A SUBFUNCTION APPROACH TO A BOUNDARY VALUE
PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

J. W. BEBERNES

1. Introduction. Consider the ordinary, second-order differential
equation

(1.1) Y =f(, 9,9)
where f(x, ¥, ') is a real-valued function defined on the region
T={@y9)aesc=<b|yl<o,|y|<w},

a and b finite.

The purpose of this paper is to determine sufficient conditions
which when placed on f(z, ¥, ¥’) guarantee the existence of a unique
solution of the two-point boundary value problem (BVP):

1.2) yY' =f(,v9v), ya)=a, yb=45.

A solution of the BVP: ¥’ = f(x, v, ¥'), y(x) = ¥, y(x;) = ¥,, where
a =2 =, =b will be defined to be a function y(x) which is of class
C* and satisfies (1.1) on («,, x,), which is continuous on [z, x,], and
which assumes the given boundary values at x, and x,.

The following assumptions will be placed on f(x, ¥, ¥’') as needed.

(A) f(x,y,y’) is continuous on 7.

(A) f(x,y,y') is a non-decreasing function of y for each fixed
z and ¥ in T.

(A, f(x,y,y') satisfies a Lipschitz condition with respect to %’
on each fixed compact subset to 7.

The primary results of this paper are the following two theorems.

THEOREM 6.2. If

Q) f(=, 9,y satisfies A,, A, and A,,

(2) there exists a positive continuous function ¢(u) defined for
u = 0 such that

If(x’ Y, y') '—f(x’ Y, O)I é Ks¢(| y, |)
where K, is a constant depending on compact subsets S of

{w,)]a=y=0b|yl< =}, @yeS, |y <=,
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and
’

g“ udu —
o ¢(u) + 1

@ [f®0,9)—f(®00|=K|y|forasaz=band|y|< o,
then there exists a unmique solution of the BVP (1.2) of class Ca, b].

THEOREM 6.3. If given the BVP: y” = f(x, ¥, ¥'), y(a) = 0 = y(b),
with

1) f(z,y,y") satisfying A, A, A,, and

2) |f(20,9)—f(0,0|=K|y|foralla<x=band |y| <+,
then there exists a unique solution of the BVP of class C*[a, b].

Lees [4] proved that if f(z, y, ¥') satisfies A,, A,, and, in place of
A,, a uniform Lipschitz condition with respect to %', then there exists
a unique solution of the BVP (1.2) of class C’[a, b]. Note that Lees’
result is immediate from Theorem 6-2. Whereas Lees used the
method of finite differences, we shall attack the BVP (1.2) employing
the theory of subfunctions developed by Fountain and Jackson [3].
In [3], Fountain and Jackson utilized the theory of subfunctions to
construct a so-called generalized solution of the BVP (1.2) in the
sense that if a solution exists it will be this generalized solution by
uniqueness. To construct this generalized solution, they assumed
f(x,y,y') satisfies A,, A, and, in place of A,, that:

(A)) f(=,y,y’) satisfies a Lipschitz condition with respect to ¥
and ¥’ on each fixed compact subset of 7.
In this paper, we shall construct the generalized solution of the BVP
(1.2) as in [3] under assumptions A, A, and A,. Most of the proofs
carry over with only slight modifications. By knowing properties of
this generalized solution, additional conditions can then be imposed
on f(x,¥,y’) to assure a solution of the BVP (1.2).

2. A “local” existence theorem and a maximum principle. The
two theorems in this section form the basis for the construction of
the generalized solution of the BVP (1.2). The “local” existence
theorem is known and was first proven by E. Picard [6, pp. 9-36] in
a slightly weaker form.

