A NOTE ON HYPONORMAL OPERATORS

STERLING K. BERBERIAN

The last exercise in reference [4] is a question to which I did not
know the answer: does there exist a hyponormal (TT* < T*T) com-
pletely continuous operator which is not normal? Recently Tsuyoshi
And6 has answered this question in the negative, by proving that every
hyponormal completely continuous operator is necessarily normal ([1]).
The key to Andd’s solution is a direct calculation with vectors, show-
ing that a hyponormal operator T satisfies the relation || 7| = | T||"
for every positive integer n (for ¢ subnormal’’ operators, this was ob-
served by P.R. Halmos on page 196 of [6]). It then follows, from
Gelfand’s formula for spectral radius, that the spectrum of T contains
a scalar /¢ such that |¢| = || T|| (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from ano-
ther direction, via the technique of approximate proper vectors ([3]);
in this approach, the nonemptiness of the spectrum of a hyponormal
operator T is made to depend on the elementary case of a self-adjoint
operator, and a simple calculation with proper vectors leads to a scalar
£ in the spectrum of 7T such that |¢#| = || T'||. This is the Theorem
below, and its Corollaries 1 and 2 are due also to Ando. In the remain-
ing corollaries, we note several applications to completely continuous
operators.

We consider operators (=continuous linear mappings) defined in a
Hilbert space. As in [3], the spectrum of an operator 7T is denoted
s(T), and the approximate point spectrum is a(7'). We note for future
use that every boundary point of s(T') belongs to a(T'); see, for example,
([4], hint to Exercise VIII. 3.4).

LeMMA 1. Suppose T is a hyponormal operator, with || T|| = 1,
and let _# be the set of all vectors which are fixed under the operator
TT*. Then,

(i) A 1is a closed limear subspace,

(ii) the wvectors im _# are fixed under T*T,

(iii) #Z s imvariant under T, and

(iv) the restriction of T to _# 1is an isometric operator in _Z .

Proof. Since 7 ={x: TT*x =x} is the null space of I — TT*, it
is a closed linear subspace. The relation T7T* < T*T < I implies
0I—-—T*T<I— TT* and from this it is clear that the null space
of I — TT* is contained in the null space of I— T*T. Thatis, TT*x =2
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implies T7*Tx = x. This proves (ii). (Alternatively, given TT*x = w,

one can calculate directly that || T*Tx — x| < 0.) If xe_ 7, that is if -
TT*x = x, then the calculation TT*(Tx) = T(T*Tx) = Tx shows that

Tx e _#; moreover, || Tx | =(T*Tx|x) = || x|

LEMMA 2. Ewvery isometric operator has an approximate proper
value of absolute value 1.

Proof. Let U be an isometric operator in a nonzero Hilbert space.
Suppose first that the spectrum of U contains 1; since || U]l =1, it
follows that 1 is a boundary point of s(U) (see [4], part (ix) of Exer-
cise VII. 3. 12), hence 1 is an approximate proper value for U.

If the spectrum of U does not contain 1, that is if I — U is in-
vertible, we may form the Cayley transform A of U; thus,

A=iI+ U)I—-U)y'=id— U+ U).

Using the hypothesis U*U =1, let us show that A is self-adjoint. Left-
multiplying the relation (I — U)A = «(I + U) by U*, we have (U* — I)
A=4U*+1I), thus I— U)*A = — il + U)*. Since (I — U)* is in-
vertible, with inverse [(I — U)™']*, we have

A=—i[d— U+ Uy = —id+ U)I — U)* = A%,

It follows that the operators A + 4 and A — ¢I are invertible, and
solving the relation (I — U)A = «(I + U) for U, we have

U= (A—i)(A+ )" = (A +i)A — i) .

Incidentally, since U is the product of invertible operators, we conclude
that U is unitary.

Since A is self-adjoint, we know from an elementary argument
that the approximate point spectrum of A is non empty ([7], Theorem
34.2). Let aea(4), and let x, be a sequence of unit vectors such that
|| Az, — ax, || — 0. Define ¢ = (a + 1) *(a — ); since a is real, ¢ has
absolute value 1. It will suffice to show that ¢ is an approximate pro-
per value for U; indeed, ||(U — pl)x,|| — 0 results from the calculation

U—pl=A+t)"(A—1) — (¢ + 1)y (a—)I
=(a+ 1) A+ ) (a + )A— i) — (@ — )A + i])]
=2ia + 1) M(A + ) MA — ),
the fact that ||(A — al)z,|| — 0, and the continuity of the operator
2i(a + 1) (A + )™

Incidentally, if U is an isometric operator such that the spectrum
of U excludes some complex number /£ of absolute value 1, then p'U
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is an isometric operator whose spectrum excludes 1. The proof of
Lemma 2 then shows that ¢#'U is unitary, hence so is U. In other
words: the spectrum of a nonnormal isometry must include the unit
circle | ¢#] = 1; indeed, Putnam has shown that the spectrum is the unit
disc |¢£| =1 ([8], Corollary 1). The latter result is also an immediate
consequence of ([5], Lemma 2.1), and the fact that the spectrum of
any unilateral shift operator is the unit dise.

THEOREM. (Andd) Ewvery hyponormal operator T has an approxi-
mate proper value (t such that |pt] =1 T|.

Proof. We may assume || T'|| = 1 without loss of generality. Since
TT* =0 and ||TT*|| =1, we know that 1 is an approximate proper
value for TT*. Since the property of hyponormality is preserved under
x-isomorphism, we may assume, after a change of Hilbert space, that
1 is a proper value for TT* (|3], Theorem 1). Form the nonzero clo-
sed linear subspace _# = {x: TT*x = «}; according to Lemma 1, _~ is
invariant under T, and the restriction of T to _# is an isometric opera-
tor U in the Hilbert space _#. By Lemma 2, U has an approximate
proper value /¢ of absolute value 1. Let z, be any sequence of unit
vectors in _# such that || Ux, — p, || — 0. Since Uz, = Tx,, obviously
. is an approximate proper value for T, and |¢| =1= || T|.

