
ON THE STRUCTURE OF INFRAPOLYNOMIALS
WITH PRESCRIBED COEFFICIENTS

0. SHISHA

Introduction* The main result of this paper is Theorem 5 which
deals with the structure of infrapolynomials with prescribed coefficients.
This theorem was quoted (without proof) in a previous paper [Shisha
and Walsh, 1961]1, and was used there to prove a few results concerning
the geometrical location of the zeros of some infrapolynomials with
prescribed coefficients [loc. cit., Theorems 11, 12, 16, 17]. Two similar
results are given here in Theorem 6.

We refer the reader to the Introduction of the last mentioned
paper for a review of the development of the concept of inf rapolynomial.
Here we shall just mention two of the underlying definitions.

A. Let n and q be natural numbers (q < ri), n19 n2, , nq integers
such that 0 < nλ < n2 < nq < n, and S a set in the complex plane2.
An nth. inf rapolynomial on S with respect to (n19 n2, , nq) is a
polynomial A(z) =. Σ? = o avz

v such that no B(z) = Σv=o M v exists, satisfy-
ing the following properties.

(1) B(z)*A(z),
( 2 ) 6Wv = αnv (y = 1, 2, , q),
( 3 ) I B(z) I < I A(z) I whenever z e S and A(z) Φ 0, and
(4) B(z) = 0 whenever zeS and A(z) = 0.

B. Let n be a natural number. A simple n-sequence is a sequ-
ence having one of the forms

(0,1, , fe, n - I, n - I + 1, , n) [k > 0, I > 0, k + I + 2 < n] ,
(0,1, , k) [0 < k < ri\, (n - I, n - I + 1, , n) [0 < I < n] .

Theorem 5 may yield information on the location of the zeros of
an nth infrapolynomial A(z) on a set S with respect to a simple n-
sequence σ. For it allows (under quite general conditions) to set
A(z) = B(z) D(z) where D(z) is a polynomial all of whose zeros lie in S,
whereas B(z) is a divisor of a polynomial Q(z) whose structure is given
by the theorem. By studying the location of the zeros of Q(z), one
may get information on the location of the zeros of A(z). By this
method, Theorems 11, 12, 16, 17 [loc. cit.] were proved. (Compare
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1 Dates in square brackets refer to the bibliography.
2 We deal throughout this paper with the open plane of complex numbers.
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also the proof of Theorem 6 below.)
Theorem 5 is a generalization of Fekete's structure theorem [1951],

and we use his method of proof [cf. also Fekete 1955]. The concept
of a " juxtafunction" (Definition 1) is a generalization of Fekete's
"nearest polynomial" [1955], later termed "juxtapolynomial" [Walsh
and Motzkin 1957]. Theorems 1-4 and Lemmas 1-4 are contained in
the author's Ph. D. thesis [1958] they are needed for the proof of
Theorem 5, and they generalize previous results of Fekete [1951, 1955].
The principal results of the present paper were published by the author
(without proof) in abstracts (1958a, 1959, 1961],

1Φ DEFINITION 1. Let S be a set in the complex plane and let
Π be a set of complex functions defined on% S such that whenever fλ e Π,

f2e Π and c19 c2 are complex numbers, then4 c1f1 + c2f2e Π. Let f be
a complex function defined on S. A juxtafunction to f on S with
respect to Π is an element p of Π having the property: there does
not exist a q e Π satisfying
(a) q(z) Φ f(z) for at least one ze S,
(b) |/(s) - q(z) I < |/(s) - p(z) I whenver ^ e S a n d p(z) Φ f(z),
(c) q(z) = f(z) whenever z e S a n d p(z) = f ( z ) .

