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1Φ Preliminaries* In the regular case the classical method of
obtaining eigenvalues and eigenfunctions of the equation

(1) y"(x) + [\ - q(x)]y = 0 [' = -J- ]

under Sturmian boundary conditions involves the use of asymptotic
expansions. For the singular cases of (1) when the range of x is infinite
or semi-infinite instead of finite, Titchmarsh [6] has shown that such
asymptotic solutions are also necessary in obtaining spectral and expansion
theorems by the method of complex variables. The objective of this
paper is to generalize for a particular case these types of results to the
following pair of equations

u'(x) - [Xa(x) + b(x)]v(x) = 0 ,

v\x) + [Xc(x) + d(x)]u(x) = 0 .

Interest in this system arises from a consideration of the Dirac relativistic
wave equations for a particle in a central field. The equations (2)
correspond in this case to the radial wave equations. Conte and Sangren
[2] and the authors [3] have shown that most of the results of Titchmarsh
can be generalized for (2) over the interval (0 g= x < °°), under the
restriction a(x) — c(x) — 1. Also, the spectral properties of (2) for a(x) —
c(x) = 1 over the infinite interval (— oo, oo) have been investigated [4].
In this paper a discussion of the system (2) for a(x) = x2Jΰ, c(x) = x~2k

over the interval (0, oo) is presented. It is assumed throughout, that
k is a nonzero integer.

Let φ(x, λ) = [φλ{x, λ), φ2(x, λ)] and θ(x, λ) = [θ^x, λ), Θ2(x, λ)] be two
solutions of system (2) over the interval a ^ x S b, where a > 0 and
b < co, such that φβ, λ) = 1, φ2(l, λ) = 0, θtf, λ) = 0, Θ2(l, λ) = 1, where
a ^ I ^b. It can be shown that the Wronskian Wx[φ, θ] = φλθ2 — φ2θ1

is independent of x so that since Wτ{φ, θ] — 1, φ(x, λ) and θ(x, λ) are
linearly independent. For the singular case it can be shown that for
complex values of λ the system (2) has a solution ψ(x, λ) = [ψlf ψ2] =
θ(x, λ) + m(X)φ(x, λ). A limit circle case is determined separately at each
of the end points, 0 and oo, by the conditions that all functions c\ψ\2

+ a\ψ2\
2 are integrable, that is, belong to the class L(0,1) or L{1, oo).

In the limit point case, at either end, there exist only one ra(λ) and
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ψ(x,X) where clψ^2 + a\ψ2\
2 is integrable. The existence at each end

of at least one such integrable function is guaranteed by the direct
extension of WeyΓs limit-point, limit-circle theorem [6,1, 5]. Furthermore,
the m(λ) at either end is such that m(λ) = m(λ) and m(λ) is analytic
in either the upper or lower half plane. The spectral properties can be
obtained from these functions, mo(λ) and m^X).

2. The nature of the spectrum; interval (1, oo). To obtain the
spectral properties of the system (2) over the interval (1, oo) the order
properties as x —> oo of the solution vectors φ and Θ have to be investigated.
This is most easily done by using the corresponding integral equations
which may be obtained by the method of variation of coefficients. It
is easily verified that if ^(1) = 1, φ2(l) = 0, ^(1) = 0 and Θ2{1) = 1 the
appropriate integral equations are given by

(4) φx(x, X) = G^Xx) + V{

+ dφ1[H1G1(\x) - GΆiXx)]} ds

= Gλ(Xx) + L{x, φlf φ2)

(5) φ£x, X) = G2(Xx) + ^{bφ2[H2G2(Xx) - Q2H2(Xx)]

+ dφHHiG&x) -G^iXx)]} ds ,

= G2(Xx) + K(x, φl9 φ2)

θfa, X) = Hλ(Xx) + L(x, θ19 θ2)

Θ2{x, X) = H2{Xx) + K{x, θlf θ2)

where

Gx{xx) = +^ [J.ip^Δ

G2(Xx) = +*-^l [J.(p_1)(λ)Jp_1(λa?) -
Δ

Hλ(Xx) = +^
Δ

H2(Xx) = Kl
Δ

Δ =
πλ

and
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Let λ == σ + it where t > 0, and let

h±{x, X) = x~"l6e'"t9φ1{x9 X) and h2{x, X) — x*ertxφ2(x, λ) .

The well-known asymptotic formula Jp(z) = (2/τr^)1/2 cos (2 — 1/2 pπ — τr/4)
+ 0{le~izHzl-dl2} for 0 ^ arg 2 ^ τr/2 and 2 > 1 is used in the following.
The substitution of hx and h2 in (4) and (5) and the taking of absolute
values yields

λ)!; \h2(x,X)\ ^ M + j ' t lΛllΛ,! +

where

{Λ.1/2

f- [J,(λΛ)/_p+1(λ) + JL

= max

fir2 = max {[J-p(Xx)Jp(\s) — Jp(Xx)J-p(Xs)];
X—*oo

[J-p+1(Xx)Jp(Xs) + Jp^(Xx)J^.p(Xs)]}

Ml e-
t{χ-s)d(s)s2k+ll2\ .

