
COMBINATORIAL FUNCTIONS AND REGRESSIVE ISOLS

F. J. SANSONB

1. Introduction. It is assumed that the reader is familiar with
the notions: regressive function, regressive set, regressive isol, co-
simple isol, combinatorial function and its canonical extension. The
first four are defined in [2], the last two in [3]. Denote the set of
all numbers (nonnegative integers) by ε, the collection of all isols by
A, the collection of all regressive isols by AR and the collection of all
cosimple isols by Aλ. The following four propositions will be used.

, + x ίLet τ — pt and τ* = pt*, where tn and tt are regressive
Ifunctions. Then τ = τ* <==> tn ~ t* .

(2) B ^ A & AeAR => BeAR .

, o \ ίLet F(T) be the canonical extension to A of the recursive,
(.combinatorial function f(n). Then Te AR = > F(T) e AR .

(4) B ^ A & AeAx => BeAt.

The first three are Propositions 3, 9(b) and Theorem 3(a) of [2] re-
spectively. The fourth is Theorem 56(b) of [1].

DEFINITION. Let f(n) be a one-to-one function from ε into ε and
let TeAR- ε. Then

where tn is any regressive function ranging over any set in T.
Using (1) it is readily seen that φf is a well defined function from

AR — ε into A — ε. The main result of this paper is as follows: Let
f(n) be a strictly increasing, recursive, combinatorial function) let
F{X) be its canonical extension to A, and let TeAR — e; then
φf(F(T)) = T.

2 The operation φf.

PROPOSITION 1. Let f(ri) be a strictly increasing, recursive func-
tion and let Te AR — e. Then

Φf(T) g T and φf(T)eAR .
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// in addition TeAu then φf(T)e AR AX.

Proof. In view of (2) and (4), it suffices to show only that Φf(T) S
T. Let tn be a regressive function such that pt = r e T. Put a — pf
and suppose p(x) is a regressing function of tn. Define

p*(x) = (μy)[py+1(x) = py(x)] for xeδp .

Then p*(tn) = n and

ρtf a{xe δp* I p*(x) e a} ,

T — ρtf c: {xe Sp* | p*(x) ί }̂ .

Since α is recursive it follows that ptf is separable from τ — ptf.
Hence ^ ( T ) ^ Γ.

It is known (by an unpublished result of Dekker) that AR is
neither closed under addition nor under multiplication. We do, how-
ever, have some closure properties for isols of the type Φf{T), where
TeAR — ε and f(n) is a strictly increasing, recursive function.

PROPOSITION 2. Let f(n) and g(n) be strictly increasing, recursive
function and let Te AR — ε. Then

(a) φf(φg(T))eAΛ-ε,
(b) φf(T) φg(T)eAB-ε,
(c) φf(T) + φβ(T)eAB-ε.

Proof. In view of Proposition 1,

φf(φg(T)) ^ φg{T) =g T .

This implies (a). To verify (a) one could also observe that φf(φg{T)) =
ΦgfiT). Combining φf(T) ̂  T and φg(T) g T, we obtain by [1, Cor.
of Thm. 77]

However, T2eAR-s by (3). Hence (b) follows by (2). Finally, it is
readily seen that

ΦAT) + φg(T)^φf(T)-φg(T),

since φf(T) and φg(T) are ^ 2 (in fact, infinite). Thus (c) follows
from (2) and (b).

3 The main result* We first state and prove two lemmas which
might be of interest for their own sake. Let ft, pu - be the canoni-
cal enumeration of the class Q of all finite sets defined by
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„ ί(Vi, — ,Vk) where yl9 ,yk are the distinct numbers
~ tsuch that a? + 1 = 2^ + + 2V* .

We denote the cardinality of ρx by rx.

LEMMA 1. Let f(n) be any combinatorial function and let Cι be

the function from ε into ε such that f(n) == ΣΓ=oc;U )• Then

2 W - 1

f(n) = Σ Cr(x)
x=0

Proof. Since every n-element set has (v ) subsets of cardinality

i, we have

( 5 ) f(n) - card {i(&, y) | px c (0, 1, -, n - 1) & y < cr{x)} .

