
ON THE DIOPHANTINE EQUATION Cx2 + D = yn

W. LJUNGGREN

1. Introduction* Let C, D and n denote odd positive integers,
D > 1 and CD without any squared factor > 1. Let K = Q{V-CD),
where Q is the field of rational numbers. Let further h denote the
number of classes of ideals in K and put D + (-1){D+I)i2 = 2m A,
(A> 2) = 1. In two previous papers [4] and [5] I have proved the
following three theorems concerning the diophantine equation Cx2 + D —

I. The diophantine equation

(1) Cx2 + D = y* , n>l

is impossible in rational integers x and y if h ί 0 (mod ri), m is odd
and either CD ~ 1 (mod 4) or CD = 3 (mod 8) with n ^ 0 (mod 3).

II. The diophantine equation

( 2 ) Cx2 + D = y* , q > 3

where q denote an odd prime and CD ^ 7 (mod 8), is impossible in
rational integers x and y if h Ξ£ 0 (mod g), m is even and <? ί CA
(mod 8).

III. If D Ξ 1 (mod 4), CD ^ 7 (mod 8) and m is even, then the equa-
tion (2) has only a finite number of solutions in natural numbers x, y
and primes q if CA = 5 (mod 8) or if C = 1 with A = 3 (mod 8) for
given C and D. The possible values of y and an upper limit for the
number of primes q may always be determined after a finite number
of arithmetical operations.

From the proofs it immediately follows that these theorems also
hold good if CD = 7 (mod 8), provided y is an odd integer. This
gives a far-reaching extension of results obtained by D. J. Lewis in
his paper [2], Putting ( 7 = 1 , D = 7 we find, from 1:

The diophantine equation x2 + 7 = yz, z > 1, is impossible in
rational integers x, y and z if y is an odd integer.

Equations of the type (1) have also been studied by T. Nagell
[6], [8], [9] and B. Stolt [11].

Received July 2, 1963.

585



586 W. LJUNGGREN

2* The equation Cx2 + AD = y*, y odd.

THEOREM 1. Let n be the power of a prime q > 3, and suppose
that fcΐO (mod n). Then the diophantine equation

(3) Cx2 + AD = #» , n>l , y odd

has no solutions in rational integers x,y if q Ξ£ 3C( —1)(C7~1)/2 (mod 8).
Likewise, ifD = 0 (mod q), equation (3) has no integral solution.

Proof. We put n = q*. The principal ideals

[Cx + 2V~:^CD] and [Cx

have the greatest common ideal divisor [C, V—CD], because [C] =
[C, "l/—CD]2, # is an odd integer and (x, y) = 1. From (3) it then
follows

where i denotes an ideal of the field Q(V — CD). Further we get

(4 ) [Cx + 2V^CΣ>Y = [C] .«*& - i2) .

If the class number h is divisible by qβ (0 ^ β < a) and not by
qβ+1, there exist two rational integers / and g such that

fq* -gh = qβ .

Then by (4) we get the following equivalence

if ~ {{«« ~ i .

Hence we obtain the ideal equation

(5) [Cx + 2V=CDΎ = [C] Γ—(u + ^τ/^OD)Ί? Λ-β

L ZL J

where u and v are rational integers, u = v (mod 2). Since g > 3 all
the units in the field Q{V—CD) are qth powers. Then it follows
from (5)

( 6 ) (Cx + 2V-CD)2 = C^-jiu, + vy=CD)y , u1 = v1 (mod 2) .

By means of (6) we derive

(ayc+ by^D))2, aτ = bx (mod 2)

Inserting this expression in (6) we get
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(aye( 7 ) xVC + 2V-D = {±-(a2VC + b2V-D)\ , a2 = δ2 (mod 2) .

Equating the coefficients of "l/ —Z) we obtain the relation

( 7') 2«+1 = Σ ( 2 r +

whence δ2 = ±2% 0 g s ^ q + 1.
Equation (7') gives modulo g

or

Ξ 4(mod q) , i.e.