THEOREM 2.1. Let f(x, vy, ¥') satisfy A,, then given M, N >0 there
s & (M, N) > 0 such that the BVP:
2.1) Y ' =f@9,9), y@)=19, Y@) =71
has a solution of class C* om [x,, %] for any points (%, y,) and
(@ ¥2) with @, mela,b], |@ —2|=<0, |nl=M, |p.|=M, and
| (¥ — ¥2)/(x, — %) | < N
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The details of the proof of this result will not be given. Note
that the BVP (2.1) has a solution if and only if the BVP:

(2.2) y' = Sz, 2(x) + px + q, 2'(x) + D)
2(@) =0  2(x) =0

has a solution, and that the BVP (2.2) has a solution if there is a
function z(x) € C'[#,, #,] which is a solution of

2.8) @) = | "G, 976, %) + s + 0, 7() + p)ds
where
(%, — )@, — &)@, — @), ®B,=s=w
Gz, s) = i B
@ — @)@, — ), — @)™, B=S=4,.

The Schauder-Tychonoff fixed-point theorem [2, p. 456] can be employed
to show the existence of a solution of (2.3) of class C’ on [z, «,].

The following corollary follows as an immediate consequence of
the proof of Theorem 2.1.

COROLLARY 2.1. Let M >0, N > 0 be fixed and let 6(M, N) >0
be as im Theorem 2.1. Then given any € > 0 and any 0,0 < 0, <
o(M, N), there is an 1,0 <7 = 0,, such that for any points (., ¥,
and (., y,) with x, x,€[a,d], |2, — % | =79, |¥| = M, |9v.| = M, and
| (Y, — ¥)(@, — %) | = N, there is a solution y(x) of the BVP (2.1)
on [x, x,] such that |y(x) —w@)| =e¢ and |y'(x) — w'(x)| < ¢ where
w(x) is the linear function with w(x) =y, and w(x,) = Y,.

For any function ¢ defined on [x, %] and x,€ (%, %,), define
Dg(x,) = lim sup [g(x, + &) — g(x, — 0)]/20 as 6 — 0 and Dg(z,) =
lim inf [g(x, + 0) — g(&, — 0)]/20 as 0 — O.

LEMMA 2.1. If f(x,y, ') satisfies A, and A, and if the fumc-
tions ¢(x) and (x) satisfy:

(i) ¢,¥eCle,d] n C'(c, d) for [¢,d] Ca, b],

(ii) D¢#'(x) = f(x, ¢(x), ¢'(x)) and Dy'(x) = f (@, ¥ (@), ¥'(x) on
(¢, d) with at least one of these being strict imequality on (c, d), and

(iii) é(c) — ¥(c) = M and ¢(d) — y(d) = M where M = 0, then

P@) — Y(@) < M on (c,d) .

Observe that it suffices to consider only the case M = 0. If we
assume the conclusion is false, we have an almost immediate contradie-
tion.
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LeEmmA 2.2. If f(x,y,¥y') satisfies A, A, and A, and if there
s a function ¢ such that:

(i) ¢eC'[x, x,] where [z, ] C [a, b],

(i) D¢'(x) = f(z, $(x), ¢'(x)) on (x,, x,),
then given € > 0 there is a function ¢, € C'[x,, x,] such that ¢(x) — e =
$:(x) = ¢(x) on [, x.] and

Déi(m) > f (%, 6.(), 61(%)) on (%, @) .
Proof. Let |¢(x)|+ |¢'(x)| = R on [z, x,] and let
T* ={@y¥)m=c=x,|y|=R+1|¥y|=R+1}.

Let K > 0 be such that |f(z, v, ¥) — f(%, v,y | = K|y, — y;| for all
(x,y,9), (x,y,y)e T*. Let z(x) be a solution of 2’ = (K + 1)z’ on
[2,, ;] which satisfies the conditions 0 < 2(x) < e and —1=72'(x) <0
on [, x,]. Then on (%, %,)

Di¢'(x) — 2'(x)] — f(@, $(x) — 2(x), ¢'(x) — 2'(x))
= f(x, $(%), ¢'(2)) — f (@, $(), ¢'(x) — 2'(x)) — 2"(x)
—K|Z(x)| — (K + 1)2'(x)
—2'(x) > 0.
Hence, ¢,(x) = 2(¢) — 2(x) is the desired function.
A dual statement holds by reversing the inequalities. We shall

refer to the dual of a result by using an asterisk (for example,
Lemma 2.2%),

i

THEOREM 2.2 (Maximum Principle). If f(x,y, ¥’') satisfies A,, A,
and A, and if there exist functions ¢ and + satisfying:

