ON THE NORLUND SUMMABILITY OF FOURIER SERIES

B. N. SAHNEY

1. Let f(x) be a function integrable — L over the interval (—m, )
and periodic with period 27, outside this interval.

Let
(1.1) ¢(t) = 3{f(x + t) + f(x — t) — 2s(2)} ,
and
1.2) ta, + é(an cos nx -+ b, Sin nx)

be the Fourier Series of the function ¢(t).

Norlund Summability of Fourier Series (1.2) has been considered
by Woronoi [6] and later on by Norlund [4]. These results have been
extended by Hille and Tamarkin [2], [3], and later on by Astrachan
[1]. Recently, extending a result due to Hille and Tamarkin [3],
Varshney [5] has proved the proved the following:

THEOREM. V. If the sequence {p,} satisfies the following con-
ditions:

(1.3) nlonl oo p,),
log n

2 k| Dy — De|
(1.4) = log (b + 1) <ecl|P,|
and

n Pk
(1.5) k=om<clpnl
and also if
(1.6) 3.(t) = /I 9(0) | du = o(t/log 1)

then the Fourier Series (1.2) associated with the fumction ¢(t) s
summable by Norlund means t.e. summable (N, p,) to the sum zero
at the point t = x.

The object here is to prove the following:

THEOREM. If the sequence {p,} satisfies the following conditions
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(1.7 _npal <c¢|P,]|
(log n)"
and
% k| pe — Dia
1.8 LSk Lkl | P,
(1.8) & Tog (e + iy~ 17!

and also if

(1.9) B,(t) = S:l () | du = o{t / <log—i—>r}
and

then the Fourier Series (1.2) associated with the function ¢(t) is
summable by Norlund means i.e. summable (N, p,) to the sum zero
at the point t =x for all 0 = r =< 1.

2. The following notations will be used in the sequel.

We write S,(x) as the nth partial sum of the series (1.2) and the
Norlund transform of the partial sum of the series (1.2) we denote
by o,.(x).

Also we write ; where P, = P(n) ,

_ 1 &, Sin(k+1/2¢
(2.1) Nt = = B pun

We recall that the conditions of regularity of the method of sum-
mation are

(2.2) 21 = 2| o | < c| P,
k=0 k=0

and

2.3) {p./P,}—0 as m— oo,

3. If we write
(3.1) S,(x) = lg"¢(t)wdt
7T Jo t

then we have
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o) = —3— "9 (S p.- SR E L 12 )qy

wP(n) Jo
= | seN.0at
n/n 8 x
= (1,4 1 Dsonoa
(3.2) =1 + Iz + I3 , say
where 0 is fixed.
Hence
S 0 S S — b g
L=5m Sm > (pe Sin (0 — k + Ht)dt

t
8 n
- 77.'Pl(n) Sm Lit) 2, PifSin (n + $)¢ - cos kt — cos (n + 4)t - Sin ke}di
(3'3) =1,—1,, say.

Now, if we write

L, ——l——rl 90 Sin(n + )t { S+ S }pk cos kt - dit

- wP(n) t Kzt
= —7?}(—”3 Si/nf%)— Sin (n + $)¢ nglp" cos ktdt
(3.4) + ﬂ—Pl@Simﬁb(t—t) -Sin (1 + Dt 3, pe cos kit - dt
= %‘131?7585/29 Sin (n + $)t3,dt
E}_@ﬁ/n@ Sin (1 + )t5,dt
(8.5 =IL,,+1,,, say.

4. We shall require the following lemma.

LEMMA. If we write

(4’1) [Du] =170, R,=ri+r+r.+ - +7,
and
(4.2) 'r(u) = /r[‘w] ’ R(u) = R[u]

where [u] denotes the integer (largest) Zu, and

4.3) V=0, Vi=Xln-pal, Vi=Va
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then we have, from (3.4),

(4.4) 5, > P,cos1> 3P
and
(4.5) |5,] = ij-{r(%) +r(n) + Vin) — V<% _ 1)} :

This is known Hille and Tamarkin [3].
5. Now we shall prove the theorem.

Proof. Since

1= 27,0t
T
= L1161 0@myar
— OB, by (L.9)
= om|of¢/(10s ) } [
(5.1) =0Q1), as n— o ,

From (8.5) and Lemma, above, we have

1 {90 g; nep(L
Iz,1,1 FP(%) len ; Sln(’ﬂ+ 2) P( >dt

_ ﬂpl(n) SB/ (tt) Sin nt P< )dt + o),

by the regularity of the method of summation.

