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1. This paper deals with proper solutions of the second-order
nonlinear differential equation

(1.1) y" = yF(yf x) ,

where ( i ) F(u, x) is continuous in u and x for 0 ^ u < + oo and

x =. XQ>

(ii) F(u, x) > 0 for u > 0 and x ^ a?0,

(iii) F(u, x) < F(v, x) f o r e a c h x ^ x 0 a n d 0<u<v< + co,

By a proper solution we understand a real-valued solution y of (1.1) which
is of class C2[a, oo), where x0 ^ a < + oo. An example of equations
of this type is the Emden-Fower equation [2, chapter 7]

(1.2) y" = xxyn .

Our interest is in the existence and asymptotic behavior of positive
proper solutions of (1.1). Since F(y, x) > 0 for y > 0, all positive
solutions of this equation are convex. They are therefore of two types:
(1) those which are monotonically decreasing and tending to nonnegative
limits as x —• + co, and (2) those which are ultimately increasing and
becoming unbounded as x becomes infinite.

In this section we shall consider proper solutions which are of
type (1), i.e., solutions which are confined to the semi-infinite strip
S — {(x, y): 0Sy^kK,a^Lx< +oo}. We observe that in view of
properties (i) and (iii) the function yF(y, x) satisfies a Lipschitz con-
dition

(1.3) I uF(uf x) - vF(vf x) \ ^ H\ u - v \

in every closed rectangle R = {(x, y): 0 ^ y S. K, a ^ x ^ 6}, where
H = H(K, α, 6). Before taking up the existence of such solutions, we
first derive the following lemmas.

LEMMA 1.1. Let u{x) be a nonnegative solution of (1.1) passing
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through two points (α, A) and (6, B), where a < b and A, B > 0.
Then the solution is unique.

Proof. Suppose that v(x) is a second nonnegative solution such
that u(a) = v(a) = A and u(b) = ^(6) = JB. We first assume that (α, A)
and (δ, B) are two consecutive points of intersection of u and v and
that ΐ φ ) > v(x) for α < a? < b. Using (1.1) and property (iii) we find
that

(1.4) Ϋ(u"v - uv")d% = [buv[F(u, x) - F(v, x)]dx > 0 .

Since

(1.5) \\u"v ~ uv")dx - B[u'(b) - v'{(b)] - A[u'(a) - v'
Ja

and since u'(a) > v'{a) while u'(b) < v'(b), the right-hand side of (1.5)
is clearly negative which contradicts (1.4). If u and v should have
other points of intersection on (α, b) we can partition the interval
[α, b] into several segments whose end points are the abscissas of the
consecutive points of intersection of u and v. The same argument
leads to a contradiction in each case. This proves the assertion.

LEMMA 1.2. Let u(x) be a nonnegative solution of (1.1) passing
through (α, A) such that limx_b u'(b) = 0, where b may be finite or in-
finite. Then u{x) is unique.

The proof is identical with that of Lemma 1.1 since the right-
hand side of (1.5) will also be negative under the present assumptions.

The next lemma guarantees the existence of solutions passing
through two points, provided the abscissas of these points are suffi-
ciently near each other.

LEMMA 1.3. Let (α, A) and (ό, B) be two points such that

a < 6, A, JS > 0

(6 — α) is small enough so that

(1.6) H(b ~af< p<l

and

(1.7) L(x) > \bg(x, t)L(t)F(Lf t)dt ,
Ja

where
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__ A(b - x) + B{x - a)
j^χu/j

and

(1.8) L(x)
(b-a)

Φ -a)
(i.9> Λ O = ( 4 _ ( ) ( I : α )

φ _ x){t _ g)

(6 - α) ' * ~ * '

Then there exists exactly one positive solution yeC2[a,b] of (1.1)
which passes through these points.

Proof. In view of Lemma 1.1, a solution, if it exists, is neces-
sarily unique. To establish the existence we replace the boundary
value problem by the equivalent integral equation

(1.10) y(x) = L(x) - \bg(x, t)y(t)F(y, t)dt ,
Ja

where L(x) and g(x, t) are given by (1.8) and (1.9) respectively. To
solve (1.10) by successive approximations, we introduce a sequence
{yk(x)} of twice diίferentiable convex functions passing through (α, A)
and (6, B) defined by

(1.11)

yo(x) = L(x)

ykn(x) - L(x) - \bg(x, t)yk(t)F(yk, t)dt
Ja

k = 0, 1, 2, -. .

Since both g(x, t) and L(x) are positive in (α, 6), (1.7) shows that
0 < yx{%) < L(x). If we assume that 0 < yk(x) < L{x)y then (1.7) and
property (iii) implies

L(x) > yk^(x) = L(x) - \bg(x, t)yk(t)F(ykf t)dt
Ja

> Has) - [hg(x, t)L(t)F(L, t)dt = yfa) > 0 .
Jo

It follows by induction that 0 < yk(x) ί£ L(x) ^ max {A, B) for all
The sequence {yk(x)} is thus positive and uniformly bounded.