EXAMPLES A. Let S(Φ0) be5 a closed and bounded set in the com-
plex plane. Let /, ply p21 , pnf μ be complex functions with domain
S which are continuous on S, and assume, furthermore, that μ(z) Φ 0
throughout S. For every complex function ψ with domain S which
is continuous on S, let || ψ \\ = max [| μ{z)ψ(z) \, z on S]. It is known
that there exist complex numbers λf, λ2*, ••• , λ* such that for every
complex λ2 λ2, , λΛ,

Consider the linear space // of all linear combinations (with complex
coefficients) of plf p2, , pn. Then p = Σ?=i^?Pv is a juxtafunction
to / on S with respect to Π. Indeed, suppose that some q = Σ?=iλ'?>v
satisfies (a), (b) and (c) of Definition 1. Let ζ be a point of S such
that

Then by (a) q(ζ) Φ f(Q9 and therefore, by (c), p(Q Φ f(ζ). From (b)

we get | | / - ΣlUλv'Λ II = 11/ - q \\ - I MO(/(O - ?(O) I < I MC)(/(O

i.e. their domains include S.
The domain of ci/i + C2/2 is the intersection of those of /1 and f2.
0 denotes the empty set.
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- V(O) I < 11/ - Q II = 11/ - Σ^Λ?/v II, contradicting (1).

B. Let /, plf p2, , pn be real functions with domain S — [0,1],
continuous there, and assume furthermore that plf p2, , pn are or-
thonormal on [0,1]. Let 77 be again the set of all linear combinations

(with complex coefficients) of pl9 p2, pn. Let λ* = I f(x)pv(x)dx
Jo

(v — 1, 2, , n). Then p = Σv-iλ?Pv is a juxtafunction t o / on S with
respect to 77. Indeed, if p = /, then the last assertion follows from
Lemma 1 below. We thus assume that p(x0) Φ f(x0) for some x0 e [0,1].
Suppose there exists a q = Σ?=iλvί>v satisfying (a), (b) and (c) of
Definition 1. Then \f(x) - q(x) \ < \f(x) - p(x) | throughout [0, 1], and
\f(x0) - q(x0) I < \f(x0) - p(x0) \. Thus

[\f(%) - Σ Re(Xv)py(x)ldx < [\f(x) - Σ X?py(x)ldx ,
JoL v=i J JoL v=i J

contradicting the least squares property of the Fourier coefficients λ*.

LEMMA 1. Let S and Π be as in Definition 1 and let f be an
element of Π with domain S. Then f is the unique function with
domain S which is a juxtafunction to f on S with respect to Π.

Proof, f is such a juxtafunction, since (a) and (c) of Definition
1 are mutually contradictory when p is / . If p (with domain S)

belongs to 77 and p Φ f, then q = — (p + f) belongs to 77 and satis-

fies (a), (b) and (c), so that p is not a juxtafunction to / on S with
respect to 77.

THEOREM 1.

Hypotheses.

1. S(Φ0) is a closed and bounded set in the complex plane, /, p19

P2, J Pn are complex functions defined and continuous on6 S.

2. II is the set of all complex functions defined on S which can
be represented throughout S as linear combinations (with complex
coefficients) of the p[s.

3. p is a juxtafunction to f on S with respect to 77, and p(z)
Φ f(z) throughout S.

6 As the domain of / may properly include S, its continuity on £ means that if

S, and if (aj)J=:1 is a sequence of points of S converging to a, them lim/(θ;) = f(a).

Similarly for pίt p2, , pn and in Lemma 2.
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Conclusion. There exist distinct points zlf z2, , zm of S (1 < m
< 2n + 1) and positive λx, λ2, , λm such t h a t :

(I). p(z) is a juxtafunction to / on s = {zlf z29 ••• , zm} with re-
spect to /7,

(II). iVo complex 6X, δ2, , bn exist such that \f(z) — Σΐ=ibvpv(z) I <
\f(z) - p(z) I throughout s,

(III). Σ?=iλμPv(^)/{/(«μ) - V(z»)} = 0, v - 1, 2, . . . , n.

REMARK 1. Observe that (I) is implied by (II).

For the proof of Theorem 1 we shall need two lemmas.

LEMMA 2. Let S(Φ<Z) be a closed and bounded set in the complex
plane, and Π a set of complex functions, defined and continuous on
S such that whenever fλe Π, f2e Π, and cλ and c2 are complex num-
bers, then cγfΎ + c 2/ 2e 77. Let f be a complex function defined and
continuous on S, and let p be an element of Π such that p(z) Φ f(z)
throughout S. A necessary and sufficient condition for the existence
of a qe Π satisfying throughout S

( 2 ) \f(z)-Q(z)\<\f(z)~p(z)\

is the existence of an reΠ, satisfying throughout S

( 3) \f(z) - p(z) - r(z) I < \f(z) - p(z) + r(z) | .