_ 1 Ss_m ot + 7/n) P< 1 )Sin ntdt + o(1)

TP(n) Jo (t + mn) t+ wn
_ 1 @) g; AN, 1 e+ wm)g;
~ 21P(n) Sz/n t Sin ntP( t >dt 2 P(n) So t+ w/n Sin né

(t = )dt + o(1)

T S,_’ 20 sinni ()it + 52|, A sinns

2n P(n) t
p(D\ge — L (79t + xn) 1
P<'t_>dt 2mP(n) S & T ) Sin ntP(-——t e )dt
1 (o g(t + zn) 1
"~ 27P(m) Sm t + x/n) Sinnt P (————+ s >dt + o(1)
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271';(11,) S {¢(tt) < t ) ¢E§t_:— ﬂj.r/{:) P < 7 +17r n )} Sin nt dt

- ZE;(n)S 8+ ) in iy p(——Lae

t+ w/n t+ wn
1 [ ¢s®)p
0 Ss_ e ( >Sln ntdt + o(l)

= g b P () - SR ()

{¢(t +t /n) p <7> _ ot +t m/n) p( t +1ﬂ/n )}
gt p(_ L) gttmmp( L \]sinntar

t+ w/n t+ m/n t + 7/n
1 $(¢ + 7/n) 1
27'L'P(n) S t+ wn Sinnt P< t + w/n )dt
1

+ 5P S:_ A9 Sinnt P()dt + o)

- by o=t sl
) - s

TN :
+P(— - Jot + /)————t(Hﬂ/n)}Sm%tdt

- SO ———9”(:: ’T//") Sinnt P(~ 17[/% Yat
+ S:_ . ¢(t) Sinnt P( 1 )dt)
+ o(1)

6.2 =(P,+ P+ P)+ P, + P;, say.
By virtue of (1.10) we have

(5.3) P,=0(), as n— o .
Also

- 27rli(n) Ss_l = +t ) { <t> B P<—t-+%r—/5)} Sinnt d .

Since, for all 0 < 1/a < 1/8, we have

P(3)- o(3)= (o - of(2)  o(2)
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Hence

<P(n) WL 10+ mim 27 r(oyis)
( f/ (¢ + fn) (1) L)

(P( n) S 9+ m/m) |7 (t +177:/n >dt—t>
(5.4) =P,,+ P,, + P,, say.

1 1/t 3
(t + /) ——S ’I‘(S)ds}
t Ju+zin xln

7
+ o)) e G s
)

(5-5) = Pz,l,l
We have

Para = O< (ln) >{0<(log11/t) >SI:: +/n )r(s)ds}i/n by (1.9)
>{ (10;l % S T(S)ds}

P(n)
to (P:(l'n) >{(log11/3)” Sij‘:ﬁhv/n) T(S)ds}
(5.6) =o(l), as m— o, by (1.8).

)

Pras= O( P%n))gs 0(@)‘“ S 1(s+al )’r(s)ds (1.9)

N P%’n) ) r/n t(lo(gztl/t)r Sz:t”m r(s)ds

1 S’n/n’ Sl/s dt
0( P(n)> 1/(8+x/n) T(S)ds (1/8)—=/n t(log I/t)r - 0(1) ’

by change of order of integration.

- O(P%n))gj//:; In )(l—(/’)‘;'S)ld/—:)-Sl(/j) x/n )dtt +ol)

_ 1 nlm ,r(s)ds
B O<P(n)>§ 1/(8+x/n) (lOg‘ 1/8) ( /n) + 0(1)

Il
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_ 1 n (k)
O( P(/n)) =0 (log (k + 1)) o)
6.7 =o(l), as m— o, by (1.8).

Finally, considering P,,,, we have

Pows = gy o a5 ()7 27 09

_ (P( )) Sty dt
n

()
)

= (log 1/t) t*

S
S r(s) 4

niz(log s)
oy 20 log G + D
(5.8) =o0(l) as n— o, by (1.8).

Il

II

Thus from (5.5), (5.6), (5.7) and (5.8) we see that
(5.9) P,,=0() as n— oo .

Estimating P,, we find that

P, = 0( P% ))S | 6(t + 7/m) | 1'(%)

= o(gyllzor(p) L.+ 1. 20r(H)%
—~ Si/nél(t)%—dfr'(%)} + (1) .

Here, the integrated part is o(1), by virtue of (1.7) and the fact
that P(n) — o as m— . The second part is

"(73%7)) Si,n"<aTg11/5r‘>"”(%>d—f , by (19)

_ 1 U8 p(s) d

0< P(n)> gn/x s(log s)” 5
=o(1), by (1.8).