(i) ¢,4veC'(c,d) N Cle, d] for some [c, d] C [a, b],

(i) D¢'(x) = f (%, 9(x), ¢' (%)) and Dy'(x) < f (%, ¥(2), ¥'(®)) on (¢, d),

(iii) oé(c) — v(c) = M and ¢(d) — y(d) = M for some M = 0, then
¢(x) — y(x) = M on [c, d].

Proof. It suffices to consider only the case where M = 0. Let
M = 0 and assume conclusion is false. Then there exist x < (¢, d) such
that #(x) — y(x) > 0. Let N = max [¢(x) — ¥(x)] > 0, ®€][e, d], and
let «, € (¢, d) be such that ¢(x,) — ¥(x,) = N. There exist z,, z,€ (¢, d)
such that ¢(x,) — Y (x) =< N/2, é(x,) — ¥(x,) = N/2 and x, < %, < T,
Choose ¢ such that 0 <e < N/2. By Lemma 2.2* there exists a
function () e C'[#,, x,] with

Y(@) < ¥u(@) < (@) + ¢ and  Dyi(@) < f(@, ¥2(@), ¥i(®)) on (z, ) .

Then ¢(x) — () < N/2 on (%, 2,) by Lemma 2.1. In particular,
B(%) — (%) < N/[2 so
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$(@0) < Yu(@) + N2 = Y(®) + ¢ + N/2 = () + N

which is a contradiction.
Uniqueness of solutions of the BVP is immediate from the Maxi-
mum Principle.

COROLLARY 2.2. Let f(x,y,y’) satisfy A, A, and A,. Then
the solution of the BVP: y" = f(x,v,¥), ¥(®) =14, ¥@) =1, for
[2:, 23] C [a, b], of it exists, is unmique.

The following example shows that the Maximum Principle does
not remain valid if we replaced A, by the following weaker assumption:

(Ay) f(x,y,y’) satisfies a Holder condition with exponent «,
0 < a <1, with respect to ¥’ on each fixed compact subset of 7.
Consider the BVP: " = f(x,y,¥) = A |a|?*Vp*(p — 1) |y |* with
Yy(—a)=yla)=A>0 where a=@—-2)(p—-17" p>2. f(, 94,¥)
satisfies A,, A;, and A}, but y(x) = A4 and y,(x) = Ala|?|z|* are
distinct solutions of the BVP.

3. Subfunctions. The concept of sub- and superfunctions and
their properties are fundamental for the remainder of this paper.
For this reason some of the known results for subfunctions due to
Fountain and Jackson [3] will be stated without proof. In [3] these
results were proven assuming f(x, y,y’) satisfies A,, A,, and Aj. If
f(x,y,y') satisfies A, A,, and A,, the proofs can be carried through
as in [3] with only slight modifications.

Throughout this section, we shall assume that f(x, y, ¥') satisfies
A, although no further explicit mention of this fact will be made.
I will denote an interval of [a, b], cl(I) the closure of I, and I° the
interior of I.

DEFINITION 3.1. A real-valued function s defined on I is said to
be subfunction on I in case s(x) < y(x) on [z, %,] for any [x, #,] < T
and any solution ¥ of (1.1) on [z, #,] with s(x,) < y(x,) and s(z,) < y(x,).

Superfunctions are defined dually by reversing inequalities in the
preceding definition, and dual results hold.

Subfunctions satisfy the following properties.

(8.1). If s(x) is a subfunction on I, then the right- and left-hand
limits exist in the extended reals with appropriate limits existing at
the endpoints of cl(I), s(x,) < max [s(z, — 0), s(z, + 0)] for z,€ I°, and
the number of discontinuities of s(x) on I is at most countable.

