THREE SPECTRAL THEOREMS FOR A PAIR OF
SINGULAR FIRST-ORDER DIFFERENTIAL EQUATIONS

BERNARD W. Roos AND WARD C. SANGREN*

1. Preliminaries. In the regular case the classical method of
obtaining eigenvalues and eigenfunctions of the equation

® y'@+ - q@ly =0 [=-L]
x
under Sturmian boundary conditions involves the use of asymptotic
expansions. For the singular cases of (1) when the range of x is infinite
or semi-infinite instead of finite, Titchmarsh [6] has shown that such
asymptotic solutions are also necessary in obtaining spectral and expansion
theorems by the method of complex variables. The objective of this
paper is to generalize for a particular case these types of results to the
following pair of equations
u'(z) — [Ma(@) + b(x)]v(x) =0,
V(%) + [Ne(x) + d(@)]u(z) =0 .
Interest in this system arises from a consideration of the Dirac relativistic
wave equations for a particle in a central field. The equations (2)
correspond in this case to the radial wave equations. Conte and Sangren
[2] and the authors [3] have shown that most of the results of Titchmarsh
can be generalized for (2) over the interval (0 < x < o), under the
restriction a(x) = ¢(x) = 1. Also, the spectral properties of (2) for a(x) =
c(x) = 1 over the infinite interval (— oo, ) have been investigated [4].
In this paper a discussion of the system (2) for a(x) = 2%, ¢(x) = ¢~ *
over the interval (0, ) is presented. It is assumed throughout, that
k is a nonzero integer.

Let ¢(x, N) = [g.(x, N), (2, N)] and 0(x, N) = [0.(x, N), 0.(x, \)] be two
solutions of system (2) over the interval ¢ <« < b, where a > 0 and
b < o, such that ¢,(I, ») =1, 61, 7) = 0, 6,({, ) = 0, 6,(I, ) = 1, where
a =1 =b. It can be shown that the Wronskian W.,[¢, 0] = $.0, — $,0,
is independent of x so that since Wiy(¢, 6] =1, #(x, \) and 6(x, \) are
linearly independent. For the singular case it can be shown that for
complex values of A the system (2) has a solution (x, N) = [y, 4] =
O(x, N) + m(N)s(x, N). A limit circle case is determined separately at each
of the end points, 0 and oo, by the conditions that all functions ¢|+ |
+ al+y,|* are integrable, that is, belong to the class L(0,1) or L(I, o).
In the limit point case, at either end, there exist only one m(\) and
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w(x, \) where ¢|v|* + a|+r,|* is integrable. The existence at each end
of at least one such integrable function is guaranteed by the direct
extension of Wey!’s limit-point, limit-circle theorem [6, 1, 5]. Furthermore,
the m(\) at either end is such that m(}) = m(X) and m(\) is analytic
in either the upper or lower half plane. The spectral properties can be
obtained from these functions, m,\) and m.(\).

2. The nature of the spectrum; interval (1, ). To obtain the
spectral properties of the system (2) over the interval (1, «) the order
properties as £ — oo of the solution vectors ¢ and 6 have to be investigated.
This is most easily done by using the corresponding integral equations
which may be obtained by the method of variation of coefficients. It
is easily verified that if ¢,(1) =1, 4,1) =0, 6,(1) = 0 and 6,(1) = 1 the
appropriate integral equations are given by

@ 5.8,2) = GO) + [ b4 LHG () — GH, )]
+ d¢1[H1G1(Xw) - GlHl()\’x)]} ds
= G.0) + L(@, 4, #)
® 82, 0) = G0) + | BalHG00) — CHOw)]

+ d¢,[H\G:(\») —G.H(\x)]} ds ,
= Gz()“x) + K(x, b1, $2)
0.z, \) = H(\x) + L(z, 6., 0,)
0,(x, N) = H(\x) + K(z, 6, 6,)

where
G:00) =+ [Ty (T02) + To(T02)]
GL) = +E 2 [Totya W 00) = Ty O]
H(w) =+ [1,007,0) — J,0)J_,00)]
H() = + 5 [T 00T p008) + L0 -]
4= T sN) + T, = 2T
and
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Let A = 0 + it where t > 0, and let
bz, ) = 7% ¢(x, ) and hy(x, \) = x*e "Gy (w, \) .

