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Introduction* In the case of plane regions of finite connectivity,
there exist (Bergman [2]) some kernel functions which possess reproducing
or orthogonal properties with respect to the space of analytic exact
differentials. Such Bergman kernels can be defined in a constructive
way, and are related to some derivatives of the Neumann function for
the region. Starting with the Green's function, one may construct the
corresponding Bergman kernels for the space of analytic differentials
in the region.

On the other hand, by Hubert space methods one may prove the
existence of corresponding kernels on arbitrary Riemann surfaces (Ahlfors
and Sario [1]) = these methods are of the nonconstructive type.

In this paper we shall construct actually such kernels for the space
of analytic differentials on an arbitrary Riemann surface W. We shall
first establish the relationship between the kernels and some principal
functions in the case of a compact bordered W. The principal functions
solve some well defined boundary value problems on W. By a canonical
exhaustion by regular regions (with compact bordered closures) the results
are extended to an open Riemann surface W.

Chapter I is preliminary in nature and contains important theorems
as well as definitions used in the sequel. It is a brief survey of the
theory of principal functions and of the theory of differentials on Riemann
surfaces (Ahlfors and Sario [1]).

In Chapter II, we introduce the concept of abstract reproducing and
orthogonal kernels (Bergman [2], Schiffer [5]). We prove a uniqueness
theorem for the reproducing kernel corresponding to a closed subspace
ΓΛ of Γa, the space of analytic differentials on a Riemann surface W9

and for the related orthogonal kernels with a given analytic singularity.
We then determine some functionals which are extremalized by repro-
ducing and orthogonal kernels. In particular, the reproducing kernel
ko(z, ξ)dz for Γa minimizes the expression

|| adz ||2 - 2Rea(ξ)

among all differentials adz e ΓΛ, and the kernel ho(z, ξ)dz with singularity
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dz/(z — ξf orthogonal to the class Γae of analytic exact differentials
minimizes the functional

among all differentials of functions analytic on W except for the singu-
larity -(l/(z - £)).

Such extremal properties suggest some close relationship between
the kernels and the principal functions on W.

In Chapter III, the case of planar surfaces is investigated in details.
First we study Γaβ. It is shown that for a compact bordered surface
W, with principal analytic functions Po and Px corresponding to the
singularity l/(z — ζ) the following relations hold:

where kodz is the reproducing kernel for Γae, and hodz is the orthogonal
kernel corresponding to the singularity dz/(z — ζf.

The preceding properties are shown there to hold for arbitrary
planar Riemann surfaces.

Moreover, analogous properties for other kind of kernels enable us to
prove relations between the principal functions Pim corresponding to the
singularity l/(s — ζ)m, m > 1 and the principal functions P< corresponding
to the singularity 1/(2 — ζ).

We then complete the study of the kernels for Γa. We show the
relationship between Bergman kernels and principal functions in the
compact bordered case, and then construct directly reproducing and or-
thogonal kernels for the orthogonal complement Γam of Γae.

In Chapter IV we extend the result of Chapter III to Riemann
surfaces of nonzero genus. In particular, starting from the harmonic
principal functions pQ and pλ for a nonplanar compact bordered W, we
construct reproducing and orthogonal kernels for Γae. For an open
Riemann surface W, the corresponding kernels are constructed, using
a canonical exhaustion of W by regular regions, with compact bordered
closures. To obtain the kernel for Γa, it is then only necessary to get
kernels for Γasy the space of analytic Schottky differentials, which is
the orthogonal complement of Γae. We construct the kernels in the
compact bordered case by considering the double W of W and use the
theory of differentials on closed surfaces. By a limiting process (ca-
nonical exhaustion) we extend our results to an open Riemann surface W.
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Chapter I. PRELIMINARIES

1. Principal Functions*

1A We summarize here the theory of principal functions on open
Riemann surfaces. For a more complete discussion we refer to [1], Let
TFbe an open Riemann surface. At a finite number of points ξά e Wthere
are given singularities of the form:

s{j) =Re± ¥J](z - ζd)~* + c{j) log I s - ξά \
n=i

where the cU) are real and subject to the condition 2L cU) — 0 Then
there exist functions harmonic on W except for the singularity sU) at
ξj. The "principal" functions are defined in the following way: if {Ωn}
is a canonical exhaustion of W, then pQ is the limit of such functions
on Ωn which have vanishing normal derivatives on the boundary β{Ωn)
of Ωn and if & is a partition of the ideal boundary β of W, then (&*)Pι

is the limit of such functions on Ωnj which are constant on each part
of β{Ωn) associated with & and whose conjugate periods along each part
is zero. The functions p0 and (&*)Pl are unique save for an additive
constant.

IB Let p be a function harmonic on W except for a finite number
of singularities s{j). Near ξj9p — sU) has the following expansion:

p - 8u> = a™ + a[j)(z - ζj) + aij)(z - ξsy + . . .

We introduce the notation

C(p) = 2πRe{Σ [c{i)a{

0

3) ~ Σ nb^a^
I 3 n=i

and set Co, Cx for C(p0), C(Pι) respectively
Let Ω be a regular subregion of W with boundary β(Ω), containing

all ξj in its inside. We set

BΩ(p) = \ pdp*

and define DΩ(p — Σ i s i i ) ) as the Dirichlet integral of p — Σ s* o v e r Ω
3

Now let

B(p) = lim I pdp*
Ω-*W Jβ(Ω)
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and

Dip - Σ sU)) = lim DΩ(p - Σ sU)

We have the following

THEOREM. The function (pQ + p±)l2 minimizes the functional B(p)
in the class of all functions p with singularities Σ ; sU) whose conjugate
periods vanish over all dividing cycles associated with the partition
&. (Here px stands for ^(p^). Explicitly the formula:

B(P) = -ί(C0 - Cd + D(P -

which is valid for such functions shows that the minimum is (Co — CΊ)/4
and that the deviation from the minimum is measured by D(p — ((po + Pi)l2)).

Let now q = p0 — pλ. The harmonic function q satisfies the following
theorem:

THEOREM. For regular admissible functions the expression

D(u)

attains its minimum when u — q — pQ — plm Here p0 and px are the
principal functions corresponding to the singularity log | z — ζτ \ —
log I z — ξ31. Similarly,

(n - 1)! dzn
z=ζ

is minimized by the function q = p0 — px which corresponds to the singu-
larity Re(ll(z - ξ)n).

In both cases the minimum is —D(q) and the deviation from the
minimum is D(u — q).

lC We shall make use of the following result

THEOREM. Let Ω and Ωr be two regular subregions of a Riemann
surface W, such that Ωr Z) Ω; let

piΩ and piΩ, i = (0,1)

be the principal functions corresponding respectively to Ω and Ωf\ let

DΩ{piΩ, - piΩ) i = (0,1)

be the Dirichlet integral of piΩ, — piΩ extended over Ω, then
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\imDΩ(piΩ, - piΩ) = 0 ΐ = (0,1) .

ID. Previous results may be specialized to the case of planar Riemann
surfaces. By definition, every cycle on a planar surface W is dividing.
For this reason it is natural to consider the canonical partition & for
the boundary β. Accordingly, the admissible functions, in the planar
case, have all conjugate periods equal to zero. This means that P =
p + ip* is an analytic (single-valued) function. The functions p are
supposed to have a given singularity s and if p* is to be single valued,
we require that s has likewise a single-valued conjugate function s*.
We then shall not consider singularities with logarithmic terms. We
denote by Po and Pλ the analytic functions which correspond to the
principal functions p0 and plm They are determined up to additive complex
constants. If we denote by E the area of the complement of the range
of P and by a the coefficient in the expansion.

we have the following result:

THEOREM. The function (Po + Px)/2 maximizes E in the class of
all normalized univalent mappings. In this case E~ (π/2)[α(P0) — a(P1)].