Let K = max {A, B) and M — sup .F(iΓ, x), then

(̂ , t)L{t)F{L, t)dt

'flf(αj, t)dt
a

- a)2 .
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If R denotes the closed rectangle defined by 0 S V ̂  K and a ^ x :£ b,
then by (1.3),

uF(u, x) — vF(v, x)\ ^ H\u — v\

for all points of R. Moreover, (1.11) shows that

I V^(x) - yk(x) I S H[ g(x, t) \ yk{t) - yk^(t) \ dt
Ja

so that we have, by induction,

(1.12) I ykΛ1{x) - yk(x) \ ̂  (KM)Hk(b - α)2<*+1> .

We thus obtain the estimate

(1.13) I yn(x) \^K+ HιKM± [H(b - α a )] f c M

1

which, in view of (1.6), implies the uniform convergence of {yn(x)}.
This proves the lemma.

As pointed out before, a positive proper solution of (1.1) is either
monotonically decreasing or monotonically increasing. As the following
theorem shows there always exists exactly one solution of the former
type which passes through a given point (α, A).

THEOREM 1.1. For any given point (a, A) τυhere A > 0, there
exists exactly one positive proper solution y of the class C2[a, co)
which passes through (α, A) and is monotonically decreasing in [a, co).

To prove this result we consider the variational problem of mini-
mizing the functional

(1.14) J(y) = \ \{yj + 2h(y, x)]dx ,

where

(1.15) h(y,x)= VtF(t,x)dt,

within the class Ω of all nonnegative functions y e Dτ[af oo) such that
y(a) = A and that the integral (1.14) exists. Since (1.1) is the Euler-
Lagrange equation of problem (1.14), the solution y of (1.14) will be
a solution of (1.1), provided, of course, y exists and is of class C\a, co).

Since the functional J(y) is positive-definite, J(y) has the trivial
lower bound 0. We next remark that we may restrict our attention
to positive functions ye Ω which are convex in [α, co). To show this,
we assume that the positive function y is concave in an interval
(c, d), i.e.,
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y(x) ;> *Wd - χ ) + y(d)(x - G) s L(x) .
(d-c)

In view of hypothesis (iii) and the definition of h(y, x), we then have

h(L, x) ^ h(y, x), c ^ x S d ,

and, by a variational argument,

(1.16)

unless ?/(#) = L(x) in (c, d). Hence, if y* denotes the function obtained
from y by substituting L(x) for y(x) in (c, d),

WO < W .
Also, we need only consider positive convex functions y which are

nonincreasing in [α, co), since, as (1.16) shows, the functional J(y)
becomes infinite for convex increasing functions. Finally, the problem
J(y) — min is not vacuous, since the function v defined by

v(x) =
0,

b — a'

is in Ω and evidently J(v) < C < +co.
The proof of the theorem depends on the validity of an analogous

result for a finite interval [α, 6] and the performing of a suitable
passage to the limit b —•> oo. The result in question is the following:

LEMMA 1.4. There exists a unique positive solution u(x) of
equation (1.1) which passes through the two points (a, A) and (6, B)f

where b > a and A, B > 0. If v denotes any other positive function
of Dλ[ay b] for which v(a) = A, v(b) = B, and if J(y; b) denotes the
functional

(1.14') J(y; b) - [[(y'Y + 2h(y9 x)]dx ,

then

(1.17) J(u; b) < J(v; b)

unless v(x) = u(x) in [α, 6].
We first assume that the interval [α, b] is short enough so that

conditions (1.6) and (1.7) are satisfied. Lemma 1.3 will then guarantee
the existence of the unique positive solution u of (1.1) through the two
points, and all we have to prove is inequality (1.17). To do so, we
note that the solution w(x) of the linear differential system
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(1.18)

'w" = p(x)w, p(x) > 0

w(ά) — A

w(b) = B

satisfies the inequality

(1.19) \b[(wΎ + p(%W2]dx < [[(v'Y + p(x)v2\dx ,

where v is any other function of Dx[a9 6] which satisfies the same
boundary conditions and does not coincide with w(x). Inequality (1.19)
is an obvious consequence of the identity

b

[{vf — w'f + p(x)(v — wf\dx
a

( O 2 + p(x)v2]dx - \\(w'Y + p(x)w2]dx

which is obtained by expanding the left-hand side and observing that,
in view of (1.18) and the boundary conditions,

S b Γb Γb

v'w'dx = \vw% — I vw"dx = [vw']h

a — \ pvwdx
a J a J a

and

S b Γb

(w'2 + ww")dx = I (wr2 + pvf)dx .
a Ja

Setting, in particular, p(x) = F(u, x), we have w(x) = u(x) and
thus, by (1.19)

(1.20) Γ [ ( O 2 + u2F(u, x)]dx < [b[(Vy + v'2F(u, x)]dx .

Since F(s, x) is a nondecreasing function of s for s > 0, the function
h(u, x) defined by (1.15) is convex in u. Hence, for nonnegative u and
v,

2[h(u, x) ~ h(v, x)] ^ (u2 - v*)F(u, x) .

