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l Introduction* In this paper we shall give a new, spectral-free,
method to obtain the differential innovations and the Wold decomposition
of a univariate, continuous parameter, weakly stationary1, mean-continu-
ous, non-deterministic stochastic process (/f, — oo < ί < oo). We shall
affect a transition from the continuous to the discrete parameter case
by systematic use of the infinitesimal generator ίH of the shift group
(Ut, — co < t < oo) of the process, and of the Cayley transform V of
the self-ad joint operator H(% 2). Our analysis will be purely in the
time-domain.

With the /Γprocess we shall associate the discrete parameter process
(/«)£=—, where f'n = Vn(f0). Since Fis unitary, the /^-process is weakly
stationary. Letting ^£ u ^/ί'n be the past and present subspaces of the
fc and/^-processes, respectively, and ^^_c«, ^ L^ be their remote pasts,
we shall show that ^t0 = ^T o ' and ^—o = ^-00 (§ 4). In the non-
deterministic case we shall show that the subspace ^<^f = ^ f ΊL Π Λ!' % is
the past and present of the process (ht, — oo < t < oo), where ht = Ut(hr

0), h[
being the Oth normalized innovation of the discrete /^-process (§ 5). We
shall then show (§6) that the /^-process is weakly Markovian1 with
covariance e~m for lag t, and that if

(1.1) ξt - Tt{h[), where Tt = ̂ γ{ut - I + \[ Usds} ,

the process (ξt, — oo < ί < oo) has stationary, orthogonal increments
such that \ξb — ξa\

2 = 16 — α|. These increments are the "differential
innovations" of our /t-process; for we shall show (6.6) that the set of

S t
c(s)dξs> cGL2(-oo,ί), is identical

— CO

with the subspace ^\ mentioned above. Since

it follows at once that ft — ut + vt, where the ut form a one-sided moving
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average process, and the vt a deterministic one:

Φ)dsξt-S> vt = projection of ft on ^f-^ .

0

We thus get the Wold decomposition cf. 6.7 below.
In justification of this new approach we may mention its simplicity

and coherence. With the time-domain analysis so completed, one can
develop the spectral theory in an equally coherent way. One can also
deal conveniently with the extension to vector-valued processes. In
comparison, an approach in which spectral considerations are brought
to bear on time-domain questions or vice versa seems cumbersome and
roundabout. But quite apart from this, our approach is essentially
more general than one based on the spectral resolution of the group
(Ut, — co < t < oo) and is more suggestive of further research, although
it does not yield any really new results on univariate stationary processes.
As prediction theory has advanced, its connection with the theory of
shift-invariant subspaces of the Hardy class H2 initiated by Beurling
[2] has been noticed; see especially Helson and Lowdenslager [10] and
Lax [14]. Recently Halmos [8] has brought to light a result, which
shows that underlying both theories is a semi-group of isometries on a
Hubert space (cf. also [15]). (In the case under discussion, this semi-
group comprises the (isometric) restrictions of the unitary operators
U* to the subspace Mo.) One of us [16] has found that our approach
based on use of the infinitesimal generator iH and of the operator Tt

defined in (1.1) extends to general continuous parameter semi-groups
of isometries to yield valuable results concerning their structure. But
since in general these isometries will be non-normal, the generator H
will not be self-adjoint and the usual spectral considerations will fail;
cf. Cooper [3], Thus it seems worthwhile to try to dispense with
spectral tools in the analysis of time-domain problems.

Hanner [9] was the first to make a purely time-domain analysis in
the continuous parameter case. By an ingenious construction he proved
the existence of differential innovations and derived the Wold decom-
position. His approach, somewhat ad hoc in nature, has not been pursued
in the literature, and its points of contact with the earlier work of
Cooper [3] have gone unnoticed. Our approach differs from that of
Hanner and Cooper in the transition we make to the discrete parameter
case by means of the infinitesimal generator and the Cayley transform.