COoROLLARY 1. A generalized nilpotent hyponormal operator 1is
necessarily zero.

Proof. If T is hyponormal, then s(7') contains a scalar ¢ such

that |¢| = || T||. For every positive integer =, it follows that s(7'")
contains /¢* (see [7], Theorem 33.1); then ||T||" = |¢* = || = | T < | T||",
and so ||T"]| = || T||~. If moreover T is a generalized nilpotent, that

is if lim || 7|V = 0, then || T'|| = 0.

COROLLARY 2. If T is a completely continuous hyponormal opera-
tor, then T is mormal.

Proof. The proof to be given is essentially the same as Ando’s.
The proper subspaces of 7' are mutually orthogonal, and reduce T (4],
Exercise VII. 2.5). Let _# be the smallest closed linear subspace which
contains every proper subspace of T, and let ¢~ = _# *; clearly _+" reduces
T, and the restriction 7T/_¢" is a completely continuous hyponormal opera-
tor in _¢#~ ([4], Exercise VI. 9.18). If the spectrum of T/ ¢~ were dif-
ferent from {0}, it would have a nonzero boundary point f, hence
would be a proper value for T/_+" (see [4], Theorem VIII. 3.2); this is
impossible since _#"* = _# already contains every proper vector for 7.
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We conclude from the Theorem that T/_#~ = 0, and this forces .+~ = {0}
(recall that 1 contains the null space of T'). Thus, the proper sub-
spaces of T are a total family, hence T is normal by ([4], Exercise
VII. 2.5).

Suppose T is a normal operator whose spectrum (a) has empty
interior, and (b) does not separate the complex plane. Wermer has
shown that the invariant subspaces of 7' reduce 7T ([10], Theorem 7).
It is well known that the conditions (a) and (b) are fulfilled by the
spectrum of any completely continuous operator. In particular: if T
is a completely continuous normal operator, then every invariant sub-
space of T reduces 7. A more elementary proof of this may be based
on Corollary 2:

COROLLARY 3. If T is a completely continuous mormal operator,
and v~ 1s a closed linear subspace invariont under T, then ¢~ reduces T.

Proof. Indeed, it suffices to assume that 7T is hyponormal and ..+~
is an invariant subspace such that T/_#" is completely continuous. Since
T|/_+" is hyponormal ([4], Exercise VI. 9.10), it follows from Corollary 2
that T/ s~ is normal, hence _+~ reduces T by ([4], Exercise VI. 9.9).

Quoting ([4], Theorem VII. 3.1), we have:

COROLLARY 4. If T is a hyponormal operator, then
I T|| = LUB{(Tz|2)|:[«|l =1}.

Incidentally, if T is hyponormal, it is clear from Corollary 4 that
I T*|| = LUB{|(T*z|%)|:||x|l < 1}.

COROLLARY 5. If the completely continuous operator T is semi-
normal in the sense of [8], then T is normal.

Proof. The definition of semi-normality is that either TT* < T*T
or TT* = T*T, in other words, either T or T* is hyponormal; since
both are completely continuous (see [4], Exercise VIII. 1.6), our as-
sertion follows from Corollary 2.

Let us say that an operator T is mnearly mormal in case T com-
mutes with T*7T. The structure of nearly normal operators has been
determined by Brown, and it is a consequence of his results that a
completely continuous nearly normal operator is in fact normal (see the
concluding remarks in [5]). This may also be proved as follows. An
elementary calculation with square roots shows that a nearly normal
operator is hyponormal (see [2], proof of Corollary 1 of Theorem 8); as-
suming also complete continuity and citing Corollary 2, we have;
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COROLLARY 6. If T is a completely continuous nearly normal opera-
tor, then T is normal.

Finally,

COROLLARY 7. If S = T + NI, where T is a completely continuous
operator, and if S is hyponormal, then S is normal.

Proof. Since S is hyponormal, so is T ([4], hint to Exercise VII.
1.6), hence T is normal by Corollary 2; therefore S is normal. So to
speak, the C*-algebra of all operators of the from T + )\, with T
completely continuous, is of “‘finite class’’.

We close with an elementary remark about the adjoint of a hypo-
normal operator: if T is hyponormal, then s(T*) = a(T*). For, suppose
A does not belong to a(T*), and let ¢t = A*. Then, (T'— pI)* = T* — NI
is bounded below ([4], Exercise VII. 3.8), and since T — I is also hypo-
normal, the relation (T — pIXT — pI)* < (T — pI)*(T — pI) shows that
T — pI is also bounded below. Then T — p¢I is invertible ([4], Exercise
VI. 8.11), hence so is T* — X1, thus » does not belong to s(7*).

REFERENCES
T. Andd, Forthcoming paper in Proc. Amer. Math. Soc.

. S.K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc.,
10 (1959), 175-182.

, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111-114.

, Introduction to Hilbert space, Oxford University Press, New York, 1961.

A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723-728.

P.R. Halmos, Commutators of operators, II., Amer. J. Math., 76 (1954), 191-198.

, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea,
New York, 1951.

8. C.R. Putnam, On semi-normal operators, Pacific J. Math., 7 (1957), 1649-1652.

9. C.E. Rickart, General theory of Banach algbras, D. van Nostrand, New York, 1960.
10. J.yWermer, On invariant subspaces of mormal operators, Proc. Amer. Math. Soc.,
3 (1952), 270-277.

1
2
3.
4.
5
6
7

STATE UNIVERSITY OF IOWA