The third term is

565 S,"(a—og—ﬁ‘/ﬁ +r(3)

— O( 1 > |7 — T
P(n)/ = (log (k + 1))
=o0(l) as m— o, by (L.8).
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Thus we see that
(5.10) P,,=0(1) as n— oo,

Similarly, we can show that

(6.11) P,,=001) as n— oo .
Hence by (5.4), (56.9), (5.10) and (5.11) we get
(5.12) P,=0(1) as n— oo,

Evaluating P, we have

Py = ( P(n )>§iml¢(t + n/n)lP( t +1Tc/n> 1747 jtn/n)

= o( L[] 19t + mpm) &

o) foc 03]+ o, 8w

= o<%> + o(-@—) by (1.9)
(513) =o0(1), as m— oo,

And
P, = 2”113( )5 $(t + 7/n) Sin nt p( t +1ﬂ/n) : J:uﬂ -
= 27:;(%) Siln é(t) Sin nt P( >dtt
o150 0p(1):
= o) sy at
- "(ﬁo?lh?) ., by (1.9)
(5.14) =0(1) as n— oo,
Also
P = (). 501 P(5)F
(5.15) =o(1),

by the regularity of the method of summation and since the interval
(0 — w/n, 6) tends to zero as n— oo,
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Consequently from (5.2), (5.3), (5.12), (5.18), (5.14) and (5.15) we
have

(5.16) L.,=o0), as n— o .

Now

Lz = ;P—l(qas;fiiﬂ Sin (n + 3)t3,dt
- ol 22 22
+ %[V(n) — V(%- . 1)]}dt , by (4.5)

(5.17) =Q,+ Q.+ Q,, say.

We have

@ = 055V, Er ()2

= (e M (D2 L+ Ll (D)%
o) w4 () a9

Here the integrated part is o(1), by (1.7) and the fact that P(n)—
o as n— . Also the second term is

"(’1%5) Si”(%) % (loglllt)’
1/8
= °< P%n) ) S n/raﬁgyds
— ( 1 ) 2 k| De — Dr
P(n)/ &= (log (k + 1))
=o0(1) by (1.8).

The third part is

1 U8 sdr(s)
0< P(n) ) g’n/t (log s)"
— 1 5 KD — Di |
=o( P(n)) & (log (& + 1))
=o0(1) as n— o, by (1.8).

Thus we see that

(5.18) Q. =o0() as n— oo,
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Now

Q,

o), 20

0( §iﬁ§>{(@ “’) R
(Foy) * (Fomiomny)

+of ;((Z)) ) S in t’(logtl/t)'
= o WB MY 4 (1) 4 of _TlIn__}

P(n)(log n)
= o(1) + o<-71;>

(5.19) =o0(l) as n— oo,

Lastly

I ()
S/ t dV( 1>} ’
The integrated part is o(1), by (1.7) and the fact that

= ko — ol . AR
" S (log (k + 1)’ e

Then, by (1.8) we have
V.= i | Dr — Di |
k=0

- kgilo{lo_g(%";_l)i(wk — W)

- :2;: W, { A[ {log (llcc + 1 ]} 1 Wilog 7(:@ + 1)}

= o{R(n)} .

Now the second term is
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{0 ]

2 _[V(m) ~ V(s - D]

P(n) S 15 (log s)”

= 0{ P%n) S n {log (ss+ o7 ¢ V(S)}

+ o iy V0 = Ve = D) gt +1)}]

- 1 k| Dy — Dy 1 n|py— Do
of P(n) ) {log (& + 1>}f} +of P(n) {log (n + 1)}7}

which is o(1), by virtue of (1.7), (1.8) and the fact that V, = o{P(n)}.
The third term is

0{ P%n) Ssl t(logl 1ty V(% - l)l} , by (1.9)

= O{ P](ln) } So s{lljgv(is; Sy

which is o(1), as in the case of second term,
Thus we have

(5.20) Q. =0(1) as n— oo,
From (5.17), (5.18), (5.19) and (5.20), we have

(5.21) Li,=0() as n— o,
From (3.4) (3.5), (3.16) and (5.21), we see that
(5.22) Li=0(1) as n— o,

Similarly, we can show that

(5.23) L,=01) as n-— o,
From (8.3), (5.22) and (5.23) we get
(5.24) L=0() as n— .

Lastly by Riemann Lebesgue Theorem and the regularity of the
method of summation, we have, as n— o

(5.25) I =o0(1).

Collection of (3.2), (5.24) and (5.25) as » — oo, completes the proof
of the theorem.

I am much indebted to Professor M. L. Misra for his valuable
guidance during the preparation of this paper.
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