It is reasonably clear that our approach will work in the case of
processes for which the differential innovations can be had by Hanner's
method. As an instance we cite the study of continuous parameter
random distributions due to K. Ito, Gelfand, and Balagangadharan [12,
7,1]. It is also possible that our ideas may apply to some of the non-
stationary processes studied recently by Cramer [4, 4', 4"].
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2. The infinitesimal generator and Cayley transform,. Let
(Ut, — c Ό < ί < c χ D ) b e a strongly continuous group of unitary operators
acting on a complex Hilbert space X; i.e. let

(2.1)

(a) Ut be a unitary operator on X onto X, — oo < t <

(b) UsUt - Us+t = UtUs, -α> < s, t < c«.

) Ut+h—> [^(strongly)2 on ϊ as /t->0, — co < £ < co.

It is known [17, p. 385] that the group has an infinitesimal generator

(2.2) iH - lim !•{£/, - /}
Λ0 ft

on

where i ί is a self-adjoint operator with domain ^ , and ^ is a linear
manifold everywhere dense in X. Also, cf. [19, p. 142 and 6, p. 622]

(2.3)

(a) H + iI is one-to-one on ^ onto X,

1(b) (H + ΐ / ) " 1 = —
^ Jo

is bounded and one-to-one

on £ onto &, and | (H + il)"1 \B ^ 1(3) .

Now let V be the Cayley transform of H:

(2.4) V = c(-ff) = (H- U)(H + iiy1 on 1.

Then [19, p. 304]

(a) V is unitary on ϊ onto ϊ ,

(2.5)
(b) / — V = 2i(iί + ΐJ)"1 is one-to-one on X onto £^,

(c) fiΓ = i(I + V)(I - F)- 1 on &,

,(d) ί/.F* = F^ί/ί on X, -co < n, t < cχ>, % = integer.

In this section we shall establish the relationship between Ut and
Vn for arbitrary t and n on which will hinge the subsequent develop-
ment.

The Ut are expressible in terms of H by the Hille-Yosida exponential
formula, cf. [17, p. 403],

(2.6)

Ut = lim exp (tiHJn), (strong)2, 0

One sees trivially that Jn is a bounded operator and that so therefore
is iHJn = %(</„ — /). Hence the term ex$(tiHJn) in (2.6) is definable

2 It is to be understood in the sequel that all operator-limits are in the strong sense.
3 I T\B refers to the Banach norm of the operator T.
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by the usual power-series. We now assert two lemmas:

2.7 LEMMA. (Expression of Ut in terms of Vk).

U±t = e-Ί + lim Σ T Ϊ ^ T T ) V + A±nY ~ 7 } ' * ~ ° '»-- k=i k\\n + 1/

where

n + 1 T=

Proof. Let t ^ 0. Then by (2.6)

(1) ϋi = limΣ?ϊ(i
n-x* k=0 k\

Using (2.5)(c) we can express the R.H.S. of (1) in terms of V:

iHJn - - ( 7 + V)(I- V)-ιil + — (7 + V)(I- V)'1]'1

n / T \ A \n + 1

after some simplification. Thus

Hence from (1)

(2) Ut = lim exp (-^-)l + lim £ -fr (-=7^)* «7 + ̂ M )" ~ 7 } '
w-oo \ ^ -f i / n-oofc=i k\\n + 1 /

Since the first term on the R.H.S. is e~ιI, we have the desired expres-
sion for Uu t ^ 0.

To obtain the expression for U-t, t ^ 0, we note that Z7_t = C/ί*,
V'* = T -̂1 and so A* = A_n, n ^ 0. Thus, taking adjoints on both sides
of (2), we get the desired result.