IE. Consider now the analytic function Q = Po — P lβ The properties
of Q are summarized in the following theorem.

THEOREM. The function Q minimizes the expression D(U) —
4πRea( U) in the class of all analytic functions U — u + iu* on W.
Moreover, a(Q) is nonnegative and 2πa(Q) = D(Q) — E where E denotes
the complementary area associated with the mapping Po + P1#

2* Differentials on Riemann surfaces*

2A. We shall suppose the reader acquainted with the definitions
and orthogonal decompositions of the Hubert space Γ of square integrable
differentials on an open Riemann surface. (See, for instance, [1] Chapter
V). We merely recall some results about some subspaces of Γ and state
the theorems on singular differentials which we shall use below.

2B Schottky differentials.
Let TIT be a bordered Riemann surface, and W its double. The

whole class of differentials on W which have a harmonic extension to
W can be shown to be identical with the direct sum ΓhQ(W)-\-Γ*0(W).
Such differentials are called Schottky differentials.
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If now one considers, on an arbitrary open surface all differentials
which can be approximated in the sense of the norm by Schottky differ-
entials, i.e. by differentials in ΓM(Ω) + ΓtQ{Ω) (Ω being a regular subregion
of W), the corresponding subspace Γs can be shown to be identical with
the closure of Γh0 + Γ*o.

The consideration of Schottky differentials leads to the following
decomposition:

THEOREM. On any Riemann surface

where Γae is the space of exact analytic differentials, Γae the space of
exact antianalytic differentials.

2C, Analytic differentials.
If our attention is restricted to analytic differentials, writing Γas —

Γa Π Γ8 we obtain the following decomposition:

Γ — Γ 4- Γ
1 a — L ae ι L as

In the case of a compact bordered W, the following result holds: An
analytic Schottky differential on W can be written as the sum of an
analytic differential which is real along the boundary and one which is
purely imaginary along the boundary.

On an open surface W, an analytic Schottky differential φ is by
definition a limit of analytic Schottky differentials ωasΩ. It follows that:

Φ = l im (φ1Ω + iφ2Ω)

where φ10 and φ2Ω are real along β(Ω).
The following theorem states an important decomposition property

of analytic differentials:

THEOREM. Any analytic differential φa has a unique representation

in the form:

Φa = Φase + COhm + ίft)A*m

where φase is semi exact analytic and ωhm is a harmonic measure.

If we call a differential of the form ωhm + iωtm an analytic measure
and Γam the space of analytic measures we can write:

Γ — Γ A- Γ
•*- a •*• ase •*• am
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2Ό. Singular differentials.
Consider a point p0 on a Riemann surface W. We say that a differ-

ential 0O defines a singularity at p0 if it is defined in a punctured neighbor-
hood of p0. We speak of an analytic singularity if θ0 is an analytic
differential in a punctured neighborhood of p0.

A differential of the second kind is a differential whose singularities
are poles with vanishing residues. We can consider one pole at a time,
hence it is sufficient to study the case of a single pole

dz

(z - ςy
m ^ 0

where z is a local variable with range | z | < 1 and ζ the value of z at
pQ. The following theorem summarizes the study of such differentials.

THEOREM. With every singularity of the form (z — ζ)~m~2dzJ m ^ 0,
one can associate two differentials

Φm — hm(zf ζ)dz analytic except for the given singularity

ψm = km(z, ζ)dz analytic.

The differentials φm and ψm are connected by

(m + 1)!

and h0, k0 satisfy symmetry relations:

K{z, ξ) = ho(ζ, z) , ko(z, ξ) = kQ(ζ, z)

The differentials ψm have the reproducing property:

(m + 1)!

for all a = adz e Γa while the φm satisfy (a, φm) — 0, provided that the
inner product is interpreted as a Cauchy limit.

2E. Differentials and chains.
In the Laurent development

Σ K{z - ξ)~ndz

of a singular differential 0, bx is called the residue at ξ. It can be shown
that in order that there exists a closed differential θ with compact
support and given singularities, it is necessary that the sum of the
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residues be 0. The simplest case is represented by a singularity (II(z—ξΊ) —
1/(2 — ζ2))dz where ζx and ζ2 are points in the same parametric disc Δ
mapped on | z | < 1. Results of the study of such differentials are sum-
marized in the following theorem

THEOREM. TO each finite chain c one can assign two differentials

φ(c) = h(z, c)dz

analytic except for simple poles with residues equal to the coefficients
in dc and

= k(z, c)dz

analytic. One has:

h(z, c) = ^hQ(z, ζ)dξ

k(z, c) = \ ko(z, ξ)dξ
JG

r
and (a, ψ) = — (a, φ) = 2π \ a for analytic a.

Jc

2F Differentials and periods.
If c is a finite cycle, φ(c), ψ(c) are all regular. Results about this

case are stated below:

THEOREM. If c is a finite cycle φ(c) — —ψ(c) and the reproducing
differential σ(c) corresponding to the cycle c is σ(c) = (llπ)Imφ(c). The
periods of σ(c) are integers.

2G One can strengthen Theorems 2D and 2E by requiring the
associated differentials to be semi-exact. In that case we denote them
by φm, ψm, Φ(c), f{c).

It can be shown that φ and f have the same reproducing properties
as φ and ψ, but only with respect to semi-exact analytic differentials.
Since φm and ψm, φ(c) and ψ(c) are themselves semi exact, Theorems 2D,
2E remain valid with modified notations, except that the differentials a
must be assumed semi exact.

2£L Remark on integration by parts.
Let ωeΓ,dfeΓe. If dW denotes the boundary of a bordered surface

a useful formula for integration by parts is:

( (df)ω = ( fω - \ fdω .
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We plan to extend such a formula to differentials with singularities.
Let ω be a closed differential with an analytic singularity at z = ξ. Let
h be an admissible local homeomorphism representing a neighborhood of ξ
onto the disk | z | < 1. Let | z \ < r < 1 be a disk whose inverse image
under h will be called Δ. We denote by a the boundary of Δ. The
previous formula for integration by parts yields:

[ (df)ω = ί fω.
JW—Δ JdW—cύ

But now in Δ, if we consider I (df)ω as a Cauchy limit, the following
JΔ

relation holds:

t W)ω = ( fω

and by addition we get the formula

ί (df)ω=\ _fω.

Notice that on W,dW—a bounds the 2-chain W— Δ, which implies
that dW and a are homologous on W. The last integral depends only
on the homology class of dW, hence can be transferred to a.

Chapter II. GENERAL DEFINITIONS AND FUNDAMENTAL
PROPERTIES OF REPRODUCING AND ORTHOGONAL KERNELS

We shall define here some particular kernels and derive some of
their characteristic extremal properties.

l General Properties*

1A DEFINITION. Let Γ α be a subspace of Γa. A differential
ko(z9 ζ)dz defined globally will be called a reproducing kernel for ΓΛ if

1. ko(zfζ)dzeΓcύ .

2. for a(z)dz e Γa, the inner product (a(z)dz, ko(z, ξ)dz) = a(ζ).

More generally we shall consider m-kernels according to the following
definition:

DEFINITION. A globally defined differential kn(z, ζ)dz is an m-kernel
for Γa c Γa whenever:

1. km(z,ζ)eΓΛ

2. for a(z)dz e Γa, (a(z)dz, km(z, ζ)dz) - a{m){ζ) where a{m)(ζ) =

dma(z)

dzn
z=ζ
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IB. We introduce now some kernels with singularities. Given an
analytic singularity t{z, ζ)dz, one may consider differentials which are
elements of Γa except for the singularity t{z, ζ)dz.