3.2). If s(x) is a bounded subfunction on I with ¢l(I) having
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endpoints %, and x,, then, if

d*s(z,) = lim sup [s(x) — s(x, + 0)]/(x — x,)

and
d.s(x,) = lim inf [s(x) — s(z, + 0)]/(x — x,) as x—

with d~s(%,) and d_s(x,) analogously defined, d-s(zx,) = d_s(x,) for all
%, < @ = @, and dts(w,) = d,s(x,) for all x, < x, < @, and, hence, s(x)

has a finite derivative almost everywhere on I.

(3.83). The supremum of a collection of subfunctions bounded
above at each point of I is a subfunction on I.

(3.4). If s(x) is a subfunction of class C’ on I, then Ds'(x) =
S, s(x), s'(x)) on I°.

(3.5). If f(x,y,y’) satisfies A, and A,, if s(x) e cl(I) N C'(I°), and
if Ds'(x) = f(x, s(x), s'(x)) on I°, then s(x) is a subfunction on I.

(8.6). Let s, be a subfunction on I and s, a subfunction on
[, €] < cl(I). Assume further that s,(z;) < s(x;), ©=1,2, in case
z;€I1°. Then

s(w), w¢lw, x)

s@) = max [s,(x), si(®)] , @€ [, @]

is a subfunction on I.

3.7. If f(x,y,y) satisfies A, and A, if s(x) and S(x) are
continuous sub- and superfunctions on cl(I), if one of s(x) and S(x) is
of class C’ on I° and if s(x;) < S(z;), + =1,2, where ; are the
endpoints of I, then s(x) < S(x) on cl(l).

(3.8). If f(x,y,y’) satisfies A, and A, and if s(x) is a continuous
subfunction on I, then s(z) — M is a continuous subfunction on I
where M is an arbitrary nonnegative constant.

4. A generalized solution. of the boundary value problem. A
function H(x) will be defined which will be referred to as the
“generalized solution” of the BVP in the sense that if a solution of
the BVP exists and if f(x,v,y’) satisfies certain to-be-determined
conditions, then H(x) is that solution.

DEFINITION 4.1. A function ¢(x) is said to be an underfunction
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with respect to the BVP (1.2) in case ¢(x) is a subfunction on [a, b]
with ¢(a) < a and ¢(b) < B.

Overfunctions are defined dually. For the construction of the
“generalized solution,” the following assumptions will be needed.
Assume

(A,)) f(=x,y,y') is such that with respect to the given BVP there
is an underfunction which is continuous on [a, b] and there is an
overfunction which is continuous on [a, d] and of class C’' on (a, b).

DErFINITION 4.2. Let {¢} be the family of all underfunctions
with respect to the BVP (1.2) which are continuous on [a, b]. Define

H(z) = sup [¢(x) | ¢ € {#}]

for each ze[a, b]. H(x) is called the generalized solution of the BVP.

H(x) satisfies the following properties the proofs of which are
given in [3], assuming f(x, v, y’) satisfies A, A, Al, and A, If
f(x, v, ¥') satisfies A,, A,, A,, and A,, the proofs of these results carry
through with some modification. Assuming that f(x, v, ¥’) satisfies
A, A, A, and A,, then:

(4.1). H(w) is both a bounded sub- and superfunction on [a, b]
with H(x) = min [H(z + 0), H(x — 0)], z < (a, b).

(4.2). H(zx) is a solution of %" = f(x, ¥, ¥’) on an open subset of
[a, b], the complement of which is of measure 0.

(4.3). DH(x, — 0) = DH(x, + 0) on (a, b) where
DH(x, + 0) = lim [H(x) — H(x, + 0)]/(x — x,) as x — x¥ .