2.8 LEMMA. (Expression of Vn in terms of U%

V±n = I + 2\O°L'n(2t)e-tU±tdt , n^O
Jo

where

Ln(t) = Σ — ( 7 )** 9 n = 0, (nth Laguerre polynomial).
fc=o fc! V^/
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Proof. The result obviously holds for n — 0. We establish it for
n > 0 by induction. For n = 1, the desired result reduces to the equality

(1) V=I-2\~e-*Utdt ,
Jo

the correctness of which is clear from (2.5)(b) 'and (2.5)(b). Next, as-
suming the result for n, we find using (1) that

Vn+1 = 1 + 2[°{L'n(2t) - I}β"*ϊ74dt - i[°[°Un(2t)e-{s+t)Us+tdsdt .
Jo Jo Jo

Putting σ — s + t9 and using Dirichlet's formulae we find that

4\~\~L'n(2t)e-{8+t)Us+tdsdt = 2^{Ln(2σ) - l}e~σUσdσ .
Jo Jo Jo

Hence

Vn+1 = I+2\~{L'n(2t) - L^φ-'Utdt .
Jo

Since the Laguerre polynomials satisfy the recurrence relation Ln =
L'n - L'n+1, cf. [18, p. 299, (10)] we get

as desired. The result thus holds for all n ^ 1. Its validity for n ^
— 1 follows on taking adjoints and noting that V~n = {Vn)* and U-t —
U*.

We shall denote by @(Xλ)λ€Λ the (closed) subspace spanned by the
subsets Xλ of 96, for XeΛ. We now assert the following lemma:

2.9 LEMMA. For any I g ϊ , we have

(a)

(b)

Proof (a). Lemma 2.8 asserts that for n ^ 0 V~n is the strong
limit of a linear combination of the C7Lt for t ^ 0. It follows that for
any X g ϊ ,

whence

On the other hand, Lemma 2.7 asserts that for ί ^ 0, U-t is the strong
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limit of a linear combination of the V~n, for n ^ 0, so that

From this follows the inclusion reverse to (1), thereby yielding (a).
(b) can be derived similarly from Lemmas 2.7, 2.8 taking Vn, Ut,

instead of V~n, U-t, with n,t^0.

3Φ Weakly stationary stochastic processes* In this section we shall
recall the basic notions and results on weakly stationary stochastic
processes.

By a weakly stationary stochastic process (S.P.) is meant a function
/ o n (— oo, oo) to a complex Hubert space Xsuch that the inner product

(3.1) (/.,/«) = 7.-,

depends only on the difference s — t and not on s and t separately.
The complex-valued function 7 on (— oo, oo) is called the covariance
function of the S.P. It is convenient to denote the values of / and
7 at t by ft and 7* rather than by f(t) and y(t), and to denote the S.P.
itself by (ft, -oo < t < oo) rather than by /.

We shall be especially interested in the subspaces

( 3 2 ) i ^ - Π
-oo<ί<oo

We shall call ^ t the past and present of ft, ^έt-<*> the remote past of
the S.P., and ^f'«, ίfeβ space spanned by the S.P. Obviously

s * , - c o < β < t <
(3 8 ) \

It is known, cf. Karhunen [13, p. 55], that if (/,, — oo < t < oo) is
a weakly stationary S.P., then there exists a group of unitary operators
Ut on X, — co < t < oo, such that

(3.4) fs+t = W . ) , - oo < 8, * < oo .

The operators Ut are uniquely determined on the subspace ^f«, but not
on X. We shall call {Uu — °o < ί < oo) £/*,e sΛi/ί group of the S.P.
(/*> — °° < t < oo). It follows easily, cf. Hanner [9, p.162], that

(3.5) c ^ u o ^ ^ f β - H , 1^(^-00)=^-co,u ί (^r . . )=^roo,-co<s,t<oo.

We call a S.P. (/,, —00 < ί < 00) mean-continuous, if the function
/ is continuous on (—00, 00) with respect to the metric induced by the
norm of the Hubert space X. From the stationarity condition (3.1) we
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readily infer the following:

3.6 LEMMA. For a weakly stationary S.P. (/*, -co < t < oo) with
covariance function 7 mean-continuity is equivalent to each of the
conditions:

( i ) f is continuous at 0,
(ii) Ύ is continuous at 0,
(iii) 7 is continuous on (-co, co),
(iv) the shift group (Ut, — 00 <£< 00) is strongly continuous on ^f ,*>.