δ2

 Ξ ± 4 (modg) .

For g > 5 b2 and α2 must be even numbers, so that we have

( 8 ) xVC + 2V-D = (aVC + bλ/-D)q .

If q = 5 and b2 = ± 1 it follows from (7') that

£>2 ± 8 = δ(—(Cα2 -

which is impossible mod 8. Equation (8) is then valid if q > 3. Cor-
responding to (7') we get

< 8') 2 = " Σ " ( 2 r + 1)(Caγ

Equation (8') is impossible if q divides D. If (D, q) — 1 it follows
from (8')

•whence

Inserting this expression for b in (8') we obtain

9) (^) = 9Σ/(

At first we want to prove that (9) is impossible ifq = l (mod 4).
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Treating (9) as a congruence mod 4 we find

Suppose now that q — 1 is divisible by 2*, but not by 2δ+1, δ ^ 2.
Equation (9) may be written

(10) l - q + q(l- (Cα»)( -"") = ' | Γ ( 2 r + 1 ) ( C α y ' - 1 » 2 ϊ - ( - 4 D ) ' .

The general term in the right-hand side in (10) we then prefer
to give the following shape

(11)
2r(2r

Here the numerator is divisible by 2δ+2r. The denominator is-
divisible by a power of 2 which is ^ 2. Since for all r ^ 1 22r > 2r,
we conclude that the integer (11) is divisible at least by 2δ+1. Hence^
equation (10) is impossible, because (Cα2)(g~1)/2 — 1 is divisible at least
by 2δ+1, while q - 1 is divisible by 2δ but not by 2δ+1.

It remains to consider the case q = 3 (mod 4). From (9) it then,
follows

) Ξ ( ? C (mod 4 ) ,

whence

r " = - 1 for C = 1 (mod 4) ,
Q

χ = + 1 for C= 3 (mod4).

Treating (9) as a congruence mod 8, we get

(13) ( ^ λ =qC + 4 (mod 8)

V q 1

Combining (12) and (13) we find

q = 3C(-1Y°-1)J2 (mod 8)

which was to be proved.

REMARK. Theorem 1 remains true if q = 3, provided CD 3= S
(mod 8): All units in Q{V—CD) are still qth powers, such that equa-
tion (7) also holds good for q = 3. Since b2 =Ξ ± 4 (modg), we have
in addition to consider the cases b2 = ± 1 and δ2 = ± 2 . If δ2 = ± 1
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we deduce from (7) that D= 3Ca2

2+16, which implies CD = 3 (mod 8),
a contradiction. If b2 — ±2, a2 must be even. Putting a2 = 2α3 we
find D = 3Cαs+2 and y = 4Cα3 + 2. But we assumed 7/ to be an odd
integer, and then our assertion is proved.

We now proceed to prove two lemmas.

LEMMA 1. Putting

(15) S l = Σ ( 4 / + 1 ) and S 2 = Σ

we have ifn^S (mod 8)

(16) Sλ = 0 (mod 3) , S2 Ξ 1 (mod 3) ,

and ifn = 7 (mod 8)

(17) & == 1 (mod 3) , S 2 Ξ 0 (mod 3) .

Proof. Inserting x = 1 and cc = i in the identity

we get

2- 1 = S1 + Si9

and

2(-i)/>.(-i)(*-3)/4 = g i _ S2 9 n = 3 ( m o d 4) ̂

from which (16) and (17) easily follow.

LEMMA 2. Equation (9) is impossible for q > 3 if

(18) D s ί - l ) ^ 1 " * (mod 3),

ami besides one of the three following conditions is satisfied:

1° C ΞΞ 0 (mod 3)

(19) 2° C Ξ + 1 (mod 8)

3° C Ξ + 3 (mod 8) and C = ( - l ) ^ ' 2 (mod 3) .