According to the lemma in [3] this can be reduced to the inequality

h^x, λ); h2(x, X) ^ Mexp j I (gx + #2) ώsi .

Consequently, it can be concluded that when b(x)x~21c and d(x)x21c are both
L(l, 00), Λi(a?, λ) and h2(x,X) will both be bounded for all values of a?.
Moreover, for large x

φx(xf X) = 0{eίίCα;fc}, ^2(a;, λ) = 0{etxx~k} .

Furthermore, when Im X — 0, that is for real λ, and x —• 00 the
order properties for φ and ^ may be written as follows:

φ1(Xf x) = aj'j/iίλJJpίλa?) + v(X)J-p(Xx) + o

) ^(α?, λ) = xp{ξ(X)Jp(Xx) + η(X)J-p(Xx) + o

Θ2(x, X) -

where



1050 BERNARD W. ROOS AND WARD C. SANGREN

(7)

λβ)] dβ]

ds]

ds]

ds] .

The integrals in (7) converge uniformly in λ hence, μ(X), v(λ), |(λ), Jj>(λ)
will be continuous and bounded functions of λ.

When λ is complex and has an imaginary part greater than zero,
ImX > 0, and when b(x)x~** and d(x)x2k are both L(l, «>), one can obtain

Φl%, λ) = xH-

( 8 )

θx{x, λ) =
^2(a;, λ) = α!- β-<λ [iV2(λ)

where

Λf(λ) i Z 7 Γ Λ ; J β ^ / - , + i ( λ ) + iJp-xίλ) cos
Δ I

+ I ^(s)^^^)^-^4-1 [i J-.p+1(Xs) + Jp-iίλs) cos kπ] ds

+ I Cί(s)^1(s)s2> [JP(XS) COS fc7Γ — /-^(λs)] d,8>

M2(λ) - ^^1—I \ + J-P+1(X) - iJv-^X) cos kπ

Δ I

+ 1 6(s)^2(s)s~2 ) + 1 [ J-p+iίλs) — iJp^(Xs) cos AJTΓ] d s

/QX — \ d(s)φ1(s)sp [ίJp(Xs) cos A TΓ + J^p(Xs)] ds>

2Vi(λ) = i ^ ^ — \ -iJ-p(X) + JP(X) cos kπ
Δ I

+ \°°b(s)θ2(s)s-p+1 [iJ-p+1(Xs) + Jp-As) cos

+ Γd(s)^1(s)s2) [Jp(Xs) cos &7Γ - iJ_p(λs)] ds\

iV2(λ) - ( ^ ^ β U - p ( λ ) + iJp(x) c o s & 7 Γ

+ [°°b(s)θ2(s)s-p+1 [J-p+1(Xs) — iJp^(Xs) cos kπ] ds

- [°°d(s)θ1(s)sϊ> [iJp(Xs) cos kπ + J_p(λs)] ds\ .
J l J
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Let ψ(x, λ) = θ(x, λ) + m(X)φ(x, λ) be that solution of (2) mentioned
in the Preliminaries where c|^i | 2 + α|ψ*_2|

2 is (1, oo). ψ is given by

x(x, λ) = θx(x, λ) + m{X)φ1{x, λ) = xkeiλ* [JVΊ(λ) + m^M^X) + o(l)] ,

{x, X) = 0a(α?, λ) + m(X)φ2(x, λ) = ar f ce- ί λ* [N2(X) + m(λ)ΛΓa(λ)

It is apparent that in order for c\ψλ\
2 + a\ψ2\

2 to be in L(l, oo) we
must have

do) m(χ) =
M2(λ)

When I m λ - > 0 , it follows from (7) and (9)that

AΓi(λ) — (2τrσ)-1/2e«ir/2 [^(σ) + v(σ) cos A π]

M2(λ) -• (2πσ)-1/2e"ίt/2 [+//(σ) - iv(σ) cos fcπ]

Λi(λ) — (27rσ)-1/2e«*'2 [^(σ) + ^(σ) cos kπ]

iV2(λ) — (2τr(τ)-1/2eί*ir/2 [+ξ(σ) - ίη(σ) cos

Hence,

limm(λ) = _ί
/ ( ) + υ(σ) cos kπ

(12) = -cos fcπ ^V-vξ
v\σ) + /<2(σ)

From (6) one also obtains

W.[Φ, β] = ΦA - ΦA = Avξ - μv] + o(i).

Because W0[ψ, θ] = 1,

vξ - μv = -j

The substitution of this result in (12) yields

l i m J m m ( λ ) = — σπ

*-o 7 v\σ) + μ\σ)

Hence, Im m(X) is a nonpositive, nonvanishing continuous and bounded
function of X for both positive and negative λ.

This is easily seen for positive λ since λ, v2 and μ2 are all positive
numbers. For negative λ not only is λ negative, but so are v2 and μ2.
This can be verified by making use of the formula

J9(i*»z) = ί2mpjp(z) .

