SELF-INTERSECTION OF A SPHERE ON A
COMPLEX QUADRIC

I. FARY

1. The real part S” of a quadric V in complex, affine (n + 1)-space
is a sphere. The self-intersection of S™ ¢n V is the same as the self-
intersection of a ‘‘vanishing cycle,”” introduced by Lefschetz, and plays
a certain role in [4], [5]. We will compute here this self-intersection
number, using elementary tools.

Let us introduce some notations. P,,, denotes the complex projective
space of algebraic dimension » + 1, hence of topological dimension

dimP,,, =2n + 2.

To each projective sub-space P, of P,., a positive orientation can be
given, thus it can be considered as a cycle p,,. Then we agree that

) ©f k+1=mn+1, then (pu, py) =1 in P,

be true for the intersection numbers of cycles. This is the usual con-
vention, the one in [1], for example; in [7] another convention is
adopted.

Let =, +--, x,,, be a fixed system of projective coordinates in P,.,.
Then

2) Qu:xi 4 oo+ 22y =0

is a non-singular quadric; dim @, = 2n. The points of P,., whose last
coordinate is non-zero form a complex affine space C,.,, and

V: Qn n Cn+1 = [x: r eQm wn+2 7& O]

is a non-singular affine quadric. If zeC,,,, we denote by z, +++,2,.,
those coordinates for which z,., =% where ¢* = —1; thus z, «--, 2,
are affine coordinates in C,.;. Then

Vizdl+ oo +20,=1 (e Cpir)
St 22 e +22,,=1,2 2,2, reals
are the equations of an affine quadric and its real part respectively;
this real part S™ is, of course, a sphere. We consider S* with an
arbitrarily chosen and fixed orientation as a cycle s. It is well known
(see, for example, [2], p. 35, (g)) that
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(8) the homology class s, of the cycle whose carrier is S*, generates
H(V; Z),

where Z denotes the ring of integers.
As dim V =2 dim S, the self intersection number

(4) (s,8) =(S"8"), (in V),

of s in V, is well defined; we may write (S, S”) for this self intersec-
tion number, because (s,s) does not depend on the orientation of S”,
used in (3).

2. M. F. Atiyah communicated to me his computation of the in-
tersection number (4) for n = 2, showing that the sign in [2], p. 35
(10) is not the right one.! The determination of the sign of (4) given
below is a generalization to # dimensions of the construction of Atiyah.
In [2] we used only the fact that (4) is not zero, if » is even, hence other
results of that paper are not invalidated by the false sign in (10), p. 35. The
mistaken sign is ‘‘classical.”” Wrong sign appears in [4], p. 93, Théoréme
sur les I"y_, de C,, I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104,
Theorem 45 (although in [7] not the convention (1) is used, the alter-
nation of the sign in question is independent of any convention). After
the completion of the present paper [6] appeared, where the classical
mistake in sign is corrected (see (11.3) on p. 161). The results of [1]
are in agreement with the sign (5) below.

3. Using the notations and conventions introduced above, we will
prove the following theorem.

THEOREM. Let s be the homology class of the oriented sphere S
m H(Q.; Z) where m = 2h 1is even. Let us denote by (s, s) the self-
intersection number of s computed with the convention (1). Then

—2, if h=% is odd ;

6) (s,9) =
+2, if h:—g- 18 even ;

holds true.

1 T take the opportunity to correct another mistake in [2], also noticed by Atiyah. In
Proposition 2, p. 27, we have to suppose that the singularity in question is conical. In[2],
Proposition 2 is stated without proof; Atiyah gave an example showing that the statement
does not hold true, if the singularity is motf comical, and gave a proof with the correct
hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus
other results of [2] are not affected by the incomplete formulation of that Proposition.
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4. We prepare the proof of this theorem; for the first part of
the proof, see [1]. (See also [3], pp. 230-232.) In order to describe
easily linear sub-spaces of @,, we introduce new projective coordinates
in P,

9 A S, PO SRS | (*=-1).
1),- = xzj._l _'wa‘

Let us notice that
(6) u; =v; =0 if and only iof 2, = ,;, =0 .
The equation of @, is

UV, F oo F Uy Uy =0,

in the new coordinates.
We consider the following linear sub-spaces of Q,:

(7) A: uj:or j=1’°"rh’,h+1;

(8) B: u,j=0, j=1,°",h; 'Un+1=0;
) C: v;=0, j=1,---,h+1.