Proo/. If a = 0 (mod 3) or if C = 0 (mod 3) it follows from (9)
and (12) that

(_l)(σ+D/2 Ξ _(4£>)«7-i>/2 = _jr) ( m o d 3) , because D2 = 1 (mod 3) .

But this contradicts condition (18).
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If a2 == 1 (mod 3), C Ξ£ 0 (mod 3) we find

or

(20) (_i)«7+D/» = ^ - D S 2 (mod 3) .

The congruence C = ±1 (mod 8) may be written C Ξ ( - 1 ) I W " 1

(mod 8). By Theorem 1 we then conclude ? = 3C(-1)(C7-1)/2 = 3 (mod 8).
According to Lemma 1 it follows from (20)

a contradiction.
The congruence C = ±3 (mod8) is equivalent to C Ξ 3(-l) ( c r + 1 ) / 2

(mod 8). By means of Theorem 1 we conclude

q = 3C(-1YO~1)I2 = Ί ( m o d 8 ) ,

and Lemma 1 then gives

(_l)<*+i>/ι = C (mod 3 ) ,

which contradicts the second part of the condition 3°.
Our lemma is proved.

THEOREM 2. Let C, D, n and h be defined as before, h ^ 0
(modn). If D = ( — l ) ^ 1 ^ 2 (mod 3) and if further one of the condi-
tions (19) is satisfied, then the diophantine equation

(21) Cx2 + AD = yn , n > 1, y odd

has no solutions in rational integers x and yf provided n ^ 0 (mod 3)
in case CD = 3 (mod 8).

Proof. Suppose that (21) is solvable in integers x, y, where y is
odd. There must exist a prime factor q of n with the following
property: q* is a factor of n but not of the class number h. We
put m — q*, n = mr and z = yr. Then the equation

(22) Cx2 + AD = zm

should be solvable in integers x and z. But this is impossible on
account of Lemma 2 and the remark to Theorem 1.

EXAMPLE. The equation 3x2 + 28 = yn, n ^ 3, has no solutions
in rational integers x, y with y odd.
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Here is C = 3, ΰ = 7 Ξ 1 (mod 3) and CD = 5 (mod 8). Putting
# = 2a?i, # = 2yx we get 3x? + 7 = 2ίl~2τ/Γ, which implies n = 3, because
3aή + 7 = 2 (mod 4). Equation 3a?ϊ + 7 = 2i/ϊ has at least the solutions
a?i = ± 9 , ^ = 5.

3 The equation #2 + AD = i/Λ, 2/ odd* In this section we restrict
ourselves to the simple case C = 1. According to Theorem 1 and the
remark attached to this it will be sufficient to deal with the case
q = 3 (mod 8), q = 3 included. Putting

χ = a + 2λ/-D and λ' = a - 2λ/~D

it follows from (8), with b = 2(-D/q) = 2(-l) ( < 7 + 1 ) / 2 - - 2 :

)ϊ "x *q
(23) - £ L - = - 1 .

λ - λ'

The following identity is easily verified:

Λ (g-D/2 N Γ(q-l)J2

(24)
λ-λ' λ ' v 7 λ-λ'

Since q — 8t + 3, (24) may be written

(25) χU+1 ~~ λ ^ + 1 (λ4ί+2 + λ'4ί+2) = - ( α 2 + AD)it+1 - 1 .

The second factor on the left-hand side of (25) is divisible by
(λ2 + λ'2)/2 = a2 - AD. Suppose now a2 - AD > 0. Since a2 - AD = 5
(mod 8), this number contains at least one prime factor p = 7 (mod 8)
or p = 5 (mod 8). By means of (25) we derive that the Legendre
symbol ( ( - α 2 - AD)/p) = - 1 , which implies (-2/p) = 1, i.e. p = 8t + 1
or 8ί + 3, contrary to the assumption. We therefore conclude
α2 - AD < 0, or

(26) a2 < AD .