DEFINITION. A differential ht(z, ξ)dz is an orthogonal kernel for
Γa, c Γa9 corresponding to the analytic singularity t(z, ζ)dz if the following
requirements are fulfilled.

1. ht(z, ξ) is an element of ΓΛ except for the singularity t(z, ζ)dz

2. for a(z)dz e Γ^ (a(z)dz, ht(z, ξ)dz) = 0.

In particular we shall call hm(z, ζ)dz, the orthogonal kernel corresponding
to the singularity dz\(z — ξ)m+2 for m ^ 0.

1C» Now we can easily prove uniqueness theorems.

THEOREM. When there exists a reproducing kernel for ΓΛJ it is
unique.

Proof. Let ko(z, ζ)dz and kΌ(z, ζ)dz be two different reproducing
kernels for Γa. Then

0 ^ \\kQ(z, ξ)dz - k'Q(z, ς)dz\\*

= (fco(z, ξ)dz - k[(z, ξ)dz, ko(z, ζ)dz)

- (klz, ζ)dz - k'0(z, ξ)dz, K(z, ζ)dz)

= fco(?, ξ)dz - m, ξ)dz - ko(ζ, ξ)dz + m, ζ)dz = 0 .

Therefore kQ(z, ζ)dz = k'0(z, ξ)dz.

ID, An analogous argument proves the next statement.

THEOREM. When there exists an m-kernel for Γ^ it is unique.

1E Correspondingly the following uniqueness theorem holds for
ht(z, ζ)dz.

THEOREM. When there exists for ΓΛ an orthogonal kernel ht(z, ζ)dz
with singularity t(z, ξ)dz, it is unique.

Proof. If htdz and h\dz are two different orthogonal kernels cor-
responding to the same singularity, htdz — h[dz is regular and orthogonal
to Γa. But htdz - h[dz e ΓΛ. Therefore htdz - h[dz = 0, which proves
uniqueness.
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2. Extremal Properties*

2A We shall prove some extremal properties which characterize
reproducing and orthogonal kernels.

THEOREM. Among all a(z)dz e ΓΛ, such that a{m)(ζ) = 1, (km(z, ξ)l
h{m](ξ, ξ))dz has minimal norm.

Proof. By Schwarz's inequality:

\(a(z)dz, kjz, ζ)dz)\2 ^ \\adz\\*\\kjz, ζ)dz\\2 .

But

(a(z)dz, km(z, ξ)dz) = a{m)(ζ) = 1

\\Kdz\\2 = (kjz, ζ)dz, kjz, ξ)dz) = k™(ζ, ζ) .

Therefore: \\a{z)dz\\2 ̂ llk{Z]{ζ,ζ) with equality only for a(z)dz =
Xkm(z, ξ)dz. Due to the normalization, λ = k{£\ζ9 ζ) and therefore
(km(z, ξ)lki

7^
)(ξJ ξ))dz has minimal norm among all a(z)dz e Γa such that

a{m)(ξ) = 1.

2B The following theorem introduces a functional which is ex-
tremalized by km(z, ξ)dz.

THEOREM. Among all differentials a(z)dz e ΓΛ, km(z, ξ) minimizes
the expression \\adz\\2 — 2Rea{m)(ξ). The minimum is —k{Z]{ζ,ζ) and
the deviation from the minimum is measured by \\adz — kmdz\\2.

Proof. Let a(z)dz be an element of Γa, km(z, ξ)dz be the m kernel
for Γa. Then:

\\a(z)dz - km(z, ζ)dz\\* = \\adz\\2 + \\kmdz\\2 - (a(z)dz, kjz, ξ)dz)

- (km(z, ξ)dz, a(z)dz) .

The last equation can be rewritten as:

||α(s)<Zs||2 - 2Re(a(z)dz, kjz, ξ)dz) = \\adz - kmdz\\2 - \\kmdz\\2 .

But Re(a{z)dz, kjz, ζ)dz) = Rea{m)(ζ). Therefore:

||α(s)cZz||2 - 2Rea{m)(ζ) = \\adz - kmdz\\2 - \\kmdz\\2

which establishes the extremal property. The minimum is
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-\\kmdz\\> = -(km(z, ζ)dz, K(z, ξ)dz) = -k™(ξ, f) .

2C An important extremal property can be proved for the kernel
hm(z, ξ)dz orthogonal to the class Γae, among the class of differentials
of functions analytic on W except for the singularity — l/(m + l)(z — £)w + 1,
m ^ 0. Let us call Γfi* such a class. Clearly hm(z, ζ)dz is the differ-
ential of such a function Hm(z, ζ). In other words hm(zfζ)dzeΓ{

a^
).

Let W be now a compact bordered Riemann Surface. Define a
surface W obtained by deleting from W the inverse image Δ of the
disk \z\ < r < 1, where |z | < 1 is the image of J . We shall suppose
that ξ lies in Δ.

If α denotes the boundary of Δ, and β the boundary of W we shall
write for / analytic on W:

B(f) = -i

Applying Green's formula to W we get

\\df\\* = 2{B{f)-A(f))

We are now ready to prove the following theorem.

THEOREM. The kernel hm(z, ζ)dz orthogonal to the class Γae mini-
mizes the functional B(a) among all differentials da = a\z)dz in Γ{™\

Proof. We first consider the compact bordered case. Let W be
the surface obtained by the method mentioned above from a compact
bordered W. Let hmdz = dHm be the orthogonal kernel for the class
Γae, corresponding to the singularity dz\{z — ζ)m+2 m ^ 0. For each
da = a\z)dz we have:

\\a'dz - hmdz\\2

w, - \\a'dz\\2

w, + \\hmdz\\2

w, - 2Re(afdz, Kmdz)w, .

But

|V = 2(B(a) - A(a))

\\Kdz\\*w, - 2(B(Hm) - A(HJ) .

Therefore:

\\a'dz — hmdz\\w,

= \\a'dz\\2

w, - \\Kdz\\2

w> - 2Re(ardz - hmdz, hmdz)w,

- 2[B(a) - A(a)] - 2[B(HJ - A(HJ] - 2Re{ardz - hmdz, hmdz)w\
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But as r —> 0, A(a) —• 0 and A(Hm) —> 0 as Cauchy limits. Moreover,
by orthogonality ((α/ — hm)dz, hmdz)^ = 0. Therefore:

= 2J5(α) - 2B(Hm) - 2Re(a'dz - ft,mdz, &mdz)^

- 2J5(α) -

by the orthogonal property of hmdz over Γae. Hence

B(a) = B(Hm) + — \\a'dz — hmdz\\ψ

which proves the theorem.
To extend the extremal property to open Riemann surfaces W, we

exhaust W by canonical regions Ω.
For Ωf D Ω, HmQ, is a competing function hence:

p / I T \ ~Q ( TI \ i •*• l l r J Z J " Λ Z T 112

£jΩ\ΓLmΩι) — JDΩ\±lmΩ) -\- \\(JL±lmΩf — Gb±lmQ\\Q

and clearly BΩ,(HmΩ) ^ BΩ{HmΩ). Therefore

BΩ'{HmΩ) ^ BΩ(HmΩ)

which shows that BΩ(HmΩ) is nondecreasing. If there exists a function
P on W, analytic except for the singularity — l/(m + 1)(2 — f)m + 1 and
such that l im^^ BΩ(P) < oo, then the functional BΩ(HmΩ) has a finite
limit when Ω—+W. Consequently (ll2)\\dHmΩ, — dHmΩ\\2 = DΩ(HmΩ,—
HmΩ), where DΩ is the Dirichlet integral extended over Ω, has limit zero
when Ω —> W. It follows in the customary way that there exists then
in Γ{™] an orthogonal kernel dHm = lim.o_^ dHmΩ.