Combining this with (1.20), we obtain

\\{uγ + 2h(u, x)]dx < [[(v'Y + 2h(v, x)\dx
J a j a

unless u and v coincide. This establishes (1.17) in the case in which
the interval [α, b] is short enough so as to satisfy conditions (1.6) and
<1.7).

If b is an arbitrary value in (α, oo), it is sufficient to consider the
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problem

\J(y; b) = [b[(yΎ + 2h(y, x)\dx = min
(1.21) J σ

(y(a) = Ay y{b) = B

in the class Ωb of nonnegative convex functions y e Z>x[α, δ]. We thus
may assume

0 g y(x) fg max (A, 5) = K, a ^ x ^b .

Now we divide the interval [α, δ] into a finite number of sub-
intervals [ak, αΛ+1] (α = α0 < αx < am = δ) in each of which the
assumptions of Lemma 1.3 are satisfied. If y(ak) =Ak, where yeΩb,
the conditions restricting the length of these subintervals will be

(1.22) H(ak[ί - akγ < p < 1

and

(1.23) £* rigk(x, t)Lk(t)F(Lk, t)dt < Lk(x) ,

where

(1.24) Lk(x) = Aίά2±Σi χ) + Ak^x 5*L
V^/f-fl &k)

and

'(αfc-κ —

(1.25)

x < t .(ak+1 - α Λ )

Since Afc g max (A, B) = IT, we have F[Lfc(ί), ίj < F(iΓ, ί). Hence, if
M = maxFίiΓ, #) in [α, δ]? condition (1.23) will be satisfied if

Mgk(x, t)Lk{t)dt < Lk{x) .

In view of (1.24), this will be true if both the inequalities

gk(xf t)(akι - t)dt < (ak^ - x)

and

(1.26) M \ak+1gk(xf t)(t - ak)dt < (x - ak)
Jak

hold. Since these inequalities are equivalent, it is sufficient to con-
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sider one of them. A computation shows that

1
= — (x — ak)(ak+1 - x)(x + ak+1 - 2ak) ,

6

and (1.26) will therefore follow if

M
-—(ak+1 - x)(x + ak+1 - 2ak) < 1 .

Since

(ak+1 - x) ^ (ak+1 - ak)

and (x + ak+1 — 2αfc) = (x — ak) + (ak+1 — ak) S2{ak+1 — ak), t h e length

of the interval is thus restricted by the condition

M(ak+1 -ak)<2

and inequality (1.22). Since H = H(K, a, b), this shows that a finite
partition of the type indicated is indeed possible. -

In each of these subintervals we now replace y,y e Ωb, by the
solution of (1.1) having the same values at the ends of the interval.
If the new function so obtained is y*, it follows from the result just
proved that

J(y*; 6) < J(y; &)

In the treatment of the minimum problem (1.21) it is therefore suf-
ficient to consider curves y consisting of a finite number of arcs each
of which is a solution of (1.1). Moreover, the abscissas of the points*
where two adjacent arcs meet may be taken to be the same for all
functions of a sequence {yn} minimizing the functional J(y; b).

Since in each of the subintervals [ak, ak+1] the functions yn are
solutions of (1.1), elementary considerations show that we can select
a subsequence {yn,} which converges in each subinterval [ak, ak+1] to a
solution y(k) of (1.1) and that, moreover, yik)(ak+1) — y{k+ι){ak+1). The
function y defined by y(x) = y{k)(x) for ak ^ x ^ ak+1 is therefore of
class Dι[a, 6], and it is thus a solution of the minimum problem (1.21).

To show that y(x) coincides in all these intervals with the same
solution of (1.1), we have to show that y' is continuous at the points
ak. To do so, we choose a positive ε such that

(αfc_χ + ε ) < ak, (a + ε ) < ak+1

and ε is small enough so that Lemma 1.3 applies to the interval
[ak — ε, ak + ε]. There will then exist a solution u of (1.1) for which
u(ak — ε) — y(ak — ε), u(ak + ε) = y(ak + ε) and, as shown above, we
have the inequality
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}ak~2
V 2 + 2h(u, x)]dx < Γ * V 2 + 2h(y, x)]dx ,

J

unless y(x) = u(x) in this interval. Hence if y' is discontinuous at
x — ak, it is possible to replace y by another function which yields a
smaller value of J(y; b). But this contradicts the minimum property
of y, and we have thus proved that yf must be continuous throughout
[α, 6]. This completes the proof of Lemma 1.4.