The well-known asymptotic formula J,(2) = (2/72)"* cos (z — 1/2 pr — 7[4)
+ 0{/e=**[[z|**} for 0 < argz < 7/2 and z > 1 is used in the following.
The substitution of 4, and h; in (4) and (5) and the taking of absolute
values yields

o, M) V@, W1 = M+ | 1Bl + gl ) ds

where

M = max (L1000 )+ T-00),- 0]

Tl T 3100 + i)V
9, = m_*a;x {[J:(A2)J - 1:(A8) + T, (A&)J,—1(N3)];
[Jp~1(7\'x)J—p+1(7\'s) - J—p+1(7\1x)Jp-1(>\s)]}

e —
Y e z—s8 b(s)s 2k+1/2}
{l 4|

9. = m_?'} {[J—p()"w)JpO\'s) - Jp(k'w)J—p(x‘s)];
[J-pi (M@)o (N8) + Tpoi(N) T, (A5)]}

{%; e_tu_s)d(s)szkﬂlz} .

According to the lemma in [3] this can be reduced to the inequality
e, )3 o, ©) = Mexp {[ (o, + 9 ds}

Consequently, it can be concluded that when b(x)x=* and d(x)x* are both
L(1, o), hy(xz, \) and hy(x,\) will both be bounded for all values of x.
Moreover, for large x

¢z, M) = 0fea"™}, gu(x, \) = Ofe "2~} .

Furthermore, when Im ) = 0, that is for real A\, and x — o the
order properties for ¢ and & may be written as follows:

$i(x, M) = a?{e(\)J, () + vV, (M) + o(1)}

$:(®, N) = @7+ (M) (M) — (NI p1,(A) + o(1)}
O, N) = 2*{ENT, (M) + 7(A)JT_,(M) + o(1)}

0w, \) = 27" H{EOS,(Me) — NI (M) + o(1)}

(6)

where
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7

(/i(x) = L7200 = [T-b@p0)87T,i008) + As).(0)5T_ (1) ds |
20 = 2[00 = [T-b6)600874T,(08) + A9 (51577, 0] ds |
80 = L[ +7,00 — [ T-000)s7 7,10 + A0, (00)] ds |
70 = 2| =700 = [ =0@00)5770,-.05) + d@0.(5)sT-,09)] ds ]

The integrals in (7) converge uniformly in )\ hence, ¢(\), v(\), EN), 7(N)
will be continuous and bounded functions of .

When M\ is complex and has an imaginary part greater than zero,
Im X\ >0, and when b(x)x~* and d(x)z™ are both L(1, =), one can obtain
$(z, N) = xte ™ [My(N) + o(1)]
¢, N) = 27~ [M,(\) + o(1)]
0y(2, ) = afe=** [N}(A) + o(1)]
0x(%, N) = &% [N,(\) + o(1)]

@®

where

M1(7\') =

(2757\,)2/26%7:/2 {7, J_pi(N) + iJ,_4(N) cos kr

+ g”b(s),bz(s)s-w [id_,i(A8) + J,(\s) cos k] ds
+ rd(s)gs,(s)s” [J.(\s) cos kr — J_,(As)] ds}

M) = @)A’# {+T0a0) = i, (V) cos

+ rb(s)qiz(s)s"’“ [Ty i(08) — i, _1(\s) cos k] ds
) — de(s)g&l.(s)s” [iJ,(As) cos kmr + J_,(As)] ds}
N = @’%‘L’l {—iJ_,,(x) + J,(\) cos b

+ S”b(s)@(s)s—w [y i(N8) + T, s(\s) cos k] ds
+ Swd(s)ﬁl(s)s” [7,(08) cos k. — iJ_,(\8)] ds}