More specifically, let E be the set of interior points of [a, b] at which
H(x) does not have a finite derivative, then (i) if H(xz + 0) > H(x — 0),
DH(x + 0)= DH(x — 0) = + oo, (ii) if H(x + 0) < H(x —0), DH(x + 0) =
DH(x — 0) = —oo; (iii) if 2 € F is a point of discontinuity, DH(x + 0) =
DH(x — 0) = * o,

(4.4) () if DH(®b — 0) = —o, H(b — 0) = H(b), (ii) if H(b — 0)< 5,
DH(b — 0) = + o, and (iii) if DH(b — 0) is finite, H(b — 0) = H(b) =
B. Similar results hold at « = a.

Consider the BVP: 9" = f(x, v, ¥') = —182(y’)* with y(—1) = —1
and y(1) =1. f(x,y,y) satisfies A, A, A, and A,. However, no
solution of this BVP exists for if it did the solution would be yy(x) =
23, It can be shown that H(x) = y,(x) on [—1,1]. Although the
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generalized solution exists, this example points out the fact that
more stringent conditions must be imposed on f(z, ¥, ¥’) to guarantee
that a solution of the BVP exists.

DEFINITION 4.8. A differential equation %" = f(x, ¥, ¥’) is said to
satisfy property (P) in case given any A > 0 and any compact subset
Sci{&,y)|a=<x=<b|y|< o}, there exists B, > 0 such that for
any solution y(x) of ¥’ = f(«, ¥, ¥') with the initial condition %(z,) = ¥,
and |y'(x,)| =< A where (%, ¥,) €S the inequality |¥'(x)| < B holds
as long as (#, y(x)) e S.

THEOREM 4.1. Let f(x, vy, ¥') satisfy A;, © =0, ---, 8, and let (1.1)
satisfy property (P), then H(x) is a solution of the BVP (1.2) of
class C* om[a, b].

The proof follows from (4.2), (4.3), and (4.4).

5. ‘“Natural’”’ conditions for f(%, ¥, ¥'). By Theorem 4.1, a solu-
tion of the BVP (1.2) exists provided assumptions 4;, ¢ =0, ---, 8,
and property (P) are satisfied. Of these, assumption A, and property
(P) are unnatural in the sense that they are not imposed directly on
fx,y,y). “Natural” conditions will be given in this section which
imply A, and P.

Sufficient conditions to assure that ¥’ = f(x, v, ¥’) satisfies property
(P) are given in the following theorem which is similar to a result
due to Nagumo [5, pp. 861-863].

THEOREM b5.1. Let

1) f(=,v,9) satisfy A,
(2) ¢(u) be a positive continuous function of u(u = 0) such that

(5'1) lf(w7 Y, y’) _f(xy Y, O)l é KS¢(I ?/' ])
where Ky is a constant depending on compact subsets
Scl{mye=z=b|y|< =}, @yeS, [¥/I<xo,

and

(5.2)

S“’ udu too,

) +1
then y'"' = f(x, ¥, ¥') satisfies property (P).

Proof. Let S be any compact subset of {(z,¥)|a =2 <, |y|< o},
then for any (%, ¥,), (%, ¥,) € S there is an L > 0 such that |y, — v,| <L.



A SUBFUNCTION APPROACH TO A BOUNDARY VALUE PROBLEM 1061

By (5.2), given any A > 0 there exists B, > A such that

B4,9)  ydu
(5.3) L > LK

where K = max [Ky, max, ,es | (2, ¥, 0)[].

Let y(x) be an arbitrary solution of ¥%” = f(%, ¥y, y’) with initial
conditions y(x,) = ¥, ¥'(x,) = A where (x, ¥,)€S. Let x, < v =< x, be
an interval such that (z, y(x))e S and x, < %, < x,. Claim ¥'(®) < B s
on [x, #,]. If not, there would be two points ¢, and ¢, in [, #,] such
that y'(t) = A, ¥'(t) = By, and A < y'(¥) < By for zelt, t)] as-
suming without loss of generality that ¢, < ¢,.