We are now in a position to complete the proof of Theorem 1.1.
As pointed out above, it is sufficient to consider positive admissible
functions y e Ω which are convex and decreasing in [α, oo). If y
is any such function, we choose a value b in (a, oo) and define a
function ueω, ωaΩ, as follows: u(x) = y(x) in [6, oo) and u(x) = yb(x),
where yb(%) denotes the solution of (1.1)—whose existence is established
in Lemma 1.4—which satisfies yb(a) = A and yb(b) = y(b). In view of
Lemma 1.4, we have

J(yb) < J(v),

and it is clear that 0 S yb{^) ^ A in [α, oo).
We now take a sequence {yn} in β for which

(1.27) lim J(yn) - inf J(y) ,
71—>oo

and we choose a sequence of values bm(a < bλ < ί>2 < ) for which
lim &m ~ + co. For each of these values bm we construct the corre-
sponding function yn,bfΛ e ω. As just shown, we have

Hence, the diagonal sequence J(yn,bn) cannot have a larger limit than
the sequence J(yn), and (1.27) shows that J(yn,bn) is likewise a minimiz-
ing sequence.

Since 0 ^ # w . 6 n S A , and since 2/n>δw is a solution of (1.1) in
[α, 6 ]̂ if n ^ N, an elementary argument shows that this sequence
contains a limit function y which is a solution of (1.1) in [α, 6^].
But N is arbitrary, and y is thus a solution of (1.1) throughout [α, oo),
the function y—being necessarily convex—must be decreasing for
a ^ x < +oo. This completes the proof of Theorem 1.1.

Such a solution separates those solutions which are convex and
increasing to +oo from those which are decreasing and becoming
ultimately negative.

We add here a property of the positive decreasing solutions whose
existence is established in Theorem 1.1.

LEMMA 1.5. If y is a decreasing, positive proper solution of
(1.1), then



746 PUI-KEI WONG

(1.28) lim xy'(x) = 0 .
X—+oo

Since (xyr — y)' = xy" = xyF(y, x) > 0, the negative quantity
φ(x) ~ χyr — y is increasing for x > a. Let lim y(x) = c, c ^ 0, then
clearly 0(a?) ^ — c. If lim^(^) = — c, the lemma is proved. If lim φ(x)
= — (c + A), where A > 0, we have xy' — y ^ —(A -f c) for a? in
(α, oo), i.e.,

^ " A ~ c g O α < ^ < + o o

This, however, implies a contradiction, since the expression x~\y — A — c)
is negative for large x and tends to zero for x —» + co. This completes
the proof.

THEOREM 1.2. Equation (1.1) /ιαs solutions which ultimately
decrease monotonically to positive constants if, and only if, there is
some β > 0 such that

(1.29)

Proof. If 2/ is such a solution, it is easily confirmed that

y(x) = y(b) + y\b)(x — 6) + Γ(t — x)v{t)F(y, t)dt .

Since 3/(6) > 0 and y\b) < 0, it follows that

y(a) ^ |/(a?) ^ [(t - x)y(t)F(yf t)dt ^ a \ \ t - x)F{a, t)dt ,
J J

where \imy(x) = a > 0. This shows that condition (1.29) is necessary.
To show sufficiency, we consider the integral equation

(1.30) y(x) = a+\~(t- x)y(t)F(y, t)dt ,
Ja;

and suppose that β is a positive constant such that (1.29) holds. Then
we can find a point a ^ x0 such that for all x >̂ a, we have

(t - x)F(β, t)dt < — .
Li

We define a sequence of functions {^0*0} by

yo(x) = a

(1.31) - x)yk(t)F(yk, t)dt

k = 0, 1, 2,
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If we choose a such that 0 < a < β/2, we see that 0 < a < yk(x) and
yo(x) — a < β. By assuming yk(x) < β we find that

- x)yk(t)F(yk, t)dt

A + / 9 ί ( t - ίtOF(/3, t )dί < /9 .

Hence induction shows that 0 < a ^ £/*(#) < /? for all k. Moreover,
if xx and x2 are any two points such that a ^ xλ < x2 < co, then,
from (1.31), we have

ykF(yk, t)dt + ykF(yk, t)dt

yk(t)F(yk,t)dt .

In view of the uniform boundedness of {yk} and (1.29), it follows that
the sequence is equi-continuous also. Since F(u, x) < F(v, x) when-
ever 0 < u < v < co? it follows from the assumption yk,rl > yk that

+» t) - 7/,F(̂ //c, ί)]dί > 0 .

This, together with the fact that y1 > yQ, shows that {yk{x)} is a
monotonically increasing sequence. We can therefore find a uniformly
converging subsequence whose limit function y(x) is the solution of
equation (1.30).

It remains to show that the solution of (1.31) so obtained is indeed
of class C2[a, oo) and satisfies (1.1). To this end, we observe that,
for h > 0,

+ h)-y(x)
h

X o y(t)F(y, t)dt
h

, t)dt .

A corresponding inequality holds for h < 0. The solution y of (1.31)
being continuous in [a, oo), it follows that

= -\~y(t)F(y,t)dt.

In a similar manner, we can show that y" = yF(y, x), and the con-
clusion follows.

COROLLARY. Equation (1.1) has proper solutions which ultimately
decrease monotonically to zero if, and only if, for each β > 0
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(1.32) \°°xF(β, x)dx = +co .