In the case of a planar surface Po or P1 can play the part of such
a function P.

2D We shall now consider particular types of kernels corresponding
to the set of chains on a Riemann surface.

Let first ξΊ and ξ2 be two points on a Riemann surface, and c a
path joining ξx to ξ2. We say that k(z, c)dz is a reproducing kernel
attached to the path c for the class Γ α whenever:

1. k(z,c)dze Γa

r
2. for any a(z)dz e ΓΛ, (a(z)dz, k(z, c)dz) — \ adz .

JC

The uniqueness proof is analogous to the proof of Theorem 1C. We
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shall prove an extremal property for k{z, c)dz.

THEOREM. The kernel k(z, c)dz attached to the path c, which is
reproducing for the class Γa minimizes the functional

\\a(z)dz\\2 - 2Re\ adz

over the class Γa.

Proof. Let a(z)dz be an element of Γa. Then:

\\a{z)dz-k{z,c)dz\\2

= \\a(z)dz\\2 + \\k(z, c)dz\\2 - 2Re(a(z)dz, k(z, c)dz)

= \\a{z)dz\\2 + \\k(z, c)dz\\2 - 2Re\ adz .
Jc

Therefore \\a(z)dz\\2-2Re\ adz = \\a(z)dz - k(z, c)dz\\2 - \\k(z, c)\\2 which

f
proves the theorem. Notice t h a t \\k(z, c)\\2 — \ k(z, c)dz, which shows

Jc

that I k(z, c)dz is real.
Jc

2E Let us now suppose that ξx and ξ2 are located in the same
parametric disk. Consider the functions analytic on W cut along c,
except for the singularity s = log (z — ξ^Kz — ξ2). The singularity for
their differentials is dz[ll(z - ξΊ) - I/O - ζ2)].

Assume that among these there exists a differential dHc which has

the following property: for any adz e Γaei {adz, dHc) — \ adz.
Jc

The differential dHc has an important extremal property.

THEOREM. The differential dHc minimizes the functional

B(a) — Re \ a'dz — ds
Jc

among the class Γae(c) of differentials of functions a analytic on W
cut along c, except for the singularity

s =
b 2

Proof. Let us first consider a compact bordered Riemann surface
W. Let a be a path around c, bounding a region Δ. Let W = W—Δ.
For any da = a\z) e Γae(c) one can write:
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\a'{z)dz -

= \\a'(z)dz\\2

w, - \\dHe\\l, - 2Re(a'(z)dz - dH0, dHc)w,

Using the same method as in the proof of Theorem 2C this equality
can be transformed into

\\a'(z)dz - dHc\% = 2B(a) - 2B(HC) - 2Re(a'(z)dz - dHc,

= 2B(a) - 2B{Hΰ) - 2Re\ a'(z)dz - dHc

or

B(a) - Re\ a'dz - ds = B(He) - Re[ dHc - ds
JC Jc

+ i\\af(z)dz - dHc\\h

which completes the proof.
To extend the property to open Riemann surfaces, we may use the

method outlined in the proof of Theorem 2C. For canonical regions Ω,
the functional

BΩ(a) — Re\ a'dz — ds
JC

is easily seen to be nondecreasing when Ω increases. If there exists
on W cut along c a function analytic except for the singularity s, then
the functional has a finite limit and HcΩ has a limit Hc when Ω tends
to W. By linearity one can extend the property to any finite chain.

Chapter III. PLANAR RIEMANN SURFACES

We shall now restrict our attention to planar Riemann surfaces W.
We shall establish the connection between the principal functions for
W and the reproducing and orthogonal kernels, with our main interest
devoted to the class Γae.

1. Reproducing and Orthogonal Kernels For Γae.

lA In the case Γa = Γaey we shall prove the following theorem:

THEOREM. Let W be a planar Riemann surface. If Po and Px

denote the analytic principal functions on W corresponding to the
singularity 1/(2 — ξ) and if {kQ{z, ζ)/2π)dz and (hQ(z, ξ)l2π)dz are re-
spectively the reproducing and orthogonal (singularity (l/2π)(z — ζf)
kernels for Γae on W, then

4-^^dz = -ko(z, ζ)dz
dz 2
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dz 2
- -ho(z, ζ)dz .

IB. First Proof. (By extremal property) Let a(z)dz be an element
of Γae. Theorem 2B shows that

\\a(z)dz\\2 - 2Rea(ξ) = \\φ)dz -
II 2π 2π

or

\\iπa(z)dz\\2 - 8πRe(4:πa(ζ))

= \\4πa(z)dz - 2ko(z, ζ)dz\\2 - \\2Ϊco(z, ζ)dz\\2 .

If we put 4πa(z)dz = b(z)dzy we get:

11 b(z)dz |i2 - 8πReb(ζ) = ||6(2)d« - 2feo(̂ , ζ)dz\\2 - \\2kQ{z, ζ)dz\\2 .

But the analytic function PQ — P1 = Q corresponding to the singularity
1/(2 — ξ) minimize the expression

D(U) - 4,πRe^~ - D(U- Q) - D(Q)
dz z=c

among all analytic functions on W. In terms of the differential dU,
the expression becomes:

= λ\\dU-dQ\\2-h\dQ\\2

or

dz

\\dU\\2 -8πRe—
dz z=ζ

= \\dU-dQ\\2-\\dQ\\*

which shows that {dQjdz)dz minimizes the same functional as 2ko(z, ζ)dz
over Γae. Therefore

A ( P P^dz = -kΰ(z,ζ)dz.
dz 2

An analogous proof will show,

dz 2
dz - -ho(z, ζ)dz .

X Second Proof. (By canonical exhaustion)
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Let W be a planar compact bordered Riemann surface, with border
β. We shall first prove a lemma on the boundary behavior of the differ-
entials of Po — P1 and Po + Pλ.

LEMMA. Along β

dz dz

Proof.

i

2 dz dx dy
l_dί\_= dp, _ i dp,
2 dz dx dy

For a special choice of the local variable dz = dx along β and then by
definition

Therefore the equality in the lemma corresponds to

x dx

We may notice that the proof actually shows that for any compact
bordered W

3£o - i°2Λdz = f M + i5A)& along /3.
9a; 9« / V dz dz I

We shall now show directly that

dz

2πdz 2
is the reproducing kernel for Γae on W. Let da = af(z)dz be an element
of Γαβ, then

OOcfc, ^ ) g(z)
d^ 2 / i JW dz 2

But we know that

\_ωdf= I ω/ -
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If ω is closed, then

I ωdf = \ ωf .
JW Jβ

Therefore:

a'{z)dz,4-{Pl~ Po)dz) = —1[ a(z)d-(Pl ~
dz 2 / i Jβ w d z 2

cte 2

by the property proved in the lemma. Let a be the boundary of a
circle of radius r about z — ζ,τ being small enough for a to lie in the
same parametric disk as z — ξ; then:

i Jβ dz 2 i U dz 2

In a neighborhood of z = ξ, (P1 + P0)/2 may be expressed as:

4 T +

where ί(«, f) is analytic in z. Therefore

i )<* dz 2 i )i )»(z - ζf i )« dz

The second integral tends to zero as r tends to zero, for the integrand
is analytic at ξ. The first one has the value —2πa'(ξ). We conclude
that