These considerations yield the following theorem:

THEOREM 3. Let D > 1 denote an odd positive integer without
any squared factor > 1. If the class number of Q{V — D) is indi-
visible by the odd prime q, then the diophantine equation

(27) x2 + AD = yQ, y odd

has no solutions in rational integers ifq^S (mod 8). / / q = 3
(mod 8), then (27) has only a finite number of solutions in rational
integers x and y and primes q for given D. The possible values
of y and an upper limit for the number of primes q may always
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be determined after a finite number of arithmetical operations.

That an upper limit for the number of primes may be determined,
follows as a consequence of a theorem due to Th. Skolem [10]. How-
ever, in special cases it will be more convenient to use other methods.

Example 1. x2 + 28 = yq. We have h = 1 and must examine the
case q = 3 (mod 8). The inequality (26) gives the possibilities:

a2 = 1, a2 = 9 and a2 — 25. The corresponding values of yq are
29, 37 and 53 respectively.

We make now use of the formula

(x + y)q - xq - yq = ?&#(& + τ/)(x2 + &# + y2)r Q(u, v) ,

where g > 3 and

u = (x2 + xy + i/2)3, v

r = 2 f or q Ξ= 1 (mod 3)

and r = 1 for g = 2 (mod 3), and Q(w, Ί;) is a polynomial in u and v
with integral coefficients [1]. Putting x = λ, 2/ = — λ', we obtain

(λ - λ')9"1 - λ * "" X[Q = -qXXr(X2 - XX' + Xn)r-Q(u, v) ,
X — λ,

or

(28) {l&D)qf = 1 (mod q-(a2 + 4Z>) (α2 - 122))) , q' = —(q - 1) .

If α2 = l we get 1129' = 1 (mod 29), or 2*"1 = - 1 (mod 29). Since
214 = - 1 (mod 29) and 2s Φ - 1 (mod 14) for 0 ^ s < 14, we must have
q = 1 (mod 14), which implies (g/7) = 1. From (28) we further find
112*' == 1 (mod q), i.e.

a contradiction.
If a2 = 9 we get 1129' = 1 (mod 5), or 2qt = 1 (mod 5), which is

impossible for q = 8ί + 3.
If α2 = 25 we obtain 1129' Ξ 1 (mod 53), or 69' = 1 (mod 53). Now

6 belongs to the exponent 26 mod 53, which is impossible since qf is
an odd number.

It then remains q = 3, where

^ = (α -

whence 2 = 56 — 6α2, i.e. a2 = 9, cc = 225 and
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2252 + 28 - 373 .

We have then proved:

The diophantine equation x2 + 28 = yz; z > 3 and odd, has no
solutions in integers x, y and z if y is an odd integer. Ifn = 3
there are exactly two solutions, namely x = ±225 and y = 37.

This is a comprehensive generalization of a result obtained by
D. J. Lewis [2].

Example 2. x2 + 12 = ?Λ Here is h = 1, and (26) gives α2 = 1
or α2 = 9. The last possibility must be excluded, giving y == 0 (mod 3),
If g > 3 it follows from (27)

48*' = 1 (mod 13) ,

or

2*"1 = - 1 (mod 13)

implying q = 1 (mod 6), or (g/3) = 1. But according to (12) ( — 3/g) =
— 1, or (g/3) = 1, a contradiction. It is further known that x2 + 12 = #3

has no integral solution. This may be shown in the following manner:
1° y odd. We write our equation in the form

x2 + 4 - (y - 2)(y2 + 2y + 4)

Since (x, 2) = 1, all prime factors of x2 + 4 must be of the
form it + 1. Consequently, # = 3 (mod 4). But this implies that
y2 + 2y + 4 = 3 (mod 4), which clearly is impossible.

2° 2/ even. Then x must be even, and putting x = 2^, 2/ = 2 ^ we
get

x\ + 3 = 2*-22/?

which is impossible modulo 8, because q Φ 4.
Then we have proved:

diophantine equation x2 + 12 — yn, n > 1 cmd ocίcί, feαs πo
solutions in rational integers x and y.