The following result is known:

3.7 LEMMA. // the S.P. is mean-continuous, then
(a) ^ f 00 is α separable subspace of 3C,
(b) ^ t - = ~^t = ^t+, — 00 < ί < co, where ^/f t^^=

4Φ The associated discrete parameter process* Let (ft, —00 < t < 00)
be a weakly stationary, mean-continuous S.P. with shift group (C/i,
— co < t < 00). Let V be the Cay ley transform of H, where iH is the
infinitesimal generator of the shift group, cf. (2.2), (2.4). Let

(4.1) /,; = V\f0) .

Then the bisequence (/»)~co is a discrete-parameter, weakly stationary
S.P. with shift operator V. We shall call it the discrete S.P. associated
with (ft, ~ co < t < 00).

We shall denote the past and present of f'nj the remote past, and
the subspace spanned by the S.P. (/ή)-*, by ^//f

n, ^ 1 * , , and ^ £ , respec-
tively; thus

(4 2) /// ' — &( f!)f .// ' — Π //' //'

It follows that

^f-oo S ^Cm C .-̂ f» S ^^«, — °° <m <n <
o(4.3)

As far as we know the associated discrete parameter S.P. (/ή)ϋoo has
been defined in the literature, not by (4.1), but as the process whose
spectral distribution is the Cayley transform (in the complex plane) of
the spectral distribution of the given continuous parameter process, cf.
e.g. Doob [5, p. 583]. It can be shown that the two definitions are
equivalent. But as indicated in § 1 there are advantages in adopting
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a purely time-domain and spectral-free definition. For instance, in the
light of Lemma 2.9 we can assert the following theorem, which reveals
the close relationship between the two processes. Variants of parts
(a), (b) of this theorem are know, cf. e.g. Doob [5, p. 583-84]; part (c)
is new as for as we know.

4.4 THEOREM, (a) ^ r , = Λ l , (b) Λ - = Λ l , (c)

Proof, (a) Take X = {/„} in 2.9(a). We then get

(b) Now take X = {/„} in 2.9(b). We then get @( F"(/0))Mδ0

o. Hence,

^ T i = clos. {Λl

o} (by (a))

(c) Take X = ^ f _TC in 2.9(b). Then using (3.5) we get

Applying F~* to both sides, and using (a),

Hence, cf. (4.3),

( l )

Next taking X= ^fL* in 2.9(b), we get

Proceeding as before, we derive the inclusion relation reverse to that
in (1). Thus (c).

5. Non-deterministic S.P* Pre-Wold decomposition* We shall say
that a S.P. (ft, — oo < t < c») is deterministic, if and only if ^_oo = ̂ Όo;
otherwise non-deterministic. From the stationarity condition (3.1) we
infer the following lemma, cf. Hanner [9, p. 163]:

5.1 LEMMA. For a weakly stationary S.P. the following conditions
are equivalent:

( i ) the S.P. is deterministic
(ii) ^ s = ^f\ for all s,t, — oo < s, £ < co
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(iii) ^£s — ̂ £' t for some s,t — co < s < £ < co
(iv) ft e ^ ' s for some s,t, — co < s < £ < co .

Let the S.P. be non-deterministic. Then by 5.1 (iii) for any t and
any s < t, ^_«> £ ^ts c ^ f ' t . Hence

^r% = ^ f ±TO n ^€t Φ {0}, -oo < t < co ,

and we get the decomposition

(5.2) ^ = ^//^ + ^ , ^£^ 1 Λ\ Φ {0}, -co < t < co .

Moreover from (3.5)

(5.3) Ut(^r8) = Λ^s+t, - co < s, ί < co .

If in the preceding paragraphs of this section we interpret s, t as
integers rather than as real numbers, we get the definition and prop-
erties of non-deterministic processes in the discrete parameter case.
But in the discrete case, additional results are readily available. We
recall some of these in the next paragraph.

Let (/ί)-oo be any weakly stationary, non-deterministic S.P. with
shift operator V. Denote by (fi \ ̂ 'n-i) the orthogonal projection of f'n on
the subspace ^TUi, cf. (4.2). Then

(5.4) ffi=Λ-(Λl^rU)^0, -co <n< co .

