CAPACITY DIFFERENTIALS ON OPEN
RIEMANN SURFACES

GEORGES G. WEILL

1. Introduction. We study in this report some orthogonal decom-
positions of the space /7, of harmonic differentials of finite norm, on a
Riemann surface W. We obtain generalizations of the known decom-
positions (I)

I'y =TIy, + I'f,
r,="I,+T%.
We then prove some existence theorems for differentials on W harmonic
except for the singularity dz/(z — ¢), of finite norm on W — 4, where 4
is a disk about z = ¢.

A necessary and sufficient condition for their existence is the existence
on W— 4 of a differential in I",(W — 0) with nonzero period about
the boundary B of W.

We then construct “Green’s differential”’, “Capacity differentials”,
and prove some of their properties on compact bordered Riemann surfaces.

The orthogonal property of Green’s differential is extended to open
hyperbolic Riemann surfaces.

2. Some subspaces of I,.

2A. Let W be a compact bordered Riemann surface, with boundary
B. Partition B8 into v and 6 = 8 — v where v is a union of contours v,.
We shall define the following subspaces of I7,:

Iy ={w:wel,, =0 on 7}.

I ey = {w:we[’h, S w :0}.
Vi

Those subspaces are clearly closed. We shall denote by [I',u., the
subspace [7,, N "hoy. We shall prove some orthogonal decomposition
theorems.

THEOREM. Fn = Pn(mv) + Fl)uk(se'y) n [’IT(OB) .

Proof. Let we I, and df* € I'i,y,. Then (w,df*) = stf:
S f.,ig w + Saa)f where f,, is the constant value of f on 7,. Now, if
Yi
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a)e['h(sev) n Fh(o&)y S'y
]

Conversely, if (o, df*) =0, then Zifyzg w + Sacof: 0.
Y
Select f =1 on one of the 7v,, say %; f=0an 0 and all other v,.

® =0, and stf — 0. Tt follows that (@, df*) = 0.

It follows that Sv- @ = 0. This is true for any contour 7;. Hence
@€l .,. Now take F=0 on 7: then &wf — 0 for all such f. This
readily implies @ = 0 on 0, which proves the theorem.

2B, Define Wy to be the double of W with respeet to v. It is
obtained by partial welding of W along v. It can be shown by a method
analogous to the one in (I. ChapterAV. § 14) that the harmonic differ-
entials which can be continued to W, form the subspace [y, + Iily-
2C. We shall consider here the subspace:
Fhoy ={w:wel,=df,f=0 on d}.
The following theorem gives an orthogonal decomposition of I”, involving

% .
rh(sw) .

THEOREM. Ty = ey F Theony N Chiey -

Proof. Let df*elym N Coey, ®@el,. Then (,df) = gs“’f -
nyig ® + stfz Efyig w. If werl,,.,, then S =0, and (w, df*) =
Y3 Y4 i

7i

0. Conversely if (w, df*) = 0, then ang o + S of =0. Take f=1
Y3 8

on 7;,f =0 elsewhere. Then Sv @ = 0 for any v;, and ® € ["(s0y).
%

2D. The next theorem gives an orthogonal decomposition of I7,,
involving 17 y).

THEOREM. I, = Fn(oy) + F}Te(oa) .

Proof. Let df*e 't @€, Then (o, df*) = g of = S of. It
B Y

we Ty, S of =0 = (w, df*). Conversely, if (w, df*) = 0, then g of =
Y
0. This readily implies @ = 0 on v, hence we I',,,. ’

2E. We shall now extend our results to open Riemann surfaces.
Let W be an open Riemann surface. Consider a closed partition of the
ideal boundary S into v and 6 = 8 — . Consider a neighborhood of 9,
say Ny0), bounded by a set of contours d,. 0, divides W into N(9)
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and W — N,(0). We shall exhaust W, = W — N,(J), using a regular
exhaustion {2,}. Let @,y € 'hon. The restriction of w,,, to 2 has a
decomposition:

— i k
wn(ov) |.0 - wnfoym + whe(osgm .