The spectrum is, therefore, continuous over the infinite interval
— oo < λ < oo. These results may be summarized in the following theorem,
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THEOREM 1. Consider the system (2) where a(x) = x2k and c(x) = x~2k

over the semi-infinite interval [I, oo] and under the boundary conditions

(13) u(l) cos a + v(l) sin a = 0

Lei &(#) αraϊ c£(x) 6β real-valued continuous functions of x and let b(x) x~2k

and d{x)x2k belong to the class L(l, oo). A solution of the system (2),
(13) is defined as a vector function [u(x, λ), v(x, X)] with continuous
first derivatives satisfying this system. The values of X for which
such solutions exists form a continuous spectrum over the real X-axis
(—00 < X < oo).

In order to simplify the appearance of the equations in the preceeding
proof and in the following, it was assumed, without loss of generality,
that a = π/2 and I = 1.

3 Nature of the spectrum; interval (0,1).

THEOREM 2. Consider the system (2) where a(x) = x2k, c(x) = x~2k over
the interval 0 ^ x ^ 1 and subject to a linear homogeneous boundary
condition at x = 1. The spectrum is discrete provided:

b(x)

b(x)

and d(x) are L(0,1)

and d(x) are L(0,1)

and d(x)x2p are L(0,1)

forp = k + 1/2

for 0 < p < 1

for p < 0 .

The proof of this theorem follows closely that of Theorem 1. Except
for an obvious change of integration limits, the integral equations
corresponding to system (2) of Theorem 2, are given by equations (4)
and (5).

First, consider the case p > 0. For x —• 0 one has the well-known
asymptotic relations:

Γ(p + 1)2* π
and for p - 1 > 0:

w
Let hx(x, X) = φx(x, λ), h2(x, X) =

t > 0. One obtains:
X) and X = σ + it where

+ J-p

[JP{Xs)J-p{Xx)J-p(Xx)J^{Xs)]\ ds\
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λ) =

[Jp(Xs)J.p+1(Xx) + J^Xs^^Xx)]} ds\ .

For x —* 0 tφc, X) and h2(x, X) are bounded for all x provided bx~Up~1] and
d are L(0,1) (see lemma [3]). Hence, φλ{xf X) = o(l) and φ2(x9 X) =o(χ-2{p-1])
for ίc-^0.

It follows that one may write

φx(x, λ) = [MX{X)

φ2(x, X) = a r 1 ^

where

Mλ(X) = ( " 1 ) ) | > (
ΓJ L

and

Γ - Jp-xίλ) + Γ[J3,_1(λs)δ^2s- ί>+1 - dφ1Jp(Xs)sp] ds\ .

Similarly,

θx(x9 X) - [Λi(

^2(x, λ) = »-«'-" [N2{X)

where

and

— JPM + \ {δ^2s~
p+1Jr

3,_1(λs) — dθ^JJXs)} i
L Jo

A similar argument as in §3, yields

Hence
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Λ(λ) ~ [{bθ.s-^J^iXs) + dθ^J^Xs)} ds
m(λ) = \

\1 dsp-^λ) - \1{bθ2β-*+1Jp-.1(\s) + dφ1s
pJp(Xs)}

Jo

For t —>0, i.e., ImX—>0, Mi(λ) and JVi(λ) tend to real limits. This
is apparent for λ > 0 and is easily shown for λ < 0 by using again the
relation Jr(zeimπ) = eίm*r J r 0 ) . Hence, Im m(λ) —> 0 except possibly at
the zeros of MΊ(λ). Consequently, the spectrum will be discrete.

For values of the parameter p such that 0 < p < 1 one has

7Γ

It is not difficult to verify, applying the same method as discussed above,
that in this case, when b(x) and d(x) are 1/(0,1) the limit circle case
prevails and the spectrum is discrete, fc, an integer, is not in this interval.

For p < 0 the asymptotic expressions become

(λaQ-"-»

In a similar fashion, for the case where p > 1 one can obtain that
0X(#, λ) = o(x2p) and 2̂(̂ > λ) = o(l). In this situation the additional
condition that b and d(x)x2ί) are in L(0,1) must be imposed. The conclusion
that the spectrum will be discrete follows accordingly.

4 Nature of the spectrum; interval (0, oo).
In this case singularities exist at both ends of the interval and it

has been shown [4] that the spectral properties of the system (2) are
determined by the imaginary parts of the following functions:

1 m 0 m 0 rrtoo

m 0 — moo m 0 — m ^ m 0 — m ^

where mo(λ) and m^{X) are the previously determined m's at x — 0 and
oo. As was shown in the previous sections mo(λ) is a meromorphic function
while moo has a nonvanishing imaginary part. It is clear that the
imaginary parts of the three functions above tend to finite limits which
can vanish at most at discrete points. The associated spectrum will
therefore be continuous over the whole real λ-axis.

THEOREM 3. Consider the system (2) where a(x) = x2k and c(x) = x~2k
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over the interval 0 ^ x oo. The spectrum will be continuous over the
entire real X-axis (—00 < λ < 00), provided b(x) and d(x) satisfy the
conditions given in Theorem 1 and Theorem 2.
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