The vectors gr

n and h'n = g'J\ g'n \ are called the nth. innovation and
normalized innovation vectors, respectively, of the process (/»)-«. It
is easily seen that

(5.5) (h'm, K) - δmn, h'm+n - V»(h'n), - co < m , n < co ,

so that (/̂ )-oo is an orthonormal S.P. with the same shift operator V
as (/n)-oo. It is an important fact that in the discrete analogue of
(5.2), viz.

(5.6) ^£'n - ^ ^ + ^r'n ^?'_«, j . ^T'n Φ {0} ,

the subspace N?[ is the past and present of h'n:

(5.7) ^ r ; - © T O — - @(7*(Λί))L-co .

The relations (5.6), (5.7) constitute the Wold decomposition of Mil. From
this decomposition follows at once the canonical decomposition of f'n into
a one-sided moving-average part and a deterministic part:

fn = < + <, - co < ^ < oo

X^)ϋoo, «)ϋoo have the same shift operator V as (/*„')-«>•
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To revert to the continuous parameter case, let (ft, — oo < t < oo)
be a weakly stationary, mean-continuous, non-deterministic S.P. with
shift group (Ut, -oo < t < oo). It is clear from the equalities in 3.7(b)
that attempts to define "innovation vectors" gt for this process by an
equation analogous to (5.4) will fail. Indeed, since there is no atomic
time unit in the continuous parameter case, all that we may expect
our /^-process to possess are "differential innovations."

Now let (/,0-co be the discrete S.P. associated with (ft, — oo < t < co)#

Since the latter process is non-deterministic, it follows from Theorem
4.4 that so is the former. Let h[ be its Oth normalized innovation vector,
and let

(5.9) Λ t= Ut(h'o), -oo < ί < oo .

The resulting process (ht, — oo < t < oo) plays an important role in the
theory. In § 6 we shall show that it is weakly Markovian, and explain
how the differential innovations of the /Γprocess can be had from it.4

Here we shall show that the subspaces ^v~t of (5.2) are its past and
present subspaces:

5.10 THEOREM. (Pre-Wold Decomposition) Let (ft, — oo < t < oo)
be a weakly stationary, mean-continuous, non-deterministic S.P. with
shift group (Ut, — oo < t < oo), so that cf. (5.2)

Then <yV~t — ®(h8)8^t is the past and present of ht, — oo < t <

Proof. By Theorem 4.4, ^ = ^ 0 , Λ"-- = ^'-«,. Hence, taking
t = 0 = n in (5.2), (5.6) we see that ^ 0 ' = Λ\. But taking X= {K} in
2.9(a), where h[ is the Oth normalized innovation of the associated discrete
process, we find on using (5.7) that

(5.11) ^To = ^

Hence by (5.3) and (5.9)

6. Differential innovations and the Wold decomposition* Let
4 The physical significance of the /^-process has been indicated by Wiener and Wintner

[20]. When 3E is the class of L2-functions on a probability space (Ω, &, P), and t is the
time, ht provides the weak (or wide sense) version of * 'random time", i.e. time as measured
by a perfect clook which is subjected to Brownian fluctuations. More precisely, if

2/ί(ω) = exp [iλ{t + axtM}], ω G Ω

where (xt, — oo < t < oo) is the Brownian movement S.P., and λ, a are constants such that
aλ = |/2, then the yt- and ftt-processes have the same wide sense properties.
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(ft* — °° < £ e o o ) b e a weakly stationary, mean-continuous, non-determin-
istic S.P. with shift group (Ut, — oo < t < oo), and let h[ be the Oth
normalized innovation vector of the associated discrete process (/ή)-oo.
In the next lemma we study the S.P. (ht, — oo < £ < oo) defined by
(5.9), the present and past subspaces ^Vt of which have been mentioned
in the Pre-Wold decomposition 5.10.

