
A NOTE ON HYPONORMAL OPERATORS

STERLING K. BERBERIAN

The last exercise in reference [4] is a question to which I did not
know the answer: does there exist a hyponormal (TT* ^ T*T) com-
pletely continuous operator which is not normal? Recently Tsuyoshi
Andδ has answered this question in the negative, by proving that every
hyponormal completely continuous operator is necessarily normal ([1]).
The key to Andδ's solution is a direct calculation with vectors, show-
ing that a hyponormal operator T satisfies the relation || Tn\\ — || T\\n

for every positive integer n (for "subnormal" operators, this was ob-
served by P. R. Halmos on page 196 of [6]). It then follows, from
Gelfand's formula for spectral radius, that the spectrum of T contains
a scalar μ such that \μ\ = || T\\ (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from ano-
ther direction, via the technique of approximate proper vectors ([3]);
1n this approach, the nonemptiness of the spectrum of a hyponormal
operator T is made to depend on the elementary case of a self-adjoint
operator, and a simple calculation with proper vectors leads to a scalar
μ in the spectrum of T such that \μ\ = || T\\. This is the Theorem
below, and its Corollaries 1 and 2 are due also to Andδ. In the remain-
ing corollaries, we note several applications to completely continuous
operators.

We consider operators ( = continuous linear mappings) defined in a
Hubert space. As in [3], the spectrum of an operator T is denoted
s(T), and the approximate point spectrum is a(T). We note for future
use that every boundary point of s(T) belongs to a(T); see, for example,
([4], hint to Exercise VIII. 3.4).

LEMMA 1. Suppose T is a hyponormal operator, with \\ T\\ ̂  1,
and let ^ he the set of all vectors which are fixed under the operator
TT*. Then,

( i ) ^ is a closed linear subspace,
(ii) the vectors in ^f are fixed under T*T,
(iii) ^ is invariant under T, and
(iv) the restriction of T to ^€ is an isometric operator in

Proof. Since ^t = {x: TT*x = x} is the null space of I - TT*, it
is a closed linear subspace. The relation TT*^T*T^I implies
0 ^ 7 - T*T ^ I - TT*, and from this it is clear that the null space
of I - TT* is contained in the null space of / - T* T. That is, TT*x = x
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implies T*Tx = x. This proves (ii). (Alternatively, given TT*x = x,
one can calculate directly that || T*Tx — x ||2 ^ 0.) If x e ,//, that is if
TT*x = xy then the calculation TΓ*(Tίc) = T(T*Tx) = Tx shows that
Txe^f; moreover, || Tx ||2 =(T*Tx\x) = \\ x ||2.

LEMMA 2. Every isometric operator has an approximate proper
value of absolute value 1.

Proof. Let U be an isometric operator in a nonzero Hubert space.
Suppose first that the spectrum of U contains 1; since || Z7|| = 1, it
follows that 1 is a boundary point of s(U) (see [4], part (ix) of Exer-
cise VII. 3. 12), hence 1 is an approximate proper value for U.

If the spectrum of U does not contain 1, that is if I — U is in-
vertible, we may form the Cayley transform A of U; thus,

A = i(I+ U)(I- U)-1 = i(J- U)-\I+ U) .

Using the hypothesis U*U =1, let us show that A is self-adjoint. Left-
multiplying the relation (I — U)A = i(I + U) by Z7*, we have (U* — I)
A = i(U* + I), thus ( I - 17)*A = - i(I + U)*. Since ( I - £7)* is in-
vertible, with inverse [(I— Ϊ7)"1]*, we have

A = - i[(I- U)-ψ(I+ U)* = - i[(I+ U)(I- U)~ψ = A* .

It follows that the operators A + ii and A — ii are invertible, and
solving the relation (I — U)A = i(I + U) for [/, we have

U = (A - U)(A + ii)-1 = (A + U)-\A - ii) .

Incidentally, since U is the product of invertible operators, we conclude
that U is unitary.

Since A is self-adjoint, we know from an elementary argument
that the approximate point spectrum of A is non empty ([7], Theorem
34.2). Let a e a{A), and let xn be a sequence of unit vectors such that
|| Axn — axn 11 —̂  0. Define μ = (a + i)-\a — i); since a is real, μ has
absolute value 1. It will suffice to show that μ is an approximate pro-
per value for U; indeed, | |(Ϊ7— μl)xn\\—»0 results from the calculation

U- μl = (A + U)-\A - ii) - (a + i)-\a - i)I

= (a + i)~\A + il)-\{a + i)(A - ii) -(a- i)(A + ii)]

= 2i(a + ϊ)-\A + U)-\A - al) ,

the fact that || (A — al)xn \\ —•(), and the continuity of the operator
2i(a + i)~\A + U)-\

Incidentally, if U is an isometric operator such that the spectrum
of U excludes some complex number μ of absolute value 1, then μ^U
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is an isometric operator whose spectrum excludes 1. The proof of
Lemma 2 then shows that μ~ιU is unitary, hence so is U. In other
words: the spectrum of a nonnormal isometry must include the unit
circle \μ\ = 1; indeed, Putnam has shown that the spectrum is the unit
disc \μ\ ̂ 1 ([8|, Corollary 1). The latter result is also an immediate
consequence of ([5], Lemma 2.1), and the fact that the spectrum of
any unilateral shift operator is the unit disc.

THEOREM. (Andδ) Every hyponormal operator T has an approxi-
mate proper value μ such that \ μ | = 11 T \ | .