By (5.1), f(z,9,9) =< K(¢(|%'|) + 1) and thus

ylyll <

—J4 < Ky.
(1Y) + 1
Therefore,
SBM:S)__@QL_ — S”M < thzy’da: <K-L
4 guwy+1 Jug(jy )+ 1 “

which contradicts (5.3), and hence ¥'(x) < B on [, #,]. Analogously,
one can show that ¥'(®) > — B on [, %,] whenever y'(x,) = —A.

The following theorem imposes sufficient conditions which imply
A, and, in fact, more.

THEOREM 5.2. Let f(x,y,y’) satisfy A;, 1 =0,1,2, and
(5.4) |f(x,0,y) — f(x,0,0)| = K|y|

forall a=x=b and |y| < + oo, then there exists an overfunction
W(x) of class C* on [a, b] and an underfunction ¢(x) of class C* on

[a, B].
Proof. Let R >0 be such that |f(x,0,0)| < Ron [a, b]. Define
P(@) = &(N — e"*®) on [a, b]
where m = K+ 1, ¢, = Rm™ + 1, and
N = max [sl—l_a + 1, 81_1:8 + 6m(b—~a), 6m(b—-a)] .

Using (8.5), it is easily verified that ++(x) is an overfunction of class
Ca, b].
Similarly, é(x) = (N — e™“=?) where ¢, = —(Rm™ + 1) and N =
max [ae;? + 1, Be;* + e, em®=9] ig an underfunction of class C*[a, b].
The following slightly stronger result can be proved: If f(z,y, ¥')
satisfies A, A, A,, and if
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|f (@, 0,9") — f(x,0,0)| < K[|y |-In|y'| + 1]

where z €|a, b] and |y’ | < o, then there exists an underfunction ¢
and an overfunction + of class C* on [a, b] with respect to the BVP
1.2).

The proof of this result follows by observing that any solution
of ¥" = Kyy'lny' where y(x) =0 and y'(x) = e on [a,b] is a super-
function with respect to (1.1) provided K, < —(2K + M) where M =
max | f(z, 0, 0) .

In general, one cannot replace (5.4) by the weaker condition:

(5.5) |f(@,0,9) — f(x,0,0)| < K[y [+
where
zela,d], |[¥|< o, and v>0;
for consider the BVP:
Yy =1+@)
y0) =0 y@2)=B+0.
There exists no continuous underfunction on [0, 7/2]. However, if the

length of the interval is suitably restricted, the following result holds.

THEOREM 5.3. Let f(x,y,y') satisfy A;, 1=0,1,2, and (5.5),
then, if b —a < (vK))™, there exists an overfunction (x) and an
underfunction ¢(x) of class C*a, b] with respect to the BVP (1.2).

Proof. Observe that any solution of the differential equation
(5.6) Y = — K@)

where K, = K + max|f(z, 0,0)|, x€[a,b], satisfying the conditions
y(x) =0 and ¥ (x) =1 on [a,bd] is a superfunction on [a, b] with
respect to (1.1).

If v # 1, the function () defined by

¥(@) = (K0 — DI (0K — ) + 117 — [vKi(a — b) + 1]°7) + 7

where 7 = max [a, 8 + [K(v — )] [(vK(a — b) + 1)®V/* —1],0] isa
solution of (5.6) and, if b — a < (vK,)™, then (x) =0 and v'(x) =1
on [a, b] with 4(a) = @« and () = B. Thus, 4(x) is an overfunction
of class C’a, b] with respect to the BVP (1.2) for v # 1.

If v =1, the function

Y(@) = K'in| K@ —b) +1]+7

where
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N =max [0, — K;*-In|K(a —b) + 1}, 5]

is an overfunction of class C%a, b], provided b — a < (vK;)™.
An underfunction ¢(x) can similarly be constructed.

6. Some existence theorems. Having found sufficient conditions
which when imposed upon f(x, %, ¥') imply assumptions A, and P, we
proceed to state and prove some existence theorems for the BVP (1.2).