Let us remark that,

(10) ANnC=¢, BN C is just one point,
by (6).

LEMMA 1. Let X be one of the projective spaces A, B, C. If, in
the system of equations defining X, we replace an even number of
equations u; = 0 by the corresponding v; = 0, or vice versa, we define
a new linear sub-space of Q, belonging to the same continuous system
as X. Similarly, without leaving the continuous system containing
B, we may replace u, =0, v,;,;, =0 in (8) by v, =0 and u,,, =0.

Proof. Let us suppose that we want to replace v, =0, v,=0 in
(9) by u;, =0, u, = 0. Let us consider the linear space

0—'”2"‘6“1:0:

V. :O,"’ ’I)n+ =O
——av1+,8u‘2=0, 3 ’ 1 ’

defined for every (a, 8) # (0,0). This projective space is clearly con-
tained in @,. For (1,0) we have C and for (0,1) the desired replace-
ment. The last statement of the lemma is proved similarly using the system

au, + Bupi =0,
—Bvy + @V, =0 .
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Let us consider now A, B, C as cycles of Q,, and let us denote by
a, b, ¢ their respective homology classes in H,(Q.; Z).

LEMMA 2. If h is odd, then ¢ =a. If h is even, then ¢ = b.

Proof. If h is odd, the 2 + 1 equations of (9) can be replaced by
the equations u; =0, 3 =1, -+, k + 1. Hence A and C belong to the
same continuous system. If A is even, we can replace the first A
equations defining C by u; =0, j =1, -+, h. Hence C and B belong
to the same continuous system.

LEMMA 3. As to the intersection numbers, we have

(11) vf h ts odd, then (a,a) =0, (6,0) =0, (a,0) =1,
(12) if h is even, then (a,a) =1, (b,b) =1, (a,b) =0.

Proof. (1) Let & be odd. By Lemma 2 and the first equation of
(10), we have (a,a) =0. Similarly, the second equation of (10) and
Lemma 2 prove (a,b) =1. In order to prove (4, 8) = 0, we consider
the space

B'": /vi::O! jzlv'°°’h’y uh+1=O°

We claim that B and B’ are in the same continuous system. In order
to prove this statement, we use Lemma 1 twice. First, we replace the
last two equations of (8) by v, =0, and w%,., =0. Second, in the
system obtained by the first step, we replace the first A — 1 equations
by v; =0. Now B N B’ = ¢, and this proves (b, b) = 0.

(2) Let h be even. The proof of (12) is similar to the previous
one. The last two equations of (12) are immediate from (10) and
Lemma 2. Using Lemma 1, we can find presently a B", such that
B N B” be just one point.

LeMMA 4. Using the previous mnotations s, a, b, for homology
classes,
(13) s=+(a—0),

the sign depending on the chosen orientation of S™.

Proof. Let us denote by I the hyperplane «,,, = 0, Then, clearly,.
AnI=BnNnI.

We denote by J this intersection (J = A N B). Let us consider a pencil
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of k-planes, 2k + dim A =2n + 2, in general position. If N is a neighbor-
hood of J in B, the k-planes of the pencil project N into a neighborhood M
of J in A. Given now a Riemann metric of P,., if N is a small
enough neighborhood of .J, the corresponding points of N, M determine
unique geodesic segments. We consider now B as a cycle, whose sim-
plexes are so small that those intersecting J are contained in N, Using
the geodesic segments introduced above which start at points of the
simplexes of B intersecting o, it is easy to construct a chain E of Q,,
such that

(14) A— B+ 0E

be a sum of simplexes of V=@, — I. Hence, s being a generator of
H,(V; Z), (14) will be homologous to a multiple of s. Thusa — b = ms
for some integer m. Now (¢ —b,a) =m(s,a) is *1 by Lemma 3,
hence m = +1.

Proof of the Theorem. (1) Let us suppose that % is odd. We
use (13) and (11): (s,8) = (@ —b,a — b) = (a, a) — (b, a) — (a, b) + (b, b)
= —(b,a) — (a,b) = —2.

(2) Let us suppose that % is even. This time we use (12): (s, s)
= (a,a) + (b, b) = +2. Hence the proof of (5) is complete.
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