6.1 LEMMA, (a) The ht-process is weakly (or wide sense) Mark-
ovian; more fully,

(ht I ̂ r . ) = e-%, -oo < s < t < oo

depends only on the terminal vector hs of
(b) Its convariance function 7 is given by 7* = e~m, — oo < t <

Proo/. (a) Let t ^ 0. Then by 2.7

where

, - e-% + lim Σ ̂ Γ f-^rτ) V + A.)4 -
n-ooifĉ i fc! \n + 1/

n
Σ

Since by (5.5) the h) = Fj(/^J) constitute an orthonormal process, we see
that

ht = e-'λί + ^ , where ^ ± fc{, fc'_lf , t ^ 0 .

It follows from (5.10) that rjt _L ̂ f̂ 0 = ®(K)s^ Hence

e"% = (ht I ̂ To), ί ^ 0.

On applying Us to both sides we get

(1) e - % = ( k β + t \ ^ r 8 ) , - c o < s < o o , t ^ o .

This reduces to the desired relation on changing the index,
(b) From (1) it follows at once that

Ύt = (hB+t,hB) = e-<, ί ^ 0 .

This in turn entails that 7* = e~ιtι, — oo < £ < oo.

We shall now study the £Γprocess mentioned in (1.1). By definition

(6.2) ξt = —ί=={/^ - K + ΫKds] , -oo < ί < oo .
V 2 I Jo J
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It follows at once that ξ0 — 0 and

(6.3) ξb - ξa = ̂ { h - K + \\ds\ , -oo < α, 6 < oo .

6.4 THEOREM, (a) The ξt-process has increments which are station-
ary under the group (Ut, — oo < t < oo), i.e.

Ut{ξb - ξa) = ξb+t - ξa+t , - oo < a, b, t < oo .

(b) The ξt-process has orthogonal increments, i.e.

ξb-L±ξa-ξΰ, if -oo < a < b ̂  c < d < oo .

(c) \ξb-ξa\*= \b-a\ , - o o < α , 6 < o o .

(d) ( f 6 - f α , ! Λ - £ o ) = l f6-£,l > = δ - * , i/ - o o < α < c < 6 < d < o o .

Proof, (a) follows at once from (6.3) since Ut(hs) — λβ+ί.
(b) Let a < b ̂  c < d. Then from (6.3) and 6.1(b),

2{ξb - | β , | d - | c ) = (Λ6 - ^α + j ^ . c ί s , λd - K

= leb~a - e6-c + ( V - ' d ί j - iea~a - ea

Since the expression in each {} on the R.H.S. is zero, the result follows,
(c) First let 0 = a < b. Then from (6.3) and 6.1(b)

tdt2\ξ b - ξQ|2 = (hb - h0 + \bh,ds, hb - ho+ Γ h t
\ Jo Jo

S
o= 2(1 - e~b) + 0 + Γ [e-{s~tldtds .

Jo Jo

Since the last integral equals

'-dί + [e^dtlds = 26 + 2(e~b - 1) ,

it follows that \ξb — | 0 1 2 = 6.
Next, let - o o < α < 6 < o o . Then by (a) & - & = ET^-α - | 0 ) ,

6 — α > 0, and so
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(c) is a simple consequence of (a), (b), the verification of which
we leave to the reader.

S oo

c{s)dξs will
— oo

exist for any complex-valued function C G L 2 ( - O O , OO), cf. Doob [5, Ch.
IX, §2], In the next lemma we shall show that the vector ht is ex-
pressible in terms of the ξs by means of such an integral. In effect
we shall invert the relation expressed in (6.2):

6.5 LEMMA. (Inversion formula)

ht = τ /

Proof. Since ht = Ut(h'o) and U (as a function of t) is strongly con-

tinuous on (—00,00), it follows that the vector-valued function h is

continuous for te(— 00, 00), and therefore by (6.2) so is the function

ξ. Hence the Riemann integral \ es~ιξ8ds exist for — 00 < α < & ̂  £.
Ja

Moreover, since

is~ιξsds ^ \es~l I ζs I ds — \ es~l\/s-ds or ^/s ds ,
J Jα

the infinite integral 1 es-ιξ8ds converges.
J-00

Now consider the case t — 0. We have from (6.2)