Where @00 € I nion(2) and @y, 50 € [hoosp(2). 1 2" D 2, Wyiop0 — Oniope—
Opopo = Dileosger — Diesye Where the right hand side is an element of
Iy.05(2) and therefore is orthogonal to @, on 2. It follows that

| @niomo — @niomar 1o = Il @niomor 1o — 1l @niepyor ]2

Therefore || W,gyolle increases with 2. But it is also bounded, for
the orthogonal decomposition @,y [0 = Wpope + Wiiesyo shows that
| @nomalle = 1@y lle = || @neyy |, We find that || @,eyello has a finite

limit and this implies that

o—0as 2 and 20— W,.

| Onioyo — Onioyor

For a fixed 2, the triangle inequality gives: || ®,imo — @nioporrllo,— 0
as @', 2" — W, independently of each other. We conclude (I. Chapter
II. Theorem 13C) that @, . tends to a harmonic limit differential @, .
Furthermore:

| Onioyo — Opipw, lle— 0 as 2 — W, .

Let now o* ¢ P;;Ke(OSO)- Then (wn(ov)WO, %), = (wh(ﬂylwo — Wyyo, 0F); a8 2 —
W,. Then for 0, C 2
(@, 6*) = lim (@, 6%) = lim [lim (@ — Dy o;k)g]
Y00 y—oo 2-w
or
[(@,6) < Tim [ lim | @ — @00 3] -
vy 2w

102115 = lim [ Him | — @yi000 15110 11
vooo | 2-W
=lim [0 — Wy llz - 1im || o5 |]i
QoW y—ca

The last limit being finite, it follows that (w, 6*) = 0. We conclude
that we IM05(W). Thus [ (W) is formed precisely by those differ-
entials which can be approximated by differential of class 7.5 (2).

We state this result as a theorem.

THEOREM. [ ',y(W) s the limit of [,y (Q) for 2— W in the
sense that wel, (W) &= there exists differentials @0 € [y (2)
such that ||® — @yepalle — 0.
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2F. We shall now extend Theorem 2C to open surfaces.

THEOREM. On an arbitrary Riemann surface

— % i
r, = rh(se‘y) + Fn((m N Lheosy

Proof. It is easy to see that [y L iy N ioosy. Let g€,
and W€y N [hoon- Consider a canonical exhaustion {2}, Let @ be
approximated in norm by w, € I, (2) N Mhowsy(2). Then, Q being canoni-
cal, (o, w}), = 0 thus (o, 0*), = (0, ®* — w}) and the inner product can
be made arbitrarily small, while 2 is arbitrarily large. Hence (¢, ®*) =0
and the orthogonality is proved.

Conversely, if wel', and @ | I}, (W), for a canonical 2 let w,
be the projection of w, restricted to 2 on I,y N Mhewsy. Then w —
W0 € }y(2). For 2" D 2, we conclude that w,, — w;p € '}, (2), hence
Wyg — Wyp | @y, Therefore || w0 — 0,0 ||7 = || 00 |17 — || 010 |5 = || 0100 |2 —
|| ]ls. It follows that [|wy, |7 increases with 2. But ||w,|| = ||w].
Therefore w, = lim, , w,, exists and lies in "y N Ipees. Furthermore
because @ — @€ [,y (2) and every dividing cycle lies in an £, it
follows that w — w, eI}, (W). On the other hand, w 1 I'},., by
assumption and o | I'},.,. We conclude that w — w, and I, N
Lhoony L Iiseyye Taiseny being closed, ey 1S L Iagsy N ieion

3. Existence theorem.

3A. We shall now prove some existence theorems for harmonic
differentials with a singularity of the type dz/(z —¢). Let W be an
open Riemann surface, z = ¢ a point of W. Let us consider a disk 4
mapped on |[2z]| < 1 such that &€ 4. Select 7, and 7, positive such that
[¢] < r<7r,<1. Construet a function e,(2) € C* which has value 1 for
|z| < 7, and value 0 for |z| > 7, and the function e, (z) such that e, +
e, =1on W,