Proof of Lemma 2.

Necessity. Let r = q — p. Then throughout S

|/( 2 ) - P(Z) - r(z) I < |/(z) - p(z) I < |/(2) - p(z) I {2 - \f(z) - q(z) \ x

\f{z) - p(z) n < I 2{f(z) - p(z)} - {/(«) - q(z)} \ = \f(z) - p{z) + r(z) \ .

Sufficiency. We use the fact that if a, b are arbitrary complex
numbers, the inequalities |α — 6 | < | α + 6 |, Re(ba) > 0, are equivalent.
Since throughout S

Re[r(z)/{f(z) - p(z)}] = \f(z) - p(z) |-2 Re[r{z){f(z) - p(z)}] > 0 ,

we have there a \ r(z)/{f(z) - p(z)} | 2 < 2Re[r(z)/{f(z) - p(z)}]
where a = min [| {f(z) - p(z)}/r(z) | >Re(r(z)/{f(z) - p(z)}), z on S].
Let q = p + ar. Then throughout S,

\f(z) - q(z) I = \f(z) -p(z)\\l- ar(z){f(z) - p(z)}-' | = \f(z) - p(z) \ x

[1 + « Ί r(z)/(f(z) - p(z)) | 2 - 2aRe{r(z)(f(z) - p{z))-'}]w < \f(z) - p(z) | .



STRUCTURE OF INFRAPOLYNOMIALS 1045

LEMMA 3. Let the Hypotheses 1, 2 of Theorem 1 hold, and let p
be an element of Π such that p(z) Φ f(z) throughout S. For every
zeS, let F(z) denote the point (xx{z), yx{z), x2{z), y2{z), , xn(z), yn{z))
of the {real) Euclidean 2n-space E2n9 where xv(z) is the real part and
yv(z) the imaginary part of pv{z) \f(z) — p(z)}. A necessary and suf-
ficient condition for the existence of a qe Π satisfying (2) through-
out S, is that the point Ω2n = (0, 0, 0) of E2n does not belong to
the convex hull H of7 F(s).

Proof of Lemma 3.

Necessity. By Lemma 2 there exists an r e Π such that (3), Le-
the inequality

(3a) Re[r(z){f(z) - p(z)}] > 0

holds throughout S. Let s19t19 s2, ί2, , 8n9 tn be reals such that
throughout S, r(z) = Σv=i(sv — itv)pv(z)m Then throughout S we have

( 4 ) i > A ( z ) + t,yv{z) > 0

and thus F(s) is a subset of the half-space

( 5 ) Sx&x + tλx2 + + snx2n^ + tnx2n > 0 .

Therefore H is also a subset of this half-space, and consequently Ω2n £ H»

Sufficiency. Since H is compact and Ω2n 0 H, we can find a half-
space (5) containing F(S). Thus (4) holds for every ze S. Setting
r = ΣJ=i(sv — itv)Pvf we have throughout S, (3a), and therefore (3).
Thus, by Lemma 2, there exists a qe Π satisfying (2) throughout S.

Proof of Theorem 1. / cannot belong to 77, for otherwise, by
Lemma 1, the restrictions of / and of p to S would coincide, con-
tradicting Hypothesis 3. By Definition 1, there does not exist a qe Π
satisfying (2) throughout S. Using notations of the last lemma, it
follows that Ω2n eH. By a well known theorem of Caratheodory there
exist in F(S) distinct points Au A2, , Am (m < 2n + 1) and there-
exist positive A19 Λ2, , Λm such that

( 6 ) β ! n

Let

F(s) is, as usual, the set of all F(z), zeS.
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<7) Aμ = F(zμ), zμeS (μ = 1,2,- ,m).

Then the zμ are distinct, and from (6) we get by taking components,

•( 8) Σ Λμv,{zμ){f{zμ) - p(zμ)} = 0 (v = 1, 2, , n) .
μ = l

Thus

m
v ΛZΦMA*) - P(«μ)} = 0 (υ = 1, 2, , w)
μ = l

where λμ = J μ |/(sμ) — p(Zμ) | 2 > 0 (μ = 1, 2, , m). Let s = fo, 22,
• * > m̂}> and let π be the set of all functions defined on s which can
be represented throughout s as linear combinations (with complex coef-
ficients) of the pv. Obviously peπ, since peΠ. From (6) and (7)
it follows that Ω2n belongs to the convex hull of F(s) and therefore,
by Lemma 3 (taking there s in place of S and π in place of 77) there
does not exist a q e π satisfying (2) throughout s. This concludes the
proof.