CO CO ( Γ s l

S O CO CO

eshsds + h0 + \ \ e8hσdσds .
- 0 0 J-ooJβ

Now by Dirichlet's formula the last integral equals

S O CO CO (CO Λ CO

\ eshσdsdσ = I < \ esds \hσdσ = I eσhσdσ .
Hence

(1) V'\

Since for any real t, Ut(ξ0 - ξ8) = ξt - £.+*, ^(ΛΌ) = Λ«, we get the first
equality in the lemma by applying Ut to both sides of (1) and then
changing variables.

The second equality follows on integrating by parts:

S t Ct Ct

—00 s 8 J—00 J — 00
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The use of integration by parts is justified as follows. In the first
place, for — c o < α < έ < o o we have

( 2 ) Γ β-'dg. - [β-'f j ;=i - Γ W.(β- ') .
Ja Ja

This follows from the fact that for a continuous integrand the stochastic

integral is a Riemann-Stieltjes integral (with vector-valued integrator ξa)

and that for the latter, integration by parts is valid, cf. [5, p. 429 (2.6)]

and [11, p. 63 (3.31)]]. Next, the last integral in (2) is obviously equal

ξ8e*-*d8. Finally, since both I es~ιdξs, \ ξse
s~ιds are known to

exist, we can let α->—oo in (2), cf Γ [5, p. 428° (2.4)].

The formulae (6.2) and 6.5 together entail the following important
result:

6.6 LEMMA. For any real t, the past and present subspace Λr

t of

S t

c(s)dξs, with
complex-valued functions ceL2(—«>, t), i.e. ^4r

t = &{ξσ — ξτ)σ,τ<t-

Proof. Denote by ^f]{ξ) the set of all such stochastic integrals. Let
> < T ^ t < oo. Then by 6.5

es~τdξs = \ c(s)<Zf s ,

where c(s) = \/2es~τ on (— oo, τ] and c(s) = 0 on (τ, ί]. Since c e L2(—coft],
it follows that hτ e ^Γiξ). Hence ^ r t = ®(hT)τίit S ^Tf.

To prove the reverse inclusion, let

S t

c(s)dξs, where c 6 L2(— oo, t] .
- 0 0

Suppose first that c is a step-function:

Φ ) = Σ 0kχjk(8)

χJjc being the indicator function of the interval Jk = [ak, bk] S (— oo, *].

Then by definition (cf. Doob [5, p. 427 (2.1)])5

n

g = Σ <>*(&* - !«*)

From (6.3) it is clear that ge^Γt Next suppose ceL2(— oo, ί], and
c = limn^ooC(1l), where c{n) is a step-function. Then by definition

5 We note that from 6.4(c) it follows that &-=& = &+, -°° < ί < °°
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g = lim Γ cM(s)dξs e ^ ,
n-*oo J —oo

since ^v% is closed. Thus ^Vt

{ζ) £ ^f;.

We may sum up the main results established so far as follows:

6.7 THEOREM. {Wold Decomposition I) Let (ft, — oo < t < oo) be a
weakly stationary, mean-continuous, non-deterministic S.P. with shift
group (Ut, — oo < £ < oo). Let h'o be the Oth normalized innovation of
the associated discrete process, and let

K = Ut{K) f ξt = ht-h0+ \*had8 , - oo < t < oo .
Jo

Then (a) Λ % = ^ t + ^ _ o o , ^ i 1_ ̂ _ o o , - oo < t < oo, where
@(^s)s^ί is ίλβ ̂ αsί α^ώ present of ht;

(b) ίfee ξt-process has stationary, orthogonal increments such that

\ξt — ξs Γ = I * — s I; moreover, ^Γt = @(|v — ?r)σ,r^t, i.e. ^fΐ is the set of

all stochastic integrals \ c(s)dξs with ceL2(~coft],

6.8 UNIQUENSES THEOREM. Let {ηt, — oo < t < oo) be any process
with the following properties:

( i ) it has orthogonal increments such that

\Vb — Va\2 — \b — a\ , — o o < α , & < o o , and η0 = 0

(ii) ί / ^ ~ Va) = Vt+t - %+«, -oo < α, 6, ί < oo

(iii) &(ησ - ^ Γ ) σ , Γ ^ 0 = ^ ± ~ Π ^ T o .
yf = eίαJ|ί, where ξt is as in 6.7, αwcZ a is some real number.