(a'(z)dz, - f^ ( f l

2π dz
dz 2

which proves the reproducing property.
The same method can be used to prove that ( — ll2π)(dldz)((P1 + Po)[

2)dz is the orthogonal kernel for Γaβ, corresponding to the singularity
dz\2π(z — ζ)2. For a'(z)dz e Γaey we compute the following inner product:

dz
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_ - i t αWl<A
% Jβ dz

2

The last integral tends to zero when r tends to zero for the integrand
is analytic at z — ζ. Therefore

dz 2

1D To extend the property to open Rieman surfaces W, we shall
consider a canonical exhaustion of W by regular regions Ω

Let da = a'(z)dz be an exact analytic differential on W; we denote
by

PiΩ i = (0,1) the analytic principal functions for the region Ω and by
p. i = (0,1) the analytic principal functions corresponding to the

surface W. For each Ω c W, we proved that:

(a'(z)dz, - Λ-±
V 2π dz

= a\ζ)

We now consider:

a'iz)dz' - i l ( A

= (a'(z)dz, -±
2π dz 2

- a'iζ)

- (a'(z)dz, - l-±
V 2π dz

dz )

2π dz

a'(z)dz, -
2π dz 2 /W-Ω

Therefore:

a'{z)dz, - -j--f(Pl

2π dzdz 2

a'(z)dz, -W 2π dz

(a'(z)dz, - -L—(Pl ~
V 2TΓ d 2 2

By Schwarz's inequality:
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2π dz 2

^ \\a'(z)dz\\w-Q

w-o

dz Uw-Q

both norms in the right hand side tend to zero when Ω —* W because
a'(z)dz has finite norm and

2π dz
idz

W-Ω

and Pi — p0 has finite Dirichlet integral.
As to the first expression in the right hand side of the inequality:

a'{z)dz, - i - i [ ( f l ~ PIΩ) ~
2π dz 2

^\\a'(z)dz\\0\\—ί-[(fl ~ PIΩ) ~
II 2π dz 2

\a'{z)dz\\Ω has a finite limit when Ω —> W and

II 1 <

Moreover by the triangle inequality

^ Dψ(4-{Vl - p10)) + DyH^-(p0 - p0Ω)) .

But Theorem IF, Ch. I shows that

lim DΩ(Pi - piΩ) = 0

We conclude that

i = 0,1

2π dz 2

The same pattern of proof applies to show that

(a'(z)dz, - J ^ ( A
2ττ ώ^ 2

which proves that (—ll2π)(dldz)((P1 + P0)l2)dz is the kernel orthogonal
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to Γae corresponding to the singularity l/2π(z — ζf.
By the uniqueness property we have proved that:

dz

IE* We now investigate the relationship between the principal
functions corresponding to the singularity (1/(2 — ζ)m+1) m > 0 and the
kernels kjz, ζ)dz and hjz, ζ)dz (singularity (l/(z - ζ)m+2) m > 0). In the
statement of the next theorem we call POw and P l m the analytic principal
functions corresponding to the singularity ll(z—ξ)m+1.

THEOREM.

_id(Plm-pOm)dz = _ ^ ξ)dz

m + 1 dz 2

— 1 — d ( P l m + Pom)dz = ^km(z, ξ)dz.
2m + 1 dz 2

Proof. We shall prove that both sides in the first equation mini-
mize the same functional over the class Γae. We know by Theorem
2B, Ch. II that

{^^K{z, ξ)dz

minimizes

\\a(z)dz\\2 - 2Rea{m)(ζ) over Γae ,

and by Theorem IE, Ch. I that

Π — P — P

him — r 0m Mm

minimizes

Arr dmArlTJml dzm+1

The last expression can be written as:
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Therefore (mll2π)(dQJdz)dz minimizes the same expression as ((m + 1)!/
2π)km(z, ζ)dz over Γae. Then

__ld(Plm-PQm)dz = _ g ( ξ)dz ^

m + 1 dz 2

To prove the second equality, one can show by the method outlined in
the second proof of Theorem 1A that

m + 1 dz 2

is the orthogonal kernel for Γae corresponding to the singularity
dz\(z — ξ)m+2, m > 0; then by the uniqueness theorem it follows that:

m + 1 dz 2

IF. We now may use our knowledge about ϊcm(z, ζ)dz and hm(z, ζ)dz
to obtain new results about the functions PQm and Plm.

THEOREM. Between the derivatives of Pim and Piy i — 0,1, the fol-
lowing relations hold.

|(p,. + p j = ±££JP, + P.)

7—^ l m •Γθm) , 7— 7 t , m l Γ i -^0/

α2 m! azaζ

moreover:

— ( P x + Po) is symmetric in z and ζ
dz

— (P2 — Po) is conjugate symmetric in z and ζ.
dz

Proof. From the relations

it follows that

d_τρ—_ p x _ 1 d dm jψ-
ldz lm Om) " (m + 1)! dϊdC x
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or

A 1 J /Jm

W / D p \ JL U/ UJ / p p\

2 m! dzdζm

Similarly

τ

m!
and one gets the first set of relations in the theorem. To get the second
set, we recall that:

rLQ\Z) b/ — '60Vb 9 6)

It follows that

and

— (Px + Po) is symmetric in z and ξ
dz

— (P1 — Po) is conjugate symmetric in z and ζ .
dz

IG To complete our study, we shall consider the case of the singu-
larity (1/(2 — ξΊ) — 1/(2 — ξ2))dz, where ζ± and f2 lie in the same parametric
disk.

Let Pc 0 and P c l be the principal functions corresponding to the singu-
larity log (z — fi)/(2 — ζ2). Pco and P c l are analytic on W cut along a
path c joining ζ1 to f2. We shall prove the following results:

1H THEOREM. The derivatives of Pc0, P c l and the kernels ΐc(z,c)dz,
h(z, c)dz are connected by the relations:

= ϊc(z, c)dz(
dz\ 2

dΓPcl +

Proof. (k(z, c)/2π)dz is known to minimize the functional

\\af(z)dz\\2 + 2Re(a(ζ2) - aiζ,))

among all da = ar(z)dz in Γae.
But Pc 0 — Pcl — Qc minimizes

D(U) + 47ΓJBβ(ϋ'(ξ'1) - Z7(ξ"2)) over the class of analytic
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functions U on W.
The last expression can be written as:

λ-lWdUW'- 8πBe(U(ζt) - U(ζJ\ .

By comparison of the two functionals it follows that

^ / ΓQ\ c0)dz = k(z c)dz
dz\ 2 /

To get the second relation mentioned in the theorem, one can either
follow the method outlined in Theorem 1C, Ch III, second proof, where
a is now a path around the cut c in some parametric disk containing
ξΊ and ζ3, or notice that h(z, c)dz and (d/dz)((Pe + PCQ)l2)dz minimize the
functional:

B(a) — Re\ a'dz — ds
JO

over the class Γae(c) of differential of functions α, analytic on W cut
along c, expect for the singularity s = log ((z — ζJKz — ξ2)).

II . We prove next a theorem establishing a relation between the
derivatives of PCQ and Pcl, and the principal functions Po and Pl9

THEOREM. Let Pc0 and Pol be the principal functions on W cut
along c corresponding to the singularity log ((z — ξΊ)/(2 — ξ2)). If we
denote by P0(z, ζ), Pλ(z, ξ) the principal functions on W corresponding
to the singularity l/(z — ξ) with Po = p0 + ip*, Px — pλ + ipΐ then

dz

Proof. We recall the equalities:

k(z, c) = \ ko(z, ζ)dζ

h(z, c) = \ ho(z, ζ)dζ ,

and the symmetry relations:

K(t, ξ) = ko(ξ, z) ho(z, ζ) = hQ(ξ, z) .