THEOREM 6.1. If f(x,¥,¥y’) satisfies A;, 1 =0,1, 2, and if
(6.1) [f(®,0,9)—f(2,0,0)| < K|y'| where zela,d] and [y'|< o,

then H(x), the generalized solution of the BVP (1.2), has a finite
derivative at each point of (a,b). In fact, | H'(x,) | < M where the
constant M depends on w, a,b, a, B, K, and R = max|f(x,0,0)| on
[a, b].

Proof. H(x) exists on [a,b]. Let x,€(a,b) and consider the
two possible cases: (i) H(w,) < 0 and (ii) H(z,) > 0.

(i) Let H(2,) = 0. By the known properties of H(x), H(x, — 0)
and H(x, + 0) exist and H(x,) = min [H (%, — 0), H(x + 0)]. Assume
without loss of generality that H(x, — 0) = H(x,). Any solution of

(6.2) y' =Ky

where K, = K + R with y(x) =0 and ¥ (x) =1 is a subfunction by
(8.5). Let
A = min[¢(a), H(2,) — (1 — exp [Ki(a — x,)])(K, exp [Ki(a — )],
then the function y,(x) defined by
H ()
1 — exp[K(a — )]

A
* 1 —exp[K(a — )]

Yu(®) = [exp [Ki(z — z,)] — exp [Ki(a — ,)]]

[1 — exp [Ki(x — x,)]]

satisfies differential equation (6.2) with y(a) = 4, y(x) = H(x,),
Y(w) =0, and yi(w) = 1.

Since y,(x) is a subfunction of class C* on [a, x,] with H(a) =
yi(a) and H(x,) = y,(%,), we assert that y,(¥) < H(x) on [a, #,]. Assume
not, then there exists an «, € (a, x,) such that y.(x;) > H(x,). Let
e =y (@) — H(x,) > 0, then y,(x) — ¢/2 is a subfunction on [a, x,] by
(3.8). By the definition of H(x), there are continuous underfunctions
¢, and ¢, such that H(a) — ¢,(a) < ¢/4 and H(x,) — ¢4(x,) < ¢/4.

Define ¢,(x) = max [¢,(x), ()] for x € [a, b], then ¢,(x) is a continu-
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ous underfunction on [a, b] with H(a) — ¢,(a) < ¢/4 and H(x,) — $5(x,) <
¢/4. Define ¢* on [a, b] by:

5*(%) = {953(‘”) , xéla, 2]
max [¢3(ﬁ7), yl(w) - 8/2] y &XE [d, wo] .
¢*(x) is a continuous underfunction by (3.6), but ¢*(x,) = y.(%,) — &/2 =
H(x,) + ¢/2 which contradicts the definition of H(x). Therefore,
Y (x) < H(x) for all ze€la, x,].
Hence,

H(w, — 0) — H(®) _ (%) — 9:(x)
Ty — & - Ty — @

for a <z < x,

and

DH(w, — 0) = yi(w,) = Kj[1 — exp [K\(a — @,)]]7*-[H(x,) — A]
-exp [ K, max [b — @, 2, — a]]
= M1(a/, b: a, B, K; R) .

DH(xz, — 0) < M, < + o 1implies, by (4.3), that H(z, — 0) =
H(x, + 0). Hence H(x, + 0) = H(x, — 0) = H(x,) and H'(x) =< M,.

By a similar argument applied to the right-hand side of x, there
exists a constant M, depending on @, b, «, B, ©,, K, and R such that
M, =< H'(x,).

Therefore,

M, =< H' (%) = M,.

(i) If H(x,) > 0, proof is similar to case (i) and will be omitted.

COROLLARY 6.1. Under the hypotheses of Theorem 6.1, H(x) is
of class C* and a solution of (1.1) on (a, b).

This follows from (4.1), (4.2), (4.3), and Theorem 6.1.

COROLLARY 6.2. If

1) f(x,y,y) satisfies A,, A, and A,

@2 f&,99)=9%1919)+ hxy,9y) on T,

3) h(x,0,9) =0 for xcla,b] and |y'| < o,

4 |9(=,0,¥") —9(x,0,0)| = K|y'| for xela,b] and [y'|< oo,
then H(x) is of class C* and a solution of (1.1) on (a, b).