Let W= W — {z:|2| < r}. We shall call a, the contour [z|= 7.
Let us assume that on W there exists a reproducing differential for «,,
say o(a,). To g(a,) corresponds an analytic differential on W: 0 = o(a,) +
10*(a,). Denoting by ¢ the period of w around «, we consider @ =
(27i/Q)w. In the annulus 7, < [2]| < 7, dz/(z — &) — @ is exact; let @
be an analytic function such that d@ = dz/(z — ) — @ in the annulus.
Notice that @ is defined up to an additive constant. We now construct
the following differential:

0 = edz[(z — &) + Pde, + ep

O is an element of C* and is closed on W punctured at z = ¢. Moreover
® — i®* = 0 near the singularity and in a boundary neighborhood. Hence
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0 is square integrable and by de Rham’s decomposition theorem:
0 — i0* = w,, + w, + 0.

Then 7 = 0 — w,, = 10* + w, + w}; is closed and coclosed in any region
which does not contain z = ¢. 7 is therefore harmonic on W except
for the singularity dz/(z — &). Such a differential is necessarily unique;
in fact, let 7 and 7’ be 2 solutions corresponding to the same #. Then
7 — 7' is harmonic and 7 — 7' el’,,., Therefore 7 — 7' = 0. We shall
remark that two different functions @, differing by a constant C will
yield the same 7: for in @, Cde, is an element of I',,, hence immaterial
for the definition of 7.

8B. Let us consider a closed partition of the ideal boundary B of
W into 2 parts v and 6, and the corresponding partition into v/ = o, U v
and 6 for W. On W we perform the decomposition:

W, = O + 0,

where of =} ,..,(W) and @, € [0 (W) 0 Tiiosy(W). Then 7 = i(e,dz/(z—
¢) + @de)* + e,p + 0F + 0, + 0} and T — w, = (e, dz/(z — &) + Dde))* +
e,? + w¥ + wk. The left hand side has the same periods about ¢ as 6,
and so does the right hand side. It follows that 7 =7 — w, and 7*
have the same periods about é as the given #. (They have actually on
W the same periods as 6).

In particular, if there exists on W a differential @' analytic with
zero period along d, we can repeat the construction outlined in § 3A and
get differentials 7 and 7* with zero periods about o.

3C. We may write the decomposition

t=F 47
where y is analytic and + is analytic except for the singularity at z = ¢.
If 7 and 7* have zero period about 4, the same is true for 4 and X for:
¥ = 3T + iT¥)
X =146 — ).

Il

Notice that 7 =7 for v = 5.

3D. Let 4 be the disk |z|< 7. On W, (¢ +®)/2e ", N [y We
shall call dg = 4(® + @), where ¢ is harmonic and constant on every
component of the boundary of W. In 4, [dz/(z — ¢) + dZ/(Z — ?)] is
the differential of log |z — ¢|. To sum up we have here:

6 + 6)/2 = d(e,log |z — ¢ ) + d(e.g) .
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By the procedure outlined in § 3A we obtain a differential (¢ + 7)/2,
which is harmonic exact. Putting (¢ + 7)/2 = dh, h is constant on every
component of B(W).

3E. We show here that one may get a function & which is constant
along B. Let o(a,) be defined as in §3A. oa(a)*el"}(W), therefore
o(a)* ¢ Iy (W). Then o(a,)* has a nonzero period along «, and
()" & Iyiseay(W). 1t follows that o(ag) € ', and the orthogonal
projection of o(a,) on I'n.es N I'heey is not zero. (Theorem 2C.) Let
o'(a,) be that projection; using o'(«,) instead of o(a,) in the previous
construction one gets a function & with the required property, say h,.
We suggest for dh, the name of Green’s differential, and for the cor-
responding 7, say 7,, the name of capacity differential.