Therefore:
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i - ( P Λ - Pc0) = ( j-iP^z, ζ) - P0(z, ζ)]dζ
dz Jdz

= Pfa, z) - Pfaz) - P0(ζ2, z) + P0(ξu z)

A(P C 1 + Pc0) = \ ^-[PAz, ζ) + P0(z, ξ)]dζ
dz ->edz

= Pfa, z) - Pλ(ζu z) + P0(f2, z) - P0(ξly z)

by addition and subtraction we obtain

*, Z) - Pl(ξlf Z) + ΐp*(f2, Z) - ip*(ξu Z)
dz
JD

dz

Ί. Reproducing and Orthogonal Kernels for Γa.

2A. We shall now again restrict ourselves to the compact bordered
case, and investigate the relationship between the principal functions
and Green's and Neumann functions [Schiffer [5], Bergman [2]).

Let W be a planar compact bordered Riemann surface with k contours
βi, i — 1 k. We recall the definition of the Green's function g{z, ξ)
for W.

DEFINITION. The Green's function g(z, ξ) for W is defined in the
following way:

(a) g(z, ζ) is harmonic on W except at z — ζ

(b) g(z, ζ) + log \z — ξ\ is harmonic at z = ξ

(c) g(z, ξ) = 0 on j 3 = | J f t .
i=l

The function g(z, ξ) possesses a harmonic conjugate g*(z, ξ) and one
may construct the function

*G(z, ζ) = g + ίg

G is harmonic in ξ, analytic in z; it has a logarithmic pole with coef-
ficient 1 at ξ and is determined up to an additive constant. It is not
single valued.



754 GEORGES G. WEILL

2B* We introduce the harmonic measure of a boundary component

DEFINITION. The harmonic measure of the boundary component βi
with respect to W is the harmonic function ω{{z) taking the following
boundary values:

ω{(z) = 0 on βj j Φ ί

ω{(z) = 1 on βi .

The period of G(z, ζ) along βt is easily seen to be 2πiωί(£).
We may associate to the harmonic measure an analytic function:

The period of w{(z) around β3- will be denoted by —2πίPH. It is easy
to show that:

1 P — P

2. The k x k matrix (Pi3) is positive semi-definite.

3. The (k — 1) x (k — 1) matrix (P<j )i.2.-.*-i is positive definite.

2C. Let us now introduce the function

F(z, ζ) = exp(-G(z, ζ))

F(z, ζ) is not in general single-valued. To get a single valued function
we shall add to G(z9 ξ) an appropriate linear combination of functions
Wi(z); to do so, we solve the system:

Σ PiMξ) - ^(ζ) (i = l k - l)
3 = 1

in the form

ud(ξ) = Σ ΠHωi{ζ) with (77„),..,_, = (P<y)Γϊ.*-i -

J f c - 1

The function w(«, f) = Σ %(?)w5-(i2;) is analytic in 2 and has period

-2πi Σ Pίίttyίf) = -ZTΓίωiί?) along & .

Therefore

log f(z, ζ) = -[G(z, ξ) + Σ uM)wfc)]

has period zero along &, i = 1 k — 1. Its period along βk is 2πί.
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Therefore

{ k—lk—1 }

\\J\Z, i^) i 2_j 2u 11 3i^i\^)(ΛJjV ')\Y

is single valued on W. It has a simple zero at z = ζ, and from the
known boundary behavior of g{z, ξ) and w3{z),

log \f(z, ζ)\ = Re{\ogf(z, ?)} = 1° ° n ^
(—%<(?) on ft, % < k .

It follows, by differentiation with respect to ξ (ζ = ξ + iή) that
Re{djdξ) log f{z, ξ) = Xi(f) on ft, where λ^f) is a constant and that
Ψ(z, ξ) = — (9/9|) Iog/(ί2, f) has a constant real part on each ft. Moreover,
it has at z = ξ" a simple pole with residue 1. Except for an additive
constant, it coincides then with the principal function Plm In the same
way φ(z, ξ) = —(lli)(dldη)logf(z,ξ) has a constant imaginary part on
each ft. At z = ξ it has a single pole with residue 1. Except for an
additive constant it coincides then with the principal function Po.

2D We now define the Neumann function N(z, ξ) by the following
properties:

(a) N(z, ξ) is harmonic f or z e W except at the point z = ξ
(b) N(z, ξ) + log \z — ξ I is harmonic at z = ξ
(c) (d/dn)N(z, ζ) = (2τr/L) for zeβ where L is the total length of β

N is defined up to an additive constant depending on ξ. To fix N com-
pletely we require that:

Ndz = 0 .

Between the derivatives of N and g the following relations hold:

-t k—l k—l

4 ^ 3=1

(d) ί
J/3

% ξ) __ _yg(g, ξ ) _ i
A - l fc-1

030f β«9f 4 S yS "

We now fix our attention on the function

m(z, ξ) = —log \f(z, ξ)\ = — ί log/(«, f) —

which is harmonic in z and constant on each ft. It has a logarithmic
pole with coefficient — 1 .

It is a consequence of the definition that

z9 ξ) - g(z, ζ) + Σ Σ

Therefore:
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d2N _

dzdζ

d2N _

dzdζ

G. WEILL

_ d2m

dzdζ

_ d2m

dzdζ

2E We shall consider reproducing and orthogonal kernels for the
space Γa on W. In terms of the inner product we used for Γa, the
expressions for the Bergman Kernel corresponding to Γa are

From the properties of the Green's function it can easily be derived
that for a(z)dzeΓa

(a(z)dz, K(z, l)dz) = a(ξ)

(a(z)dz, L(z, ζ)dz) = 0

K{z, ζ)dz is then the reproducing kernel for Γa, L(z, ζ)dz is then the
orthogonal kernel for Γa corresponding to the singularity dz/2π(z — ζf.
It is known that

Hz, ζ) = L{ζ, z) , K(z, ζ) = K(ξ, z)

and for z e β, ζ e W

L(z,ζ)dz = -K(z,ζ)dz .

2E For Γae one defines in a similar way

K(z Ddz- 1K0{z, Qdz - -

Hz t)dz- lL0{z, ζ)dz - -

which, from the properties of the Neumann functions can be shown to
be the corresponding reproducing and orthogonal kernels.

We recall that we had, up to additive constants,

^ , ξ)

Therefore
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If we now take the derivatives with respect to z:

+ p°)dz = -JL ioSf(Z> ζ)dz = Z
dzdζ s)dz ioSf(Z> ζ)dz

2 / dzdζ s dzdζ

, ζ)dz =
dz\ 2 / dzdζ

z = πK0(z, l)dz .

But

and

K(z, l)dz = - — - d
π dzdζ

X b 7Γ0Z0?

Consequently:

9 ^ + P 0 \ d 2 JrL(z> ζ)dz + 1 ' g g Π ..w>.(z)w>.
dz\ 2 / 4 ίπ ί=Γ

= ~πK{-z' ~Odz + -f Σ Σ ΠiiW'M)^

2G. We now shall study in a more detailed way the orthogonal
complement of Γae. We recall that

•*- a •*• ase *^ ί am

In our planar case, Γase = Γae, and Γa has then the decomposition

•*• a •*• ae ι" •* a m

2H The following lemma is useful for the study of reproducing
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kernels.