4. The equation Cx2 + DM2 = τ/w, 7/ odd, (x, y) = 1Φ Let M de-
note any positive integer, such that (C, M) — 1. In order to find
criteria for the solvability of the equation

(29) Cx2 + DM2 - y* , n>l, y odd and (a?, ») = 1 ,

similar to those obtained in the previous sections, we are again led to
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deal with an expression of the type

(30) xVC + MV~=D = (—(aye + by=
\ Δ

q denoting an odd prime. From (29) it follows

(g-l)/2 / rt \

(31) 2« M = Σ (2r + l Γ i 6 ! r + l i C ' H I / l | ( " i ) ) f

It is easily seen that

(32) b2\M.

If (Db, q) = 1, we find, treating (31) as a congruence

, α2 = δ2 (mod 2) ,

2M = (mod «) ,

from which we conclude

(33) q | 2M ± b2 .

According to (32) and (33) there are only a finite number of pos-
sibilities for 62 and for the primes q if b2 Φ 2M( — D/q). It then only
remains to consider the case

= 2M

where (30) can be written

(34) xVC + V -DM1 = (aVU + bV-DM2)9 ,

and

6 -

But now we can utilize the results obtained for M = 1.

x2 + 63 = yn , 1/ odd, n > 1.

If (#, ̂ /) = 1 we solve

Here we have y = (a\ + 76i)/4, i.e. α2 and 62 are even integers
because y is odd. This gives
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(35) x + ZV^ = (a + bl/^ϊ)9

with 6 = ± 1 or b = ± 3 . It is obvious that g Φ 7, such that 3 = b(-7/q)
(mod g) This implies b2 = 1. For g = 3 equation (35) is impossible
mod 9. Then we must have b = 3( — 7/q). Since 7/ is odd, a must be
even, and from (34) we conclude ( — 7/q) = 1 and

(36) 1 - (J)α*-1 ~ (|)^-3.7 32 + +

Since g = 1 (mod 3) and a2 = 1 (mod 3), it can be shown that (36)
is impossible, exactly in the same way as we earlier proved the im-
possiblity of (10), exchanging only the prime 2 by the prime 3. Our
equation is then impossible if (x, y) = 1. If (x, y) = 3 we get, putting
x = 3a?!, y = 3̂ /i

x\ + 7 = 3*~ V = 0 (mod 3) ,

which is impossible. Then we have proved:

The diophantίne equation x2 + 63 = yn is impossible in integers
%,y if V is odd and n > 1 is an odd number.

5. Remark on earlier results* The diophantine equation

(37) ax2 + bx + c = dyn ,

where the left-hand side is an irreducible polynomial of the second
degree, having integral coefficients and d is an integer Φ 0, has only
a finite number of solutions in rational integers x, y when n ^ 3.
This was first shown by A. Thue and later on by Laundau and
Ostrowski. See for instance [7]. However, no general method is known
for determining all integral solutions x and y for a given equation of
the form (37).

Equation (1) was solved completely by T. Nagell in case y odd,
C arbitrary and D = 1, 2 or 4 [9]. Nagell has also examined equation
1 when C = 1 and D a square-free integer congruent to 1 or 2 modulo
4, but the results obtained are far from being complete [6]. He has
further found interesting theorems concerning the equation x2 + 8D =
yn, (D, 2) = 1 [8]. The first complete solution of the equation x2 + 2 =
yn was given by Ljunggren [3]. An upper bound for the number of
solutions of (1), in terms of D and n, was derived by Stolt [11]. It
must be emphasized that we in this note have deduced bounds which
are independent of n. For other equations of the type (1) see [9].

If y is odd, but the classnumber h is divisible by n, we have to
deal with irreducible binary forms of degree n ^ 3. This occurs also
if y is even. The problem of representation of rational integers by
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such forms is not solved. For the determination of an upper bound
for the number of solutions of our equations in these cases compare
[2], p. 1075.
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