Proof. We note that Theorem 1.1 assures the existence of a.
positive solution of (1.1) which is asymptotically equivalent to either
a positive constant or zero, and that Theorem 1.2 gives a condition
which is both necessary and sufficient for the former to hold, it follows
that (1.32) is both necessary and sufficient for a solution to decrease
to zero. The necessity can also be shown directly by the following
simple argument.

If y(x) —• 0 as x —> co, we can choose a value a Ξ> x0 such that
y(x) < λ if x > a and y(a) = λ, where λ is a positive constant. Writ-
ing (1.1) in the form

X = y(a) = y(b) + y'{b){a - b) + \\t - a)y(t)F(y, t)dt
Ja

^ y(b) + y'φ)(a - b) + λ \\t - α)F(λ, t)dt ,
Ja

where 6 is a number in (α, oo). By Lemma 1.5, we can make | y'(b)(a — 6) |
arbitrarily small by taking b large enough. Since y(b)-~>0 for δ—> oof>

we can thus choose a b such that

Hence,

— < fh tF(\, t)dt < [°tF(X, t)dt.
2 Jo Jα

Since a can be taken arbitrarily large, the result follows.

2 In this section we consider positive proper solutions of (1.1),
which are convex and increasing. We begin with a necessary con-
dition for the existence of such a solution, which is valid if hypothesis
(iii) is replaced by the nonlinearity condition (iv) u~*eF(u, x) is a
strictly increasing function of u for each x ^ x0 and some positive
constant ε.

THEOREM 2.1. // F(yfx) satisfies hypothesis (iv) instead 0/(111)*,
and if (1.1) has positive, convex increasing proper solutions, then

(2.1) Γ [x~2sF(/3x, x)f2+*dx < + 00

for some β > 0.
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Proof. Let y be a positive, convex increasing proper solution of
(1.1), then y(x) > βx for β > 0 and some x ^ x0. Let

(2.2) w(x) = y(x)y'(x)

so that by (iv)

w' = (v'Y + y2F{y, x)

- (y')a + t ξ^ X\ F(βxy x)
F{βx, x)

(2.3) > {y'f + y*+*G(x)

where G(a;) = (βx)-2sF(βx, x). If we set r = (1 + ε)/(2 + ε) and s =
(2 + ε)"1, then, r, s > 0 and r + s = 1. With the help of the inequality
[4, p. 37]

(2.4) rA + sB > A r£ 3 ,

where we have set

y'y~x = rA

and

G(x)y1+2t(y')-1 = s5 ,

we find that

(2.5) w'w-*-1 > p[x~2*F(βx, x)]ll2+s ,

where /? = constant and 0 < α = ε(2 + ε)"1 < 1. We now define

(2.6) h(x) - p [X [x~2*F(βx, x)]ll2+*dx ,
J a O

and

H(x) = l.[W(a?)]- + A(») ,

then (2.5) becomes

-ff'(αθ < 0 .

The positive function H is thus necessarily decreasing for sufficiently
large x and must ultimately tend to some finite limit λ2 ^ 0. Since
vr* is bounded for all x ^ xQ, we conclude that h(x) must ultimately
be bounded also. This proves our assertion.

In the case of the special equation

(2.7) y" - Q(x)y2n+1 ,
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where Q is a nonnegative continuous function in [x0, oo), Theorem 2.1
reduces to

COROLLARY 3.1. A necessary condition for equation (2.7) to have
positive convex increasing proper solutions is that

(2.8) [~ [Q(x)]lln+2dx < +oo .

With slight changes, the technique used in the proof of Theorem.
2.1 will yield the following more general result:

THEOREM 2.2. / / F(y, x) satisfies hypothesis (iv) instead of (iii),
and if equation (1.1) has positive, convex increasing proper solutions,
then there is some constant β > 0 such that

(O Q\ \ /y.2s—δ—1Γ TΓίQ/γ /vΛΊβ/7/y ^ J_ nn

where δ and s are any two positive constants which satisfy

0 < s < 1

• δ + 2s ^ 1

,δ + 1 ^ 2s(l + ε) .

(2.10)

Proof. If y is a positive, convex increasing proper solution of
(1.1), then there is some β > 0 such that

(2.11) y(x) > βx , y\x) > β , for all x > x0 .

From (2.3) and inequality (2.4), we see that

— > v'y-1 + Gixyy
w

Hence, for any δ > 0,

(2.12) w- 1-^' > ])

where k — constant. If moreover, s and δ are so chosen as to satisfy
condition (2.10), then the exponents of y and y' in the inequality (2.12)
above are both nonnegative. Combining this inequality with (2.11),
and using the fact that G(x) = (βx)~2sF(βx, x), we obtain

(2.13) w-^w' > pxu-^[F{βx, x)Y ,

for all x ^ x0, and |0 = constant.
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As in Theorem 2.1, we now define

h*(x) = ρ\* x^'^Fiβx, x)]sdx

and

H*(x) = JL[w(a?)]-β + h*(x) .

It follows from (2.13) that

4-H*(x) < 0 ,
dx

and we thus conclude, as in Theorem 2.1, that h*(x) is necessarily
bounded. This completes the proof.