LEMMA. If Γa = Γλ + Γ2 + 4- Γn, if there exists a reproducing
kernel kdz for Γa, and if kdz has the decomposition

n

kdz = 2, kidz where kidz e Γi
i=l

then k^z is the reproducing kernel for Γi9

Proof. Let a^zeΓi. By the reproducing property of kdz on Γa,
(aβz, kdz) = a^ξ). But

( n \ n

a{dz, X kjdz) = X (a>idz, kόdz)
j=l / 3=1

= (a{dz, kidz)

because

(aidz9 kjdz) = 0 for i φ j .

This proves

{aidz, kidz) =
21. We shall prove a somewhat related proposition for the orthogo-

nal kernel.

LEMMA. Let Γa = Γx + Γ% + + Γn.

Let sdz be a singular differential which is in Γk,l ^ k ^ n except
for some analytic singularity θ.

Let us suppose there exists an orthogonal kernel hdz for Γa cor-
responding to the singularity θ.

If hdz - sdz = Σ?=i ϊidz.
Then sdz + §kdz is the orthogonal kernel for Γk.

Proof. Let akdzeΓk. hdz is orthogonal to Γa hence:

{akdz, hdz) = 0 = (akdz, sdz + 2 \dz — (akdz, sdz + §kdz) .

But sdz + \dz e Γk except for the singularity, therefore

sdz + \dz

is the orthogonal kernel for Γk corresponding to the singularity θ.
Conversely, let us suppose we know the orthogonal kernel sdz +

f)kdz for Γk, we can extend it to an orthogonal kernel for Γa. Let
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consequently Γa = Γk + Γu and let us suppose there exists a finite
basis for Γu By the process of orthonormalization one can get an or-
thonormal basis

eλdz, e2dz, , emdz for Γι .

Any element of Γa has the following expression:

m

adz — akdz + Σ ftfiidz .

Let us suppose that the corresponding orthogonal kernel for Γa is

hdz = sdz + i)kdz + Σ v{e{dz .
ΐ = l

Then
/ m m

(adz, focίz) = 0 = (afcc?£ + Σ fceidz, sdz + t ) ^ + 2
\ i=l i=l

/ m

= (akdz, sdz + ΐ)kdz) + akdz, Σ vfiid

Σ ^ β ^ , sdz + ί>ft(Zs + Σ ^

i=l / \ΐ = l

= Σ i"< (M^, sd2; + $kdz) + e ^ , Σ vfrdz
%=ι L \ i=i /J
m

= Σ ^ [ ( e ^ , sdz) + v&idz, βidz)] .
i = l

This has to be true for all μi9 hence:

v% = —(fiidz, sdz) .

2J We now shall apply the two preceeding lemmas to the con-
struction of the reproducing kernels for the orthogonal complement of
Γae in Γai namely Γam, and of the orthogonal kernel for Γa corresponding
to the singularity dz\(z — ξf. The method has an obvious extension to
the construction of m kernels and of orthogonal kernels corresponding
to dz\(z - ζ)m+\ m > 0.

» First let us construct the reproducing kernel ίco(z, ζ)dz for Γam.
The analytic measures for the k — 1 boundary contours & form a basis
for Γam. Let w[(z)dz be the corresponding differentials. We wish to
construct a linear combination

which possesses the reproducing property on the elements of the basis:
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(w){z)dz, Σαi(?M«)^) = w}(?) (j = 1 k)

or

We have to compute

of, dωi + idωf) = 2(dωj9

« = 2(

^ d s 2(
dn hj dn

Therefore:

4π^<

and

which shows that the reproducing kernel kQ(z, ξ)dz for Γam is:

^ 1 fc-1 fc-1

0\Z, ζ)dZ — 2-ι 2-Λ ίL iάwΛί )Wi\Z)CLZ .
4π i=i i=i

2L To find now the orthogonal kernel h(z, ξ)dz corresponding to
the singularity dz\(z — ξ)2 we look for an expression

(Z — ζf i = l

By definition, for wr

ά{z)dz e Γ α w

w'Az)dz, h Σ δίίf)^*^)^) = 0
(2 — ζf *=i /

or

Now

w's(z)dz,
(z - ςyJ % )w(z -
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Let a be the boundary of a circle of radius r around z = ξ. Then

(w'dz, dz ) = l imit ?'j(z)dA

= J ^ Γ wr

ό{z)dz _ l i m Γ w'i(z)dz

ί )β(Z — ζ ) r-0 J « ( s - ζ ) "

The last integral has limit zero, because on a, z — ζ = r2l(z — ξ). On β
however, w){z) is imaginary. It follows then that on β

wf

3(z)dz = —wfj(z)dz .

Therefore

ts~ dz

The integral can be transferred to a hence

We find then that:

or

The orthogonal kernel has then the following expression:

R0(z, ζ)dz = —**— - 1 Σ Σ Πt&ffiw'izydz.
(Z — ξ f 2 i=ι 3=1

The results obtained in this section may be extended to open Riemann
surfaces, following the method which will be outlined in the next chapter.

Chapter IV. RIEMANN SURFACES OF NON-ZERO GENUS

l Kernels For Γae. We shall extend in this paragraph our results
about reproducing and orthogonal kernels to non-planar open Riemann
surfaces. We shall first construct the reproducing kernel for Γae.

1A» We recall the orthogonal decomposition:

Γ — Γ 4- Γ
L a •*• ae I L as
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On an arbitrary surface W, the principal functions p0 and pλ have
vanishing flux. Therefore the differentials dpJdz and dpJdz are analytic
semi-exact. It follows that {d\dz){{px — po)l2)dz e Γase. Therefore
— (llπ)(θldz)((p1 — po)j2)dz has a unique decomposition:

-—^-(Pl~Po)dz = ωe + ωs, where ωe e Γae, ω8 e Γas .
π dz 2

Let us first consider a compact bordered surface W. The differential
ωs has the same periods as — (l/τr)(0/fe)((p1 — po)l2)dz. The analytic
Schottky differential o)s may be written as:

where φτ and φ2 are analytic Schottky differentials which are real on the
boundary β of W. We shall prove the following result:

THEOREM. Let pλ and p0 be the principal functions on W corre-
sponding to the singularity l/(z — ξ). Then

ωp = — vffi ~ Po) d z __ ω

πdz 2

is the reproducing kernel for Γae(W).

Proof. Let a'(z)dz e Γae. We compute the inner product (a'(z)dz, ωe):

(a'(z)dz, ωe) — i \ _a'(z)dzωe

Jw

π dz 2

πdz 2

The integral may be transferred to the boundary a of a circle of radius
r around z = ζ. We get:

(a'(z)dz,ω.) = i\ αΓ-ί— ( P l + Vo) dz - (φx - iφΛ .
ja, Liz dz 2 J

But in a neighborhood of z = ξ,

d z + b(z)dzWdz
dz 2 2(2 - ?)

where 6(z)cίz is analytic. Therefore

(a'(z)dz, ω.) = -i \ o ^ g ) d ^ , + i \ a(z)M-dz - i \ φ^φ, - ίψ2) .
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When r tends to zero the last two integrals tend to zero. The first
has value a'(ζ). Therefore

(a'(z)dz, ω.) = a'(ξ) ,

which completes the proof of the theorem.

1B We describe now a procedure to construct ωe. We suppose
that —(llπ)(dldz)((p1 — pQ)l2)dz is known; in particular its periods can
be computed. The differential ωs is an analytic Schottky differential
on W. It can be extended to the double W of W. The double W is
a closed surface, on which one can construct a unique analytic Schottky
differential o)'s with the same periods as — (ll^)(dlθz)((p1 — pQ)l2)dz. The
expression —{Vπ){®l®z)((Vi — Po)IZ)dz — ω[ has no period at all. It is
analytic exact, and by the uniqueness of the decomposition ω[ = ωs.
Knowing ωs, we get ωe = — (ljπ)((p1 — pQ)l2)dz ~ ωsy the reproducing
kernel for Γaβ(W).