Proof. Our proof of this result is essentially that given by Hanner
[9, p. 175-176]. Since our treatments and notations differ, we may
indicate the main steps. We first show that

where y\^h is an in 6.7(a). It follows from 6.7(b) thatf 6 — ft =

By piecing together the functions fn,n+1, — oo < n < oo, we can define
a function / on (— oo, oo) such that

ft — ft = 1 f(s)dys , a <b .

Using the fact that ft — ft = Uh(ξh-h - ft_ft), we can show that / is
essentially constant-valued on (—00, 00). From this the desired result
is immediate.
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An immediate corollary of Theorem 6.7 is the cannonical decompo-
sition of the vector ft itself:

6.9 COROLLARY. (Wold Decomposition II) With the hypothesis of
Theorem 6.7 we have

(a) ft = ut + vt, ut = (ft I ̂ ) , vt = (ft I ^^-oo);
(b) the ut-process in (a) is a one-sided moving average, i.e.

S CO

c(s)dsξt-s , — co < t < oo, where c e L2[0, co) .
o

and @(OS^ = ^Vt, —oo < t < oo;
(c) ίfeβ vt-process is deterministic, and &(vs)s^t = ^ -^, for

— oo < ί < oo.

7 Purely non-deterministic stochastic processes* We call a weakly
stationary S.P. purely non-deterministic, if and only if ^J?-«> — {0}. For
completeness we state here the anologue of a theorem given by Kolmo-
gorov for discrete parameter processes:

7.1 THEOREM. For any weakly stationary, mean-continuous sto-
chastic process (ft, — co < t < co) the following conditions are equiva-
lent:

( i ) (fu — °° < * < °°) i>s purely non-deterministic,
(ii) (ft, — co < t < co) is α one-sided moving average:

0

(£sf ~" co < s < co) δem^r α process with stationary and orthogonal
increments such that \ξb — ξa |2 = | δ — a |;
(iii) limf^ (/0 \^f_t) = 0.

Proof. The proof runs parallel to that in the discrete case and is
omitted.

It follows from Corollary 6.9 and Theorem 7.1 that every weakly
stationary, mean-continuous, non-deterministic S.P. (ft, — co < £ < oo)
can be decomposed in the form ft = ut + vt, where the uΓprocess is
purely non-deterministic, the ^-process is deterministic, and all three
processes have the same shift group (Ut, -co < t < co). We shall refer
to the uranά ^-processes as the purely non-deterministic part and the
deterministic part of the /^process. With an obvious notation, we have

t — *sf& t "ΊΓ *^r£ t y — ^ oo _L

(u) — ΛS jp (Ό) —

Now let (K)-oo, (O-PO be the purely non-deterministic and determin-
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istic parts of the discrete process (jQ-eo associated with (ft, — co < t < oo).
Then by 6.9(a), 4.4(c), and (5.8)

and therefore

ô = /o - % = fό - V'o = <

Moreover, the shift operator F of the <-, ^-processes is the Cayley
transform of H, where iH is the infinitesimal generator of the shift
group (Ut, — oo < t < oo) of the %Γ, ^-processes. We can thus assert
the following:

7.2 COROLLARY. // (fi)00 is the discrete process associated with
the weakly stationary, mean-continuous, non-deterministic S.P. (ft,
— c o < £ < c o ) , then the purely non-deterministic and deterministic
parts of (fn)-oo are the discrete processes associated with the determin-
istic and purely non-deterministic parts of (ft, -co < t < co).
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