—1/2,ik=n[2
NO) = (2717&)4 e {

J_,(\) + iJ,(\) cos kT
+ S:ob(s)ﬁz(s)s"z’“ [T, (M8) — i, _4(A8) cos k] ds

— g”d(s)al(s)sp [iJ,(\s) cos ke + J_,(As)] ds} .
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Let (xz, N) = 0(z, \) + m(N)é(xz, ) be that solution of (2) mentioned
in the Preliminaries where ¢|v|* + a|_,|* is (1, ). « is given by
(@, N) = 0y, N) + m(\)gi(@, \) = 2t [N(N) + m(W)M(N) + o(1)] ,
Po(®, ) = 042, N) + m\)gy(m, \) = &7 ™ [N,(\) + m(N) M) + o(1)] .

It is apparent that in order for c|y|* + a|+,|* to be in L(1, ) we
must have
_ NV NO)

M\ M\)

When Im x — 0, it follows from (7) and (9)that

(10) m(\) =

M,(\) — (2ro) 22 [iu(0) + (o) cos kx]
M,(\) — (2ro) et =2 [+ (o) — 1v(0) cos kx]

) N — (2x0) e [ig(0) + 7(0) cos k]
N,(\) — (2ro) et [+ &(0) — in(0) cos kx] .
Hence,
. _ _ &) + n(o) cos kr
hmzﬁ ) 14(0) + v(o) cos krm
12) — —coskn L1 —YE

vi(o) + (£(0)
From (6) one also obtains

Wx[¢1 ‘9] = ¢,0, — ¢.0, = A[”f - /’”7] =+ 0(1) .
Because W[g, 0] =1,

=1
vé — (m = R
The substitution of this result in (12) yields

lim I'm m(\) = ——2——275———— .
-0 v(0) + (£(0)
Hence, Im m(\) is a nonpositive, nonvanishing continuous and bounded
function of A for both positive and negative \.
This is easily seen for positive M since A, v* and (¢ are all positive
numbers. For negative \ not only is A negative, but so are v* and (2.
This can be verified by making use of the formula

Jo(i"2) = 2T ,(2) .

The spectrum is, therefore, continuous over the infinite interval
—o <A< oo. These results may be summarized in the following theorem,
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THEOREM 1. Consider the system (2) where a(x) = 2* and c(x) = x~*
over the semi-infinite interval [l, o] and under the boundary conditions

(13) w(l)cosa + v(l)sina = 0

Let b(x) and d(x) be real-valued continuous functions of x and let b(x) x~*
and d(x)x*™ belong to the class L(l, «). A solution of the system (2),
(13) 1is defined as a wvector function [w(x, ), v(x, N)] with continuous
first derivatives satisfying this system. The values of \ for which
such solutions exists form a continuous spectrum over the real \-axis
(—o0 <A< ).

In order to simplify the appearance of the equations in the preceeding

proof and in the following, it was assumed, without loss of generality,
that &« = 7/2 and | = 1.

3. Nature of the spectrum; interval (0, 1).
THEOREM 2. Consider the system (2) where a(x) = x*, ¢(x) =z~ over

the interval 0 < z <1 and subject to a linear homogeneous boundary
condition at * = 1. The spectrum 1is discrete provided:

b(x)x~** and d(x) are L(0,1) for p=k+12>1
b(x) and d(x) are L(0, 1) Jor 0<p<1
b(x) and d(x)x*® are L(0,1) Sfor p< 0.

The proof of this theorem follows closely that of Theorem 1. Except
for an obvious change of integration limits, the integral equations
corresponding to system (2) of Theorem 2, are given by equations (4)
and (5).

First, consider the case p > 0. For # — 0 one has the well-known
asymptotic relations:

J,0) — — Q0 5 gy DT (p)2”(\)~®
I'(p + 1)2° T

and for p — 1 > 0:

() (ST — 1) ()
T'(p)27— J_p (W) - .

