unitary operator.

In the rest of the paper we shall assume that the process {X,}, is
strongly continuous.

LEMMA 2.2. On the space H T, is the identity operator for all t.

Proof. Let yx be one of the atoms generating H. Thus y is a
characteristic function that is not the sum of two characteristic functions
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in H. Let t be so small that (T,x, x) # 0. Now T,x is also a char-
acteristic function in H and || Tyx |l = |l xll. Thus T,x = x because ¥ is
an atom. Also for every nT, = P.x=(P)'t =17, hence Tix=Py=1
for all t¢.

THEOREM 3.2. Let xe B, and let y be the projection of x on H,
then

weak limit P,x = weak limit Tyx = ¥ .

t—oo t—oo

Proof. By the previous lemma it suffices to show that if x is
orthogonal to H then T.x tends weakly to zero. Let ze¢ B, ||z]|| =1 be
a given vector and let ¢ > 0. Choose 8, so that || Ty — x| < ¢/2 if
8 = 6. By Theorem 3.7 of [3] if n is large enough then

[(Tus,,2) | < €/2.
Thus

| (T, 2) | = | (T — Tus ), 2) + (Tas, 2) |
=el2+|[(T, — Tl .

Now

(T, — Tws )z |’ = 2|2 |[* — 2(T.w, T,s,%)
=2\ @] — 2T, %) = || Tropa@ — @ |I

by Equation 1.2.c. If n is so chosen that
t—md <& then [[(T,— T,s)xll <e¢/2.

3. Differentiability. In this section we do not assume Condition D.
The process {X,} is assumed to be strongly continuous. It is known
that in this case the function P,z is differentiable at the origin for x in
a dense subset of B,. The derivative, @, of P, is an unbounded closed
operator. Let D(Q) be the domain of @. The simplest case is when
Q is bounded. A necessary and sufficient condition for this is that the
semi group P, is continuous in the uniform topology. (See 2 Theorem
VIII. 2)

THEOREM 1.3. The operator Q is everywhere defined if and only
if the expression

| _MX,cAn XA
(X, e A)

tends to zero uniformly, for all Borel sets A.
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Proof. If ||I— P,||— 0 then

1 — WX, e AN X, eA) _ (Urpea — Pilxgens Axyea) < I—P]J.
X, € A) - N xeeall® -

Thus the condition is necessary. Conversely let
v =3a); where ai|[x (=1 and ¥ = Yresp, AiNA;=¢.
Then

L~ (P, ) = Sa.as((z 1) — (Pt 1)

1/2

= (24t 1)~ (Pt 1)1) (565106 2) = (P 1))
By Schwarz’s inequality. Let us consider each term separately.
20t O x5) — (Pt 1) | =2 5 0 1) — (Pt 1) |-
For a fixed ¢ we have
000 2 = Bt ) | = 2 (Pt 2) + 1126 1 = (Ptao 2:)
= 2P ) — (Bt ) + 112611 = (P, 20)
= (Pig 1) — (P ) + 116 1P — (Ptas 210
where 1 is the identity function. Now
(P 1) = (Tox 1) = (T, Ti)) = (L 1) = | 2 1" -

Thus the sum over j is equal to

21| ||,<1 - 'ﬁ%)

and

2 ) — 3 . _ (PtXir Xz)
g_aa’i l (Xw Xﬁ) (PtXw X:r) l = Zs?p <1 ———‘” 7, [12 ) .

Sai | | = 2sup (1 — ——-”i’; A).

For the second term we get
2051 O 25) — (Pt 25) | = 2005 201 Ot 25) — (Ptan X5) |

and
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2106 %) = Pter %) 1= 1126 117 = (Pt 1) + Z(Plar 1)
= 12 1 = Py 15 + 2Pt 2) — (Ptas 1)

=112 1P — (P %) + (P, %) — (Piss %s)
= 20l %5 I — (Puts» A3)) -

And the second term has the same bound. Thus

1 — (P, ©) < 2sup (1 _ (Pt xi)) .

ISl
Now
| Po — x| = Pa|+ o~ 2(Pw, »)
< _ (P %)
< 2((I — P, 90)§451§p(1 Lt )

By assumption this tends to zero uniformly. Hence || Px — x| tends
to zero uniformly, for x in a dense subset of B, and hence everywhere
because || P, || < 1.

REMARKS. It is enough to assume the condition of the Theorem
for a family of Borel sets, A, such that the functions ¥, generate B,.
It follows, from the fact that @ is bounded, that

1-— X, ‘Z(I;l(ne 1)4(; € 4) =< (const)t .