REMARK 2. Suppose that one of the pv in Theorem 1 equals
throughout S a constant c(Φθ). Then from (8) we obtain Σ?=i^μ{/fe)
— p(zμ)} = 0 c Thus 0 belongs to the convex hull of the image of s
(and a fortiori of S) under / — p. [Compare Motzkin and Walsh 1953,
§2, and Fekete 1955, §18].

REMARK 3. Let sf = {zu z29 , zM} be a finite set in the complex
plane and suppose that /, pί9 p2, , pn are complex functions defined on
s'. Let π' be the set of all complex functions representable through-
out sf as a linear combination with complex coefficients of plf p2, ••• ,
pn. Let p be an element of πr such that p(z) Φ f(z) throughout s',
and suppose there exist nonnegative reals X\, , λ'* (not all zero)
such that

Σ KPVMHA**) ~ P(^)} = 0 (v - 1, 2, . . . , n) .
fi=l

Then there does not exist a q e πf such that (2) holds throughout s'.
Indeed, we have

,) - p(zμ)} = 0 {v = 1, 2, . , n)

where Λ'μ are nonnegative reals, not all zero. Therefore (using nota-
tions of Lemma 3) Ω2n belongs to the convex hull of F(s'). By Lemma
3, there does not exist a qeπ' satisfying (2) throughout s'. Conse-
quently, p is a juxtafunction to / on s' with respect to ττ\
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THEOREM 2. Let the hypotheses of Theorem 1 hold and suppose
furthermore that f — p, p19 p2, pn are real valued throughout S.
Then the inequality 1 < m < 2n + 1 in the conclusion of Theorem 1
can be replaced by 1 < m < n + 1.

Theorem 2 is proved with the aid of the following lemma, in the
same way that Theorem 1 was proved with the aid of Lemma 3.

LEMMA 4. Let the hypotheses 1, 2 of Theorem 1 hold, let p be
an element of Π such that f(z) Φ p(z) throughout S, and suppose that
f — P, Pi, P2, , Vn ave real throughout S. For every ze S, let Fx(z)
denote the point (pL)(z){f(z) - p{z)}, P2(z){f(z) - p{z)}, , pn(z){f(z) -
p{z)}) of the (real) Euclidean n-space En. A necessary and sufficient
condition for the existence of a q e Π satisfying (2) throughout S, is
that the point Ωn = (0, 0, , 0) of En does not belong to the convex
hull of F1(S).

The proof of the last lemma is analogous to that of Lemma 3.

We shall make frequent use of the concept of unisolvence. We
mention therefore the following

DEFINITION 2. Let S be a set in the complex plane, and (pv(z))"=1

a finite sequence of complex functions defined on S. The sequence
will be called unisolvent on S if and only if for every complex
Ci> 02, , cn (n°t aM zero) the set of all z e S for which Σ?=APvOs) = 0,
contains less than n points.

REMARK 4. Thus (pv(z))Z=-i is unisolvent on S if and only if this
sequence is linearly independent on every w-point subset of S. A
simple example is the sequence (z"-1)^, which is unisolvent on every
subset of the complex plane. A unisolvent sequence has been termed
also (for an important particular case) a "Tchebycheff system". Other
terms used in this connection are " Haar system" and " interpolational
system ".

THEOREM 3. Let the hypotheses of Theorem 1 hold and suppose
that each of the sequences (pv(z))l=1(j = 1, 2, , n) is unisolvent on
S. Then the inequalities

( 9 ) l<m<2n + 1

in Theorem 1, can be replaced by the sharper estimate n + 1 < m <
2n + 1. Furthermore, if the additional hypothesis of Theorem 2 is
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made too, (9) can be replaced by m = n + 1.