Let hy(z, \) = ¢,(x, N), ho(z, \) = 2P Vg (x, ) and X\ =0 + it where
t > 0. One obtains:

Jos(N2) —

I, ) = 2 [ - es@,08) + T, 0T 00)

— [ 5203, M) @y s8) + T (@), (8]

+ dhus? [T,(8)T ()TN (N8} ds]
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x+(1’—1)

kz(x, \) =

[ T-04:00T,-i00) = T, T 03)

— [ a5 () [T, ps8) = Ty Ty @]
— dhs? [T,00 1s00) + T, (08,00} ds |

For  — 0 hy(x, \) and h,(x, \) are bounded for all x provided bx—*~" and
d are L(0, 1) (see lemma [3]). Hence, ¢,(z, A) = 0(1) and ¢,(x, ) =o(x~")
for x — 0.

It follows that one may write

é:(x, M) = [M,(\) + o(1)] ,
g%, N) =z [M(\) + o(1)] ,

where

My = LDV [ o) — (gt 00)s + dud,(va)s7] ds |

w4
and
M) = (=1 I'(p — 2P 271
wd
[ =70 + ([0 albpis — dg.T,008)57) ds]
Similarly,
0.(x, ) = [N/(\) + o(1),
0, N) = 2@ [N,(\) + o(1)] ,
where

NV = (‘1)”7; (j)z”’“”” [ +7:000 = [ @0572447,,008) + d0.27,000) ds|

and

_ (Z1(p — e

N p

[—Jp(x) + S:{bazs—wJ,,_l(xs) — d6,s7T,(\s)} ds] .

A similar argument as in §3, yields

_ N _ N

N = "0y T M)

Hence
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J,0) — gl{b@s—p“J,,_l()»s) + d6,s?T,(\s)} ds
m(\) = 20

T, — S:{bﬁzs"’“J,,_l(xs) + dg,s*T,(\s)} ds

For t —0, i.e., Im\— 0, M,(\) and N,(\) tend to real limits. This
is apparent for X~ > 0 and is easily shown for A < 0 by using again the
relation J,.(ze™") = ¢™" J(2). Hence, Im m(\) — 0 except possibly at
the zeros of M,(\). Consequently, the spectrum will be discrete.

For values of the parameter p such that 0 < p < 1 one has

L Owy _ (C)T @20
T0) = e s T0) 2 :
_ (_l)k—ll"(p . 1) (Xw)(l)~l)2p-—1 _ (Xx)—IH-I
J,(\2) n » o) = R

It is not difficult to verify, applying the same method as discussed above,

that in this case, when b(x) and d(x) are L(0,1) the limit circle case

prevails and the spectrum is diserete. %, an integer, is not in this interval.
For p < 0 the asymptotic expressions become

J,(z) — (-—1)k1"'(j7or)2p(xx)+p T 0a) — ()~

’

I'(p + 1)2°
___1 k—lF . 1 2;0-1 AL +(p—1) e —(p—-1)
Jpi(A) — (=1) (p 71') () y (M) — —(l_’(—;)—)é’? .

In a similar fashion, for the case where p > 1 one can obtain that
é(x, ) = o(x®®) and ¢y(x, N) = o(1). In this situation the additional
condition that b and d(x)x* are in L(0, 1) must be imposed. The conclusion
that the spectrum will be diserete follows accordingly.

4. Nature of the spectrum; interval (0, o).

In this case singularities exist at both ends of the interval and it
has been shown [4] that the spectral properties of the system (2) are
determined by the imaginary parts of the following functions:

1 M, My Moo

’ ’ b

My — Moo My — Moo My — Mo

where my(\) and m.(\) are the previously determined m’s at # = 0 and
. As was shown in the previous sections m,(\) is a meromorphic function
while m. has a nonvanishing imaginary part. It is clear that the
imaginary parts of the three functions above tend to finite limits which
can vanish at most at discrete points. The associated spectrum will
therefore be continuous over the whole real A-axis.

THEOREM 3, Consider the system (2) where a(x) = x* and c(x) = 2~
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over the interval 0 < 2 . The spectrum will be continuous over the
entire real n-axis (—oo <\ < ), provided b(x) and d(x) satisfy the
conditions given in Theorem 1 and Theorem 2.
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