It is easily confirmed that for δ = ε(2 + ε)"1 and s = (2 + ε)"1,
condition (2.10) is satisfied, and (2.9) reduces to (2.1) so that Theorem
2.1 is indeed a special case of Theorem 2.2. If we apply Theorem 2.2
to equation (2.7), we obtain the following extension of Corollary 2.1:

COROLLARY 2.2. If δ and s are any two positive constants for
ivhich condition (2.10) holds, and if equation (2.7) has positive, convex
increasing proper solutions, then

(2.14) j xλ[Q(x)]sdx< +CX3 ,

where λ — 2s(n + 1) — δ — 1.

We will now consider the problem of existence of positive increas-
ing proper solutions of (1.1) having specified asymptotic forms. The
simplest case is that of finding a solution y such that y(x) — ax, where
a > 0.

THEOREM 2.3. Equation (1.1) has positive proper solutions y of
the form

(2.15) y(x) ~ ax , a > 0 ,

if, and only if, there exists a positive constant β such that

(2.16) [~xF(βx, x)dx

We write y(x) = xu(t), where t = 1/x. The function u(t) will then
have a constant limit if t decreases to zero. Making the necessary
substitutions in equation (1.1) we obtain
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(2.17) -ίgL = ut~*F (-£ , 1) = uG(u, t)
at \ t t /

for u(t). Since

[tG(β, t)dt = \ V ( A , i ) ^ = Γ ajFOβa?, a>)ίte ,
JO JO \ t t / t Jl/α

Theorem 2.3 will be a consequence of the following result (which we
formulate in terms of x, y and F rather t, u and G):

THEOREM 2.4. If F(y, x) is continuous for 0 <x<b and other-
wise satisfies hypotheses (i), (ii) and (iii), then equation (1.1) will have
solutions which are continuous in some interval [0, a) (0 < a < b)
and decrease to a positive constant as x decrease to zero if, and only
if, there exists a constant β > 0 such that

(2.18) \'*F(β, x)da
Jo

co .

Theorem 2.4 is in many respects analogous the Theorem 1.2, and
its proof depends likewise on our solving a suitable integral equation.
The integral equation in question is

(2.19) y(x) = A + Bx- \g(x, t)y(t)F(yf t)dt
Jo

where g(x, t) is the Green's function

x , a g ί g α ,

To show that condition (2.18) is necessary for the existence of a
tion y with the required properties, we note that y(x) must satisfy
the integral equation

(2.20) y(x) = A, + Bxx - Γ g(x, t)y(t)F(yf t)dt ,
Js

where 0 < ε < α, and Ax and Bλ are determined from the conditions

y(ε) = A1

Since y'(a) > 0, Bt must be positive. In view of the fact that

y(x) ^ lim y(x) = A > 0 ,
x-»0

it thus follows from (2.20) that
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L, t)dt ^ Ax + Bxa ,
J S

and this implies (2.18).
To show that (2.18) is also sufficient, we solve the integral equation

(2.19) by the iteration

yo(x) = A

yk+1(x) = A + Bx- \"g(x, t)yk(t)F(yk, t)dt(2.21)

k = 0,1, 2,

where A = β/2, B = β\2a, and the value α is chosen so that

The possibility of choosing such a value of a follows from (2.18). If
0 g yk(x) g β, we have

'*, t)dt ̂  β \ tF(β, t)dt ̂  ̂ i-
Jo 2

a n d t h u s , by (2.21),

yk+1(x) ^ A + Bx — ~- =5 — ^ 0

Moreover,

yk+1(x) ^ A + Bx = ξ-(l + —)sβ.

It follows that 0 S yk+i(x) ̂  β. Since yo(x) == β/2, all functions yk(x)
of the sequence (2.21) satisfy these inequalities.

The rest of the convergence proof for the iteration (2.21) is
exactly the same as the corresponding argument used in the proof of
Lemma 1.3.

COROLLARY 2.4. Under the hypotheses of Theorem 2.4, equation
(1.1) will have solutions which are continuous in [0, a) and decrease
to zero for x —> 0 if, and only if, there exists a positive constant β
such that

(2.22) \aχF(βx,x)dx
Jo

< +oo .

With the help of the transformation y(x) = xu(t), where t = llx,
and equation (2.17), we have
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7 t

= \ xF(βx, x)dx .
Jo

Hence, if u(t) is any positive solution of (2.17) which decreases mono-
tonically to a positive constant as t —• oo, then y(x) = xu(x) will be
the desired solution of (1.1) in [0, a). By Theorem 1.2, a necessary
and sufficient condition for (2.17) to have such solutions is that

, t)dt < + oo ,

for some β > 0, and the result follows from (2.23).
We will now consider the following more general question: Let

v be a given positive convex increasing function of class C2[a, oo).
The problem is to determine whether equation (1.1) has positive proper
solutions which are asymptotically equivalent to v. To answer this,
question we introduce a Liouville type transformation

(2.24,
(as = x(t) ,

where the new independent variable t is defined by

(2.25) t = Γ[v(s)]~*ds .