Proof. Choose distinct points zu z2, , zm of S and positive Xlr

λ2, , λm such that (I), (II) and (III) of Theorem 1 hold, where 1 <
m < 2n + 1 and where, furthermore, 1 < m < n + 1 in case the addi-
tional hypothesis of Theorem 2 holds. We shall prove that n + 1 < m.
Indeed: suppose m < n. Then since (pv0s))vU is unisolvent on S, the
determinant whose jih row is Pifo ) p2(^i) Pmfe) is different from
zero. Therefore there exist constants c19 , cm such that f(z) =
Σv=î vPv(^) throughout s. Let π have the same meaning as in the
proof of Theorem 1 then feπ. By Theorem 1, (II), p is a juxtafunc-
tion to / on s with respect to π. By Lemma 1 (with S replaced by
s, Π by 7Γ, and / by the restriction of our / to s) we have f(z) = p(z}
throughout s, contradicting hypothesis 3 of Theorem 1.

2* We apply now Theorems 1, 2 and 3 to wth infrapolynormals
(cf. the Introduction).

THEOREM 4. Let n and q be natural numbers (q < n), nlf n2,
• , nq integers such that 0 < nλ < n2 < nq <n, and S a closed
and bounded set in the complex plane. Let A(z) (=£0 throughout S)
be an nth infrapolynomial on S with respect to (n19 ••• ,nq). Then8"
there exist distinct points z19 z2, *",zm of S,

(10) 1 < m < 2(n - q) + 3

and positive Xlf λ2, , λm such that A(z) is an nth infrapolynomial
on s — {zx, z2, , zm} with respect to (nlf n2, , nq) and such that

(11) Σ ^lHlA(Zy) = 0 (v - 1, 2, , n + 1 - q}
l

where llf l2, , ln+1-q (k < l2 < ln+ι-g) are the elements of {0,1,
• * , Ά — {nu n2, , nq}. If the polynomials A(z), zh, , zln+1~g are-
real valued throughout S, then (10) can be replaced by 1 < m < n +
2 — q. If each of the sequences (z1*)3^ (j = 1, 2, , n + 1 — q) i»
unisolvent on S, then (10) can be replaced by

(12) n-q + 2<m<2(n-q) + 3.

If the polynomials A(z), zh, , zln+1~q are real valued throughout
S and each of the sequences {zh){=ι (j = 1, 2, , n + 1 — q) is un-
isolvent on S, then (10) can be replaced by m — n — q + 2.

REMARK 5. If (nl9 n2y , nq) of Theorem 4 is a simple w-sequ-

8 As is easily seen, S cannot be empty. [Cf. Shisha and Walsh, 1961, footnote 7
on p. 117].
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(cf. the Introduction) and if, in case nλ = 0, 0 g S, then as is
easily seen, the sequences {zh)i=x (j = 1, 2, , n + 1 — q) are unisol-
vent on S.

Proof of Theorem 4. Let Π be the set of all complex functions
defined on S which are expressible throughout S as linear combinations
of zι ι*+1~9

with complex coefficients, and let f(z) =
p(z) = — ^Σvil~9alvz

h. It is easily seen that p(z) is a juxtafunction to /
on S with respect to Π. Therefore, by Theorem 1 there exist distinct
points zlf , zm (m < 2(n + 1 — q) + 1 = 2(n — q) + 3) of S and positive
λi, λ2, , λm such that (11) holds, and such that no complex

b2 bn+1_q exist satisfying

V A(z)

throughout s = {zl9 z2y

with respect to (n19 n2,
Theorems 2 and 3.

, zm}. Thus A(z) is an %th infrapolymial on s
The rest of Theorem 4 follows from

REMARK 6. Let n, nί9 n2,

• < nq < n), A(z) Ξ Σ ί = o ^ v

the complex plane, and λj, λ',
such that A(Zμ) φ 0 (/i = 1, 2,
— 0 (v = 1, 2, , n + 1 — q),

,nq be integers (g < n, 0 < n1< n2

a polynomial, ^, ^2, , zM points of
, λ^ (Σ?=Λμ > 0) nonnegative reals

, M), and such that Σ ί = Λ v M W
where the lv have the same meaning

as in Theorem 4. Then A(z) is an nth. infrapolynomial on s' = {zl9 z2f

• , zM} with respect to (nl9 n29 , nq). Indeed : let / and p be as in
the last proof, and let πf be the set of all complex functions repre-
sentable throughout sf as a linear combination (with complex coefficients)
of zι\ z n+1-q The asserted conclusion follows from Remark 3.

We give now the following structure theorem which is the main
result of this paper.