3F. Let us now consider a closed partition of 8 into v and 4; put
a, U7 =7". We consider here instead of o*(«,) the projection of o*(a,)
on I'y,.5. This is equivalent to subtracting from o*(a,) a quantity which
is an element of '},05 N ['foyy: (This means that the remaining part
of o(a,) is still an element of I",, N I",,.) We get a nonzero projection
if and only if o(a) € Ihieyy N IMeeyy 1.€. putting o(a,) = df, f should have
different constant values on «, and v. We shall call the differential 7
thus obtained a capacity differential for the boundary part v. If v is
a component of B, we get the capacity differential of the boundary
component 7.

4. Reproducing properties.

4A. We shall assume first that W is the interior of a compact
bordered surface. Let us call a the circle |z — ¢| = r and set W, =
W—{z—¢|<r} Let z, be Green’s differential, and 6, the corre-
sponding singularity. For w = dfel",, we write down the generalized
Green’s formula on W,

(@, (7, + T9)[2) — (&%, (7, + To)*/2) = 0.

or
|, @+ F2 — hdf* = 0.
First, &, being 0 on B, Sgh"df * = 0. Therefore:

| e+ 70miz = | s+ 2y — hdf®

Let now Wy— W, orr—0. Forr=con |z|=7k =log|z — |+ 17.().
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where 7,(z) is bounded. It follows that lim,_,og hdf*=0. Now on|z| <7,

%(To + 7-70)* = (@ + @/2)* + 772(2) ’
where 7,(z) is bounded. Moreover:
@ + 0)*2 = (—10 + 10)/2 = —i(O® — O)/2 = darg(z — ¢) .

Therefore:

lim | f(e+70%(2 = lim | fdarg @ — &) = 2070) .
-0 Jao r—0 Jw
We now may state the following theorem:

THEOREM. For all harmonic functions f or W, the differential
T, + To/2 has the following reproducing property:

|, + 012 = 2076) .

4B. If we now use h instead of h, we need to restrict df to the
class I",.N 1"}, and state:

THEOREM. For all harmonic functions f on W whose conjugate
periods vanish along all dividing cycles, the differential = + 7/2 satisfies:

| fe + )2 = 20£E) .
4C. Green’s differential enjoys another important property:

THEOREM. Let dfel,,, and 7, be Green’s differential. Then:

(@f, (zo +79*[2) = 0.

Proof.  (df, (v, + 7)*[2) = (f, (6, + 6)*/2)

= —lim | 70, +6)j2 = lim | 76, + 62 .

P

4D. We shall now extend Theorem 4C to open Riemann surfaces.
Let W be an open Riemann surface and {2} a canonical exhaustion. Let
dF, = (Pog + Poa)/2; we know that dF,el 0 N Ihow on 2 —0. If
dF = (9, + $,)/2, we obtain easily by a reasoning analogous to the one
in (I, Chapter V. §14. C) that

lim||dF — dFy||-s = 0.

Q-w
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We recall that (0 + 0)/2 = d(e,log |z — ¢|) + d(e,F'). We now have:

@f, (zo + T)*[2) = (df, (8, + 0))*[2)
= lim (df, (6, + 6,)"/2)

= lim (df, 3(6, + 00)* — 3(B40 + B40)*)a
= lim (df, d(e.F")* — d(e,F")")s
= lim (df, d(e,F")* — d(e,F0)*)a-s -
2-w
Now let A be the compact set {z:7, < |2z| <7} and let 2 —d =AU A"
We have:

Il d(e.F')* — d(esFo)* |lo-s
= ” d(ezF) - d(ean) ”a—s
= ||de(F — Fo)|l4 + [|dF — dF,||. .

Because ||dF — dF,||,—0 as 2— W, F— F, uniformly on A hence
limg., || de(F — Fy) ||, =0. Now on A’

lim || dF — dF, ||y < lim ||dF — dF,llp-s = 0 .

2-w Q-W
It follows that limy., || d(€.F")* — d(esFa)* [lo_s = 0 and | (df, (7, + Z/2) | <
limg_y || df [|o-s || d(e,F)* — d(e.F)* |lo—s = 0, which proves the theorem.
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