Under this transformation, the interval [α, co) is mapped onto (0, 6]r

and a computation shows that u must satisfy the equation

(2.26) ^ - = u\x*F(uv, t) - —{x,«}] = uG(u, t) ,

where {x, t} denotes the Schwarzian differential operator

dt ^x / 2 V x

In order that y(x) ~ cv(x), u(x) must therefore be a positive solution
of (2.26) which decreases to a positive constant for t —> 0.

We observe that if the given function v were convex decreasing
rather than convex increasing, the problem of determining whether
(1.1) has proper solutions of this type can be treated in the same way.
However, the new variable t in the Liouville transformation will now
be given by

t =
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where v is now a positive, convex decreasing function of class C2[a, oo).
Since the procedure is the same in either case, we need only consider
the convex increasing case.

To simplify matters we shall further restrict ourselves to those
convex functions v(x) for which the positive continuous function p(x)
defined by

(2.27) p(x) = ^ M
v(x)

is such that [F(uv, x) — p(x)] is ultimately of one sign. That is to
say, we assume that either (1) G{u, x) < 0 for all u > 0 and 0 < t ^ a < 6,
or (2) G(β, t) > 0 for some β > 0 and all sufficiently small t.

If case (1) holds, then the Atkinson-Nehari criterion [6, Theorem
I] shows that a necessary and sufficient condition for the existence of
a positive solution u(t) which decreases to a positive constant as t
decreases to zero, is that

(2.28) 0 g - [atG(μ, t)dt < + oo
Jo

for some constant μ > 0.
On the other hand, if (2) holds, then by Theorem 2.4, the cor-

responding necessary and sufficient condition is the existence of some
positive constant β for which

(2.29) [atG(β,t)dt
Jo

Expressed in terms of x and v(x), both (2.28) and (2.29) may be combined
into a single condition:

dx < + oo .(2.30) \~v\x) Γ-^- F(βv, x)-v—

If we regard (2.27) as a linear homogeneous equation with p(x) given,
and that u and v are two linearly independent positive solutions whose
Wronskian is negative, then one solution must be convex increasing
and the other is convex decreasing. Moreover, if v denotes the in-
creasing solution, then

u(x) = v{x) \ [v(s)]~2ds

so that (2.30) may be written as

\ u(x)v(x) I F(βv, x) — p(x) I dx < + oo .

We can now state the following result:
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THEOREM 2.5. Let p{x) be a positive continuous function in [x0, oo)
and u and v be two linearly independent positive solutions of (2.27).
//, moreover, [F(μv, x) — p(x)] is either negative for all μ > 0 or
positive for some μ > 0, then a necessary and sufficient condition for
equation (1.1) to have positive, convex proper solutions y of the form

(2.31) y(x) ~ cv(x) , c> 0 ,

is that there is some β > 0 such that

(2.32) \"u(x)v(x) I F(βv, x) - p{x) \ dx < + oo .

COROLLARY 2.51. / / F(ux", x) — a(a — l)x~2 is ultimately of one
sign, where a > 1, then a necessary and sufficient condition for
equation (1.1) to have positive proper solutions of the form

(2.33) y(x) ~cx« , c > 0 , a > 1 ,

is that, for some β > 0,

(2.34) [°x \F{βx«, x) - a(a - l)x~21 dx < + oo .

Proof. If we let p(x) = a(a — l)x~2, then u(x) = xx~a and v(x) = #%
and the result follows from (2.32).

COROLLARY 2.52. If F(ue"x, x) — a2 is ultimately of one sign,
where a > 0, then equation (1.1) has positive proper solutions of the
form

(2.35) y{x) - ce«x , a,c>0 ,

if, and only if, there exists some constant β > 0 such that

(2.36) Γ I F{βe«% x) - a2 \ dx < + co .

As pointed out before, the Emden-Fowler equation

(1.2) y" = xλyn , n > 1 ,

is a particular example of equation (1.1) with F(y, x) = xκyn~λ. We
can therefore apply the results obtained here to investigate the existence
and asymptotic behavior of proper solutions of this equation.

From Theorem 1.2, we see that a necessary and sufficient condi-
tion for equation (1.2) to have positive proper solutions which ultima-
tely decrease to positive constants is that
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^dx < + 0 0 .

It follows that we must have

(2.37) λ + 2 < 0 .

From Theorem 2.3 we find that equation (1.2) has positive proper
solutions y of the form y(x) ~ ex, c > 0, if, and only if

[°°xλ+ndx < +00 .

Hence, we obtain the condition

(2.38) λ + n + 1 < 0 .

Corollary 2.51 shows that a necessary and sufficient condition for
(1.2) to have positive proper solutions of the form y(x) ~ ex", a > 1,
is that

[°° a(a - l ) α r 2 \dx < + 00 .