THEOREM 5. Let n and q (1 < q < n) be integers, and σ a simple
•n-sequence of q elements. Let S be a closed and bounded set in the
complex plane, and in case Oeσ, assume that O ί S . Let A(z) (^0)
be an nth infrapolynomial on S with respect to o, and let B{z) (=£0
throughout S) be a divisor of A(z). Assume also that the degree9 r
of B(z) is > q. Then B(z) is a divisor of some

•(13) Q(z) == P(z)g(z)

9 By degree of a polynomial (Ξ£0) we mean its exact degree. The polynomial 0 is

.assigned the degree-1.
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Here M is an integer satisfying r < M < 2 r — g + 1, the 2V are dis-
tinct points of S, g(z) = Tlf!=ί+\z — Zμ), the λμ are positive reals with
Σί^Ίff+%* = 1, P(z) is a polynomial of degree < q — 1 such that
P(z)g(z) + zκ+M~q+1 is of degree < M, and K is min [y,vίσ,v = 0,l,2, ].

REMARK 7. As will be seen from the proof of Theorem 5, if S
and the coefficients of B(z) are real, the inequality r<M<2r — q + 1
of the theorem can be replaced by the equality M = r.

In the proof of Theorem 5 use will be made of the following

LEMMA 5. Let n, q, σ and K be as in the last theorem, let S be
a set in the complex plane, and let A(z) (^0) be an nth. infrapoly-
nomial on S with respect to σ. Let B(z) be a polynomial of degree
r(>q) dividing A(z). Then B(z) is an rth infrapolynomial on S
with respect to σ0, where σ0 is that simple r-sequence of q elements
for which K = min [v, v £ σQ, v = 0, 1, 2, •].

The proof of Lemma 5 is straightforward and may be omitted.

Proof of Theorem 5. By Lemma 5, B(z) in an rth infrapolynomial
on S with respect to the sequence σ0 defined there. We choose (cf
Theorem 4 and Remark 5) distinct points zlf z2, , zm of S and posi-
tive λi, λ2, , λm such that Σ?=i V ~ 1 a n d

m

for every integer p satisfying 0 < p < r, p£σ0. Here m is an integer
satisfying r — q + 2 < 2(r — q)+ 3, and in case S and the coefficients
of B(z) are real we may take m = r — q + 2. Set

(15) g(z) = Π (z - zμ), N(z) = ± \μz^^g(z)/{B(z,)(z - zμ)} .

If μ and v are integers, 1 < μ < m, 0 < v < r — q + K, then

)( μ)}] Σ

(the equality is obvious if 2μ = 0, and otherwise it is obtained by
Leibnitz's rule for differentiating a product). Therefore, from (15)
we get

(16) ΛP>(0) = - ± 0) i ! ur^(O) Σ x^+

(υ = 0, 1, , r - q + iΓ) .
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Since {0,1, , r} - {σ0} = {r-q + K-jftzl, therefore (16) and (14) yield
NM(0) = 0, v = 0,1, , r - q. Hence we can write N(z) = zr-q+1M1(z}
where Mλ(z) is a polynomial (of degree < m — 2). Let

M2(z) = Σ \^g(z)/{B(z,)(z - zμ)} .
μ = l

By (14),

) = 0

and therefore the degree of Λf2(«) is < m — 2. For every 2y different
from zero we have by (15), Mλ{z3) = zj'+^Nizj) = \^gr{z3)IB{z3) =
M2(zd). Since there are at least m — 1 such £ i5 we have Afi(z) Ξ=.

. Consider now the polynomial

For i = 1, 2, , m we have i2(^, ) = B(z3)M2{z3) - \3-zJg'(z3) = 0. There-
fore we can write R(z) = g{z)U{z), where U(z) is some polynomial..
Also, the relation N(z) = 2;r~g+1M2(^) and the definition of R{z) imply
that the degree of the latter is < m + q — 2. Therefore the degree
of Ϊ7(z) is at most q — 2. If if > 1, then the relation