Our primary result is the following theorem.

THEOREM 6.2. If
(1) f(x, v,9) satisfies A, A,, and A,
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(2) there exists a positive continuous function ¢(u) defined for
% = 0 such that

|f(x, 9, 9") — f(@,9,0)| < Keg(|y'])
where Ky is a constant depending on compact subsets S of

{@,9)|rela,d], |lyl< =}, @yeS, |[¥[I<owo,
and

S” udu

o ¢(u) + 1 =+,

3 [f(0,9)—f(x,0,0)|=K|y'| for zela,b] and |y | < o,
then H(x) ts the solution of the BVP (1.2) of class C?[a, b].

Proof. By Theorems 4.1, 5.1, and 5.2, H(x) is a solution of the
BVP (1.2) in the sense defined. By standard arguments, H(x) is in fact
of class C[a, b].

COROLLERY 6.3. If

Q) f(x,y,y) satisfies A, and A,

2) @ v9,9) — @9, 9)| = Ks|ys — y:| where K is a constant
depending on compact subsets S of {(x,y)|x€a,b], |y| < =}, (x,y) €S,
and |y'| < o,
then H(x) is the solution of the BVP (1.2) of class C?a, b].

COROLLARY 6.4, If

Q) f(z,y,¥y) satisfies A, and A,, and

@) f@y,9) —f(@9,9)| = K|y — | for all (z,9,9), (@, y,92) € T,
then H(x) 1s the solution of the BVP (1.2) of class C*[a, b].

The above corollary was proven by Lees [4] using the method of
finite differences.

If the Nagumo condition (Assumption 2 of Theorem 6.2) is dropped,
it is still possible to assert the existence of the solution of BVP (1.2)
provided some rather severe limitations are placed on the boundary
values.

THEOREM 6.3. If given the BVP: ¥y’ = f(x, ¥, ¥'), y(a) = 0 = y(b),
with

Q) f(x,y,y) satisfying A, A, A, and

2 |f(x,0,9)—f(2,0,0)| = K|y'| for all xe[a,b] and [y'| < o,
then H(x) is the solution of the BVP (1.2).
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Proof. By Corollary 6.1, H(x) is of class C? and a solution of
(1.1) on (a, b). Thus, it suffices to show, that under the additional
stipulation of zero boundary values, H(x) is continuous on [a, b] and
assumes the zero boundary values. This is accomplished by constructing
an overfunction + and an underfunction ¢ both of which are continu-
ous on [a, b] and such that ¢(a) = ¥(a) = 0 and ¢(b) = (b) = 0.

Let ¢,(x) be a solution of

(6.3) y' = Ky

where K; = K + max|f(x, 0,0)| for ze|a, b] satisfying the condition
$(x) <0, ¢i(x) =1, and ¢,(b) = 0, and let ¢,(x) be a solution of

(6.4) y'= —Ky'

satisfying the conditions ¢,(x) <0, ¢ix) < —1, and ¢, (a) =0, then
#(x) and ¢.(x) are subfunctions with respect to (1.1) on [a, b]. Let
#(x) = max [¢,(x), ¢.(x)], then ¢(x) is a continuous underfunction such
that ¢(a) = 0 = 4(b).

Similarly, there exists a continuous overfunction +(x) such that
P(a) = 0 = y(b).

Thus, ¢(x) < H(x) < 4(x) on [a, b] and result follows.

COROLLARY 6.5. If

1) gz, y,y') satisfies A,, A, and A,

@) 9,0, y)=0foralla=x=band |y |< o,

B) f(&, ¥y, y) = h(x) + h(@)y + ho(y) + 9(, y, y') where h;, i =
1, 2, 3, are continuous on their respective domains and h, is non-
decreasing,
then there exists a solution of the BVP: (1.1) with y(a) = 0 = y(b).
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