Proof. We may assume || T\\ = 1 without loss of generality. Since
TT* ^ 0 and || TT* || = 1, we know that 1 is an approximate proper
value for TT*. Since the property of hyponormality is preserved under
^-isomorphism, we may assume, after a change of Hubert space, that
1 is a proper value for TT* ([3], Theorem 1). Form the nonzero clo-
sed linear subspace ^£ — {x : TT*x = x}; according to Lemma 1, ̂ fί is
invariant under T, and the restriction of T to ̂ /ί is an isometric opera-
tor U in the Hubert space ^/έ'. By Lemma 2, U has an approximate
proper value μ of absolute value 1. Let xn be any sequence of unit
vectors in ^ such that || Uxn — μxn || —* 0. Since Uxn = Txn, obviously
μ is an approximate proper value for T, and | μ | = l = | | T | | .

COROLLARY 1. A generalized nilpotent hyponormal operator is
necessarily zero.

Proof. If T is hyponormal, then s(T) contains a scalar μ such
that \μ\ = || T\\ . For every positive integer n, it follows that s(Tn)
contains μn (see [7], Theorem 33.1); then || T\\n = \μ\n = \μn\ ̂  | |Γn | | ^ ||T||W,
and so || Tn \\ = || T | | \ If moreover T is a generalized nilpotent, that
is if lim || Tn\\lln = 0, then || Γ|| - 0.

COROLLARY 2. If T is a completely continuous hyponormal opera-
tor9 then T is normal.

Proof. The proof to be given is essentially the same as Andό's.
The proper subspaces of T are mutually orthogonal, and reduce T ([4],
Exercise VII. 2.5). Let ̂ £ be the smallest closed linear subspace which
contains every proper subspace of T, and let ̂ ^* = ̂ C 1 ; clearly ^yV" reduces
T, and the restriction T\Λ~ is a completely continuous hyponormal opera-
tor in .xT ([4], Exercise VI. 9.18). If the spectrum of Tj^V were dif-
ferent from {0}, it would have a nonzero boundary point μ, hence μ
would be a proper value for Tj^yK (see [4], Theorem VIII. 3.2); this is
impossible since yK1 = ̂ £ already contains every proper vector for T.
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We conclude from the Theorem that TjΛ" = 0, and this forces Λ^ = {0}
(recall that ^V*L contains the null space of T). Thus, the proper sub-
spaces of T are a total family, hence T is normal by ([4], Exercise
VII. 2.5).

Suppose T is a normal operator whose spectrum (a) has empty
interior, and (b) does not separate the complex plane. Wermer has
shown that the invariant subspaces of T reduce T ([10], Theorem 7).
It is well known that the conditions (a) and (b) are fulfilled by the
spectrum of any completely continuous operator. In particular: if T
is a completely continuous normal operator, then every invariant sub-
space of T reduces T. A more elementary proof of this may be based
on Corollary 2:

COROLLARY 3. If T is a completely continuous normal operator,
and ^Γ is a closed linear subspace invariant under T, then Λ" reduces T.

Proof. Indeed, it suffices to assume that T is hyponormal and ^A^
is an invariant subspace such that T\Λr is completely continuous. Since
Tj^V^ is hyponormal ([4], Exercise VI. 9.10), it follows from Corollary 2
that T\^r is normal, hence Λ^ reduces T by ([4], Exercise VI. 9.9).

Quoting ([4], Theorem VII. 3.1), we have:

COROLLARY 4. If T is a hyponormal operator, then

\\T\\ = LUB{\(Tx\x)\:\\x\\^l}.

Incidentally, if T is hyponormal, it is clear from Corollary 4 that

|| Γ* || = Lire{ |(Γ * I s) I :||aj H ^ l } .

COROLLARY 5. If the completely continuous operator T is semi-
normal in the sense of [8], then T is normal.

Proof. The definition of semi-normality is that either TT* ̂  T*T
or TT* ̂  T*T, in other words, either T or T* is hyponormal; since
both are completely continuous (see [4], Exercise VIII. 1.6), our as-
sertion follows from Corollary 2.

Let us say that an operator T is nearly normal in case T com-
mutes with T*T. The structure of nearly normal operators has been
determined by Brown, and it is a consequence of his results that a
completely continuous nearly normal operator is in fact normal (see the
concluding remarks in [5]). This may also be proved as follows. An
elementary calculation with square roots shows that a nearly normal
operator is hyponormal (see [2], proof of Corollary 1 of Theorem 8); as-
suming also complete continuity and citing Corollary 2, we have;
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COROLLARY 6. If T is a completely continuous nearly normal opera-
tor, then T is normal.

Finally,

COROLLARY 7. If S — T + λl, where T is a completely continuous
operator, and if S is hyponormal, then S is normal.

Proof. Since S is hyponormal, so is T ([4], hint to Exercise VII.
1.6), hence T is normal by Corollary 2; therefore S is normal. So to
speak, the C*-algebra of all operators of the from T + λ/, with T
completely continuous, is of "finite class " .

We close with an elementary remark about the adjoint of a hypo-
normal operator: if T is hyponormal, then s(T*) = a(T*). For, suppose
λ does not belong to α(Γ*), and let μ = λ*. Then, (T - μl)* = Γ* - λJ
is bounded below ([4], Exercise VII. 3.8), and since T — μl is also hypo-
normal, the relation (T - μI)(T - μl)* ^ (T - μl)*(T - μl) shows that
T — μl is also bounded below. Then T — μl is invertible ([4], Exercise
VI. 8.11), hence so is Γ* - λJ, thus λ does not belong to s(T*).
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