B(z)Λf,(z) = ff(2)tf(z) + Σ λμ<ff(2)/(^ - z,)
μ=l

yields, upon putting s£ = [2 + ( μ̂ — 2)]^ and developing the last right
member,

B(z)M2(z) = g(z)[U(z) + Aκ^(z)] + zκ £ Xtf(z)/(z - zμ) ,

where Aκ^(z) is a polynomial of degree K — 1. The last relation (with.
A^-iίs) Ξ 0) holds also when if = 0. We set now P(z) = U(z) + Aκ^(z)P

and get that B(z) is a divisor of

Q(z) = P(«)ff(2) + s* Σ ^ ^ ) / ( « - ^ ) .
μ = l

The degree of Q(z), i. e. of B(z)M2(z), is < m + g - 2. Thus the degree
of P(z) is < « - 1, and that of P(z)g(z) + zκ+m-τ is < m + q - 2. We
set now Λf = m + q — 2, and observe that the conclusions of the
theorem are all satisfied.

REMARK 8. The polynomial Q(z) of (13) is an Mth inf rapolynomial
on {zu z2, , zM-g+2\ with respect to σlf where σλ is that simple
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ilf-sequence of q elements for which min [v, v 0 σl9 v — 0,1, 2, •] = K.
This follows from Theorem 1 of Shisha and Walsh [1961].

THEOREM 6. Let S be a closed and bounded set in the complex
plane, A(z) = Σ l = o ^ ^ (n > 1, an Φ 0) an wth infrapolynomial on S
with respect to (n — 1), and suppose that A(z) Φ 0 throughout S. Then:

(a) Every zero ζ of A(z) is of the form

<17) c(ζ) - Mζ)[an-Jan]

where c(ζ) belongs to the convex hull of S and where 0 < λ (ζ) < I.1 0

(b) Suppose that S lies in a closed disc C: \z — α | < r (>0).
Then all zeros of A(z) belong to C U Cl9 where Cx is the closed disc
] z — [a — (αn-i/αΛ)] | < r. If C and d are disjoint then A(z) has at
least n ~— 1 zeros belonging to C. [Multiplicities are always being
counted].

Proof. We choose distinct points zl9 z2, , zm of S and positive
λx, λ2, , λw (m < 2n + 1) such that Σμ=iλμ = 1 and Σ^iλ^/AOSμ) = 0
for all integers p with 0 < p < n, p Φ n - 1. Then 1 = S?=iV^fe)/

SO

We set
α"!^™"1 + . We follow the proof of Theorem 5 from the sentence
following (15). Again we have iV(v)(0) = 0 for every v satisfying 0 <
v < n — 2. Thus we may set N(z) = f W ^ ) , where Mx{z) = a~L1z

m~n +
is some polynomial. Let M2(z) = Σμ=1Xμjg(z)/{A(zμ)(z — zμ)}. If n = 1,

then Λfa(s) Ξ iV(̂ ) = Mλ{z). It n>l then for each z5 different from
zero, M±{z3) = X^g\zj)/A(Zj) — M2(z3), and since there are at least m — 1
.such a;,- and Mx(z) and ilfa(^) are of degrees < m — 2, we have again
ikf2(2) = Mλ(z). Consider now the polynomial R(z) = A(z)M2(z) —
Σ?«iλμί7(2)/(2 ~ z») = W U f + . . . For i = 1, 2, , m, R(zs) = 0,
and therefore R(z) = (ajan^g(z). Thus, A(z) is a divisor of Q(«) Ξ
(ajan^)g(z) + ΣiZ^μΰWK* ~ ^ ) L ^ t ζ be a zero of A(s). Then
ff(ζ) ^ 0, and thus ajan^ + Σ?=Λμ/(ζ - ^ ) - 0. Since Σ?=Λμ/(ζ - ^ )
•can be written [Shisha and Walsh 1961, Lemma on p. 127] as λ(ζ)/
(ζ — c(Q) where c(ζ) and λ(ζ) are as required in (a) of our theorem,
ζ is of the form (17). Suppose now that S lies in a closed disc C: \z — a\
< r (>0) . Then by a theorem due to J. L. Walsh [cf. 1922, Theorem
VI; see also Shisha and Walsh 1961, p. 147] all zeros of Q(z) lie in

10 Thus ζ belongs to the set swept by the convex hull of S while being displaced,
the displacement being given by the vector —On-ildn
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and if C and d are disjoint, the number of zeros of Q(z) in
them is, respectively, m —- 1 and 1. From this follow the conclusions
of part (b) of our theorem.
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