It follows from the definition of px that

ρx c (0, 1, , n - 1) —> x S 2° + 21 + + 2n~λ

•̂  tΛ/ ^ ^ 1 A. .

Combining this with (5) we obtain

f{n) = card {j(x, y)\x^2» - 1 & y< cr{x)} = Σ V ( * >

DEFINITION. Let a(n) be a one-to-one function from ε into ε.
Then

where ln0, 'Λ ,lnn is the sequence of zeros and ones such that

LEMMA 2. (Dekker) Lβί a(n) be a one-to-one function from ε into
ε with range a and let A — Req (a). Then a\n) is also a one-to-one
function from ε into ε. Moreover,

a\2n) = 2a^ , Paf(n) - a(pn) and pa' e 2A .

Finally, if a(n) is regressive, so is a'{ri).

Proof. It is clear that a\n) is a one-to-one function such that
a\2n) = 2α(w). We have ρa,{0) = p0 = o while a(ρ0) = α(o) = o; for w ^ 1

/>. - {i I 0 ^ i ^ n & lni - 1} .

Hence for every number n
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Pann) = M i ) 10 ̂  i ^ n & lni = 1}

= a{i 10 g i g n & lni = 1} = α(^) .

Thus, if w ranges over ε, pn ranges over the class Q of all finite sets,
Pa'i%) — a(Pn) over the class of all finite subsets of α. We conclude
that pa'e2A. Finally, assume that a(n) is a regressive function.
Using the three facts that

a\n + 1) = ln+1,0-2a™ + + l.+li.+1.2-< +» ,

a'(n) = ln0 2aW + . . . + lnn 2a^ ,

max {i I Zwi = 1} ̂  max {i | ln+1Λ = 1} ,

we infer that α'(w) is a regressive function.

THEOREM. Let f(n) be a strictly increasing, recursive combina-
torial function, let F(X) be its canonical extension to A and let
Te AR - ε. Then Φ,(F(T)) = T.

Proof. Let f(n) = Σ?= o Cdf) t>e ̂ e strictly increasing, recursive,
combinatorial function. Then cx > 0 since f(n) is strictly increasing,
and Ci is a recursive function of i, since /(w) is recursive. Let
r e TeΛR — ε and assume that tn is a regressive function ranging over
τ. Put g(n) = t'(w). By Lemma 2 we have pp(n) = t(ρn); thus, if n
assumes successively the values 0,1, 2, 3, 4, 5, 6, 7, , ρg{n) assumes
successively the "values"

Of (t0), (ίi), (ί 0, *l), &), (ίθ, ^ ) , (ίl, «,), (ί0, tl, *l),

We have by definition

F(Γ) = Eeq {j(χ, y)\pxατ & y< cr{x)} .

Since g(n) ranges without repetitions over {n\pnατ}, it follows that

(6) F ( T ) = R e q {j(g(x), y ) \ y < cr{x)) .

We shall use wn to denote the function which for 0,1, takes on
the values of the array

reading from the left to the right in each row and from the top row
down; it is understood that every row which starts with j(g(k)9 0) for
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some k with cr(k) = 0 is to be deleted. From the definitions of pk

and r(k) we see that

k e (2°, 2\ 2\ . . . ) _ φ) = 1 = > cr(Jfc) = d > 0 .

The function gr(w) = £'(τ&) is regressive by Lemma 2. Taking into
account that c{ is a recursive function, it readily follows that wn is
a regressive function. In view of (6) we have pwne F(T) it there-
fore suffices to prove that ρwfin) e T. By Lemma 1

hence

/(0) = c r ( 0 ) , / ( I ) = c r ( 0 ) + c r ( 1 ) , /(2) = c r ( 0 ) + c r { 1 ) + c r ( 2 ) + c r ( 8 ),

and

w/(θ, = ίto(l)» °) » w / ( 1 ) - i(flr(2), 0), , wAn) = j(g(2n), 0), - .

We conclude t h a t wf{n) = g{2n). However, by Lemma 2

g(2n) = ί'(2») ^ ί(w) .

Thus wf{n) ^ ίn and jOW/(n) e T. This completes the proof.
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