This condition will be satisfied if, and only if β^1 = a{a — 1) a n d
a(n — 1) + λ = — 2 . Thus, t h e requi red condition in t h i s case will be

(2.39) a = - ±±A > l .
n — 1

From Corollary 2.52, it is easy to see that equation (1.2) cannot
have any proper solution which is exponential. Finally, suppose that
u(x) is any positive, convex increasing proper solution of the Emden-
Fowler equation, then, by Corollary 2.1, it is necessary that

\[Q(x)]2ln+zdx = \x2λln+*dx< +00 .

In other words, we must have

(2.40) 2λ + n + 3 < 0 .

Applying this inequality to the special equation

yff = χ-2yn 9 n > l ,

we find that it cannot have any proper solution which is convex and
increasing. Moreover,

[°°xλ+1dx = \~χ-iln+*dx = +00

so that, by the Corollary of Theorem 1.2, this equation has a decreas-
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ing proper solution through every point (α, A), A > 0, which decreases
to zero as x ~> oo. (cf. [2], Chapter 7, Theorems 1 to 5).

An elementary example of the Emden-Fowler equation for which
an explicit solution is known is the equation

y" = 2χ-βy* .

It is easily confirmed that x2 is a solution of this equation. If we set
a = 2 and β = 1 in (2.34) we find that the integral vanishes so that
the condition of Corollary 2.51 is indeed satisfied.

If we assume moreover that v(x) is a proper solution of (1.1), then
(2.30) may be used to determine the possible existence of a second
proper solution y distinct from v such that their ratio is asymptotically
constant. Without loss of generality we may assume that y(x) ^ v(x)
for each x ^ x0. A necessary and sufficient condition for the existence
of such solutions is the boundedness of

\~v\x)\j^L \F(βv, x) - F(v, x)]dx
J J v2(x) 'v2(x) '

for some β > 1.
A condition for the difference of two proper solutions to be asympto-

tically constant may be obtained as follows: Let w(x) be a positive
proper solution of (1.1), and we let a second proper solution y be of
the form

y(x) = u(x) + w(x) ,

where ue C2[a, oo) and u(x) ~ k, k > 0. Differentiation shows that n
must satisfy the equation

[u" = G(u, x) ,

[G(u, X) = uF(u + w, x) + [F(u + w, x) — F(w, x)] .

In view of Theorem 1.2, this equation will have proper solutions
which ultimately decrease to positive constants if, and only if, there
exists some β > 0 such that

\"xG(/3,x)dx < +co .

THEOREM 2.6. Let w(x) be a positive proper solution o/(l.l).
1. A necessary and sufficient condition for the existence of a

second positive proper solution y such that y(x)/w(x) — fe, k > 0, is that

w\x) _ ^ ± _ [F(βw, x) - F(w, x)]dx
J w%s)
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for some β > 1.
2. A necessary and sufficient condition for the existence of a

second solution y such that y{x) — w{x) ~ e, c > 0, is that for some μ>0

S oo

x[(μ + w)F(μ + w, x) — F(w, x)]dx

All results obtained thus far concern the asymptotic behavior of
proper solutions, but the question of positive convex solutions having
unite asymptotes is also of interest. As the following result shows,
equation (1.1) always has such discontinuous solutions.

THEOREM 2.7. // F satisfies hypothesis (iv) instead of (iii), and if
A is an arbitrary real number and a and δ are positive; then there
exists a solution y of (1.1) with y(a) = A, which is not continuous in
<α, a + δ).

Proof. Since y(x) is convex, the value of y(a + δ) can be made
arbitrarily large by a sufficiently large choice of y'{a). We may accord-
ingly assume that y(a + δ) > 1. Let c be the point in (α, a + δ)
where y(c) = 1, and we recall that, for y > 1, F(y, x) > y2sF(l, x). It
follows from (1.1) that

[y'(x)f = α2 + 2 \*y(t)F(y, t)y\t)dt ,
Ja

where y'(a) = a, and a < x < a + δ. If 0 < p^ F(l, x) for x e [a, a + δ]
.and x > c, we then have

2 \*yy'F(y, t)dt > 2 \'yy'F(y, t)dt
Ja Jc

^ 2ρ \*y1+2Έy'dt

1 + ε

For # e [a, c], this holds trivially. Choosing a2 large enough so that
<oc2 > ρ(l + ε)-1, we conclude from (2.41) that

[y'(χ)Y ^ a2 + —£—[y2+2s - l ] ,

1 + ε

or, with β2 = a2 - ρ(l + ε)-1 and λ2+2ε = ρ(l + ε)"1,

[y'{x)Y ^β2
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If y(x) is continuous in [a, a + δ], y'{x) necessarily remains positive.
Hence

Jo Vβλ + (λί) 2 + 2 B

where 6 = a + δ, and this reduces to

dt
(h - a) ^ /9~ε/1+ε

1 + (λί)2

Since the integral exists, this provides a bound for the right end
point of the interval of continuity. In view of the fact that β2 —
a2 ~ p(l + ε)"1, it is also obvious that (b — a) can be made arbitrarily
small by a sufficiently large choice of a = y'(a). This completes the
proof.
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