1CX An analogous procedure can be applied to obtain orthogonal
kernels with singularity dz\(z — ξ)m+2

y m ^ 0. We shall show, for instance,
how to get the kernel corresponding to dz\{z — ζf.

Accordingly, let us suppose there exists a differential sdz analytic
exact except for the singularity dz\{z — ξf on W. We shall use the
following decomposition for —2(dldz)(p1 + po)l2dz:

- 2 — (Pl + Po)dz - sdz = ωu + ωl8 with ωle e Γae(W)
dz 2

ωlseΓas(W).

Let oldz e Γae( W), ωls = ψ1 + iψ2 where ψλ and ψ2 are analytic Schottky
differentials on W, which are real on /5. We show that — 2(d/dz)((p1 +
po)l2)dz — ωls is the orthogonal kernel for W corresponding to the singu-
larity dzliz - ζ)\ Thus:

'a'dz, - 2 ^ + V«Uz - ω,
dz 2

= lim i\

= i \ a
Jβ 2

+ P*)- lim ( -αΓl-fa + P*).dz + (t i + iψ
r^o u Ldz 2

Clearly, the last integral tends to zero when r —> 0. The first integral
may be written as an inner product and we get:
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dz

= [a'dz, 2 — ^ ^-dz — {ψ1 — iψ2)) = 0 .
V dz 2 /

To actually construct the kernel, it suffices to compute the periods of
—2{djdz){p1 + po)/2 and obtain, as in the case of the reproducing kernel,
"the analytic Schottky differential which exhibits the same periods on W.

ID. We wish now to extend the preceding results to the case of
open Riemann surfaces. Let W be an arbitrary Riemann surface, {Ωn}
a canonical exhaustion of W. Each Ωn is of finite genus and has a
compact bordered closure.

Let Γae(Ωn) be the space of analytic differentials on Ωn; we call
kOΩn(z, ζ)dz the reproducing kernel for Γae(Ωn), hmΩn(z, ζ)dz the orthogonal
kernel for Γae(Ωn) corresponding to the singularity dz\(z — ζ)m+\ m ^ 0.
We prove the following proposition.

IE, THEOREM. If W is not of class έ?ADf there exists a repro-
ducing kernel ko(z,ζ)dz for Γae(W).

Proof. Let Ω c Ω' c W, when Ω and Ω' are elements of {Ωn}. Let
ζ G Ω. We recall that a reproducing kernel is nonnegative at z = ζ. Then:

or

\\kOΩ,dz —

Wkβ'dz -

n/QΩ\JUΛ/ | \Ω

k0Ωdz \\Q

= Ko(ζ, ξ) - k

fVQQrCbZ | ,

1 - 2kQΩA

>(ξ, ξ)

Therefore the sequence {kOΩn(ξ, ξ)} is a nonincreasing sequence of
nonnegative numbers. It has then a limit when n—>oo. If W$έ7AD,
this limit cannot be zero. In fact, if there exists on W an analytic
function f(z) of bounded norm, then f'{z)dz e Γae( W) and, by Theorem
2A, Ch. II, if f'(ζ) Φ 0.

z, ζ)dz 1 r.< f'{z)dz\

or

KQΩ\ίJ b )

when Ω —> T7, the right hand side remains bounded. Hence the left
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hand side has to remain bounded too and

lim kOΩ(ς, ζ) Φ 0 .
W-»oo

But

\\ίcOΩ,dz - k0Odz\\l,, g \\kQΩ,dz - k0Ωdz\\l ^ kOΩ(ζ, ξ) - kOΩ,(ζ, ζ) .

where Ω" is fixed and Ω"czΩaΩ'.
If Ω now tends to W, then

lim \\kQΩ,dz — k0Ωdz\\Ω,, = 0
Ω,Ω'-*W

and therefore k0Ωdz has a limit ϊcodz when β —•> W and that limit is at-
tained uniformly on every compact subset Ed W.

Moreover, for each Ω e {Ωn} the following decomposition holds:

dz - ωsΩ .
πdz\ 2 Jo

The preceding equation shows that when Ω tends to W, ωsΩ has a limit
such that

lim ωsΩ = lim (-k0Odz) + lim (-JL(1LZL2<L) dz
Ω-+W Ω-+W Ω^W \ TZdZ \ 2 / Ω

It remains to show that kodz has the reproducing property. For a(z)dz e
Γae(W) we form:

(a(z)dz, kodz — k0Ωdz)Ω = (a(z)dz, kodz)Ω — a(ζ) .

By Schwarz's inequality

\(a(z)dz, ίcodz)Ω - a(ζ)\2 ^ \\a(z)dz\\l\\kodz - k0Ωdz\\2

Ω

when Ω tends to W:

lim I (a(z)dz, kQdz)Ω — a(ξ) \ = 0 .
Ω-*W

Therefore

,̂ kodz) = a(ξ) .

lF An analogous proof can be used to show the existence of
orthogonal kernels hOmdz on W.

lG We prove now that if We &'AD, the reproducing kernel kQΩdz
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vanishes as Ω —• W. If not,

and the preceding proof can be carried over. But then kodz is the dif-
ferential of an analytic function of finite Dirichlet norm, which contra-
dicts the fact that We έ?AD.

2. Kernels for Γα.

2A. We shall use the following decomposition of Γa:

Γ = Γ 4- Γ

We have constructed a reproducing kernel for Γae. To get the repro-
ducing kernel for Γa, it remains to find the reproducing kernel for Γas.

2B Let Ωe{Ωn}. We consider the double Ω of Ω. On Ω there
exists a canonical homology basis {Ai9 J5J. One may define on Ω analytic
differentials ak with period 1 on Ak9 0 on Ah for h Φ ky and "symmetric"
on Ω in the sense that they are analytic Schottky differentials on Ω.

These ak = α̂ cί̂  form a basis for Γas{Ω). They are linearly inde-
pendent because their periods are linearly independent, and every
a(z)dz € Γas(Ω) can be expressed as a linear combination of the ak: if we
subtract from a(z)dz a linear combination of the ak such that the dif-
ference has no AΛ-periods, this difference can be extended by "symmetry"
to Ω, and we would have on Ω an analytic differential without A^-period.
Such a differential is necessarily zero.

2C* Let N be the total number oΐ ak. N is equal to #', the genus
of Ω. It depends on the genus g and on the number of contours c of
Ω: g* = 2g + c - 1.

We form now a linear combination

which has the reproducing property on Γas(Ω). It suffices to show that
the property is valid for the ak, (k = 1 N). We want

(ak(z)dz, Σ b^)ai(z)dz) = ak(ξ)

or

N _

= ak(ζ) .
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Because the a{dz are a basis, the matrix (tkl) such that

(akdz, a%dz)Q = tkl

is non-singular.
We now may solve the system for the b{

N

Σ i = ak(ξ)

b%(ξ) = Σi Tikak(ζ) where (Tik) =

and we get the reproducing kernel:

N N

y y

2D By the method of the preceding section it is now easy to show
that k\dz — X\τciQ^w k\Ω(z, ξ)dz exists and possesses the reproducing pro-
perty. We have constructed the kernel

ko(z, ζ)dz = ko(z, ξ)dz + kftz, ζ)dz

which has the reproducing property on Γa(W).
By an obvious modification of the preceding argument one may

construct m kernels kmdz, and orthogonal kernels hmdz (m ^ 0) for Γa(W).
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