Theorem 1.3 is well known for processes with countable state space.
A Dbrief discussion of this case is given in [1] page 265.

The function P,z is differentiable for many «’s exen if @ is unbound-
ed. In order to study this we will need:

LeMMA 2.3. Let R, be strongly continuous semi group of operators,
defined on a reflexive space X. If xe X then R is differentiable if
the expression (1/t)|| R — « || ts bounded for all .

This is included in Theorem 10.7.2 of |4]

Let ye L, and 2, be a subset of 2 such that X.es. Then
WEy 1P = || Lo, By | + || Xop* Eoy |I*

where 2, =2 — 2,. Now y,-Ey is the projection of y on the subspace
generated by characteristic function, in B,, of subsets of 2,. Thus

| %o, By || = sup {3, 1)@ | X = Ax,e4, € By and A; are disjoint
Borel sets, such that X,e A, © 2,, and Sa!|l x|’ =1}.
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But

Va. | < ~ 1, 1) ] < (v, 1.y 1/3.
IS ] 5 SR a0 = (SEED)

Hence

| Xo,* Ey ||* = sup {2(&/—2‘)— X = Xx,e4, € Bos

haals
A, disjoint Borel sets and X, A; C Ql}

A similar expresion holds for || ), Ew |[*.

THEOREM 3.3. Let A be a Borel set. The function P,)xe4 18 dif-

ferentiable at zero if and only if the two expressions below, are
bounded:

1. 1 {Z X, e AN X,eAd)

— sup A; disjoint
t? WX, e A

Borel sets and A; N A = ¢} .

1 {Z (X, e AN Xed) — X e Ay))

2. — sup
t X, e Ay)

[ A; disjoint
Borel sets and A; C A} .

Proof. By Lemma 2.3 and the above discussion it is enough to
show that

lz sup {Z (Pexpea — XXOGA; Axoe i)’
t [ Axpeas |

A, disjoint and A, 0 A = qs}

and

_1_ sup {Z(PtXXoeA - XXOGA; XxoeAt)
I Axoe4, i

A, disjoint and A, C A}

are both bounded. But these expressions are equal to 1 and 2 respec-
tively.

REMARK. If A is an atom for B, then the second expression is

1/UX AN X,cd) — pX,c AY
L( Ty )X, 4)

ST S
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A more precise information is available in the following special
case.

THEOREM 4.3. Let xe B,. Then xe D(Q) and (Qx,x) =0 if and
only iof A/t)(| x|} — (P, x)) is bounded. In this case Q*x exists and
18 equal to —Qux.

Proof. If ye B, then

ly — Pyl =1yl + | Pyl — 2Py, y)
=20lylP = (T, y) =lly — Tyl

thus
| Ty — (y — m, Py, v) - || Py — yll
& vl = y/pu =P 2 LR vl
Also if y and z are any two vectors in B, then
b (R -D2y) =L (Te—ny) = (T2 y — To)

~;—(Tz—z Y — T't/)+~(z y — Py)

where we used Equation 1.2.c for the third equality.
Let « be such that (1/t))(|«|* — (P, x)) is bounded. Then from
(a) we get

1L (Po—a)|p < 2Lt 8)

and is bounded by assumption. Thus we know from Lemma 2.3 that
x e D(Q). Moreover

@v,0) = —limt E=Lo8) — g

Conversely let 2 ¢ D(Q) and (Qx, ) = 0. If ye D(Q) then it follows
from (b) that

@,9) = lim - (P, = 1, v)

—hm——(Tx—x Y — Ty)+ (x y — Py)

t—0

the second term tends to —(x, Qy) while the first is bounded by
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1 —ay— Tl <l T —2lllly = Tyll

— <2(.70 — P, x) ,2(y — Py, y) )1/2
t t

as t — 0 this tends to
(4(Qz, x)(Qy, y)"* =0.

Thus
Qz,y) = — (2, Qy)
or
re D(Q*) and Q*r = —Qu.
Now

@ — P, 2) = | (@QP., 0)du = t max | @Puz, 0)|
= tmax [ (P, Q) | = t max | (P — @, Q) |
us ug
= const. ¢’

because || P, — || < const. u.

REMARK. If = is a characteristic function then it is easy to see
that Qx = 0 if (Qx, x) = 0.

The referee called my attention to the fact that this theorem
generalizes to arbitrary semi groups of contraction operators, when T,
is replaced by the group of unitary operators which project down to P,
as in s, Nagy theorem (See Riesz Nagy appendix to the third edition).
Some simple changes have to be done to take care of the complex case.
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