PACIFIC JOURNAL OF MATHEMATICS-
Vol. 15, No. 1, 1965
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If {a,} is a moment sequence and (da) is the difference
matrix having base sequence {a,}, then (da) is symmetric about
the main diagonal if and only if the function a(x) such that

1
Ay = g arda(z),n =0,1,2, ---, is symmetric in the sense that
0
a(z) + a1 + x) = a(1) + a(0) except for at most countably many
2 in [0,1]. This property is related to the ‘‘fixed points’’ of

the matrix H, where HaH is the Hausdorff matrix determined
by the moment sequence {a,}.

In each of the papers [2], [3] and [5], there is reference to dif-
ference matrices of the form

ALdy, Ad, A,
4'd, 4'd, 4'd,

Ad) =
(4] Ldy, Ld, Ld,

’

where {d,} is a moment sequence, 4°d, = d,,n=20,1,2, .-+ and 4™d, =
4amd, — 4~'d,,,, for n=0,1,2,+--- and m=1,2,3,---. In [2],
Garabedian and Wall discussed the importance of (4d) having the
property of being symmetric about the main diagonal, i.e. 4™d, = 4"d,,..
They also showed that if {d,} is a totally monotone sequence, then
(4d) is symmetric about the main diagonal if and only if the function
f(x) which generates {d,} has a certain type continued fraction expansion.

In this paper, the symmetry of (4d) is investigated with the re-
striction of total monotonicity removed and a collection of necessary
and sufficient conditions are given, Theorem 3, for moment sequences.
in general. A relation is established between the symmetry of (4d)
and the “fixed points” of the difference matrix

0
0

(1) H= <(1>> "(
0
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2. Notation, definitions, and examples. Except for some notation
and definitions introduced for convenience, the notation and definitions
of this paper will follow [6].

NotaTioN. If {d,} is an infinite sequence, d* and d’ denote re-
spectively the diagonal and column matrices determined by {d,}.

DeriniTION 1. If {d,} is a number sequence such that for some
function f(x) on [0, 1],

d, = S:x”df(x) - S:a — wydf(s) ; p=01,2 -,

then {d,} is called a symmetric moment sequence.
The Cesaro moment sequence 1, 3, £, --- provides an example of a
moment sequence satisfying Definition 1 since for p =0,1,2, ---

(2) 6 = |wdo = wyp + 1]
Jo 0
1
p»+1

= [ —ords = — —pyryp+ 1] =

DEerFINITION 2. If A is a semi-infinite, lower triangular, matrix
having inverse and {a,} and {d,} are sequences such that A~'d*Aa’ =
A'a*Ad’, then {a,} and {d,} are symmetric relative to A.

The Cesaro moment sequence 1, %, %, ---, ¢, of (2), and the sequence
1,4, % 4%, -+ are symmetric relative to the matrix H of (1).

3. THEOREMS. LEMMA. Suppose {s,} s a sequence such that
s, #0 for p=0,1, 2, -+ and suppose that A is a semi-infinite matriz
having inverse such that As' = s'; then,

(i) A% =4,

(ii) {=z,} and {s,} are symmetric with respect to A if and only
if Ax' = &, and

(i) &©f A7'a*As’ = A7s*Ad’ and ATH*As" = A7's*AY, then
A7 A’ = A'a* Ab .

Proof. (i) is obvious. For the proof of (ii), we first suppose {z,}
is symmetric with {s,} relative to A so that A 'z*As’ = A~'s*Ax’.
Multiplying both sides on the left by A and using As' = s’ gives
x*s’ = s*Ax’. Under the hypothesis, s* has inverse s** so that

(3) s* s’ = g*ls* An’ = Ax’ .

Since x*s’ = s*x’, it follows from (3) that 2’ = Ax’.
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On the other hand, if Az’ = o,
(4) A7 As" = A7'xs
and
A7's*Ax’ = A7's*

Since s*a’ = x*s’, it follows from (4) that x and s are symmetric
relative to A.

For the proof of (iii), we suppose that ¢’ = s*'a*s’ and b’ = s*~'b*s/,
from which it follows that

(5) A7'a* A = A 'a*s*7b*s’
and
(6) A7 Aa = A7*s* taxs .

Since diagonal matrices permute, it follows that (5) and (6) are equal
establishing (iii).

TaeoreM 1. If {b,} is @ moment sequence, i.e.,
() b, = | adg(a)
0

{b,} and the Cesdro sequence (2) are symmetric relative to H if and
only if {b,} is a symmetric moment sequence.

Proof. Let
5 (”)(_1)%? for n =2,4,6,---
p=0 \D
fn(x) = n—1
@(—1)%9 — 22"  form=1,8,5,---.
p=0

Clearly, if {¢,} is any number sequence, Ht' = ¢’ if and only if

I (;})(—1)%1, —0 for n=2,4,6, -

p=0

and

5 (Z)(—l)”tp — 2, =0 forn=1,35-.

p=0

Thus if {b,} is defined as in (7), Hb' = b’ if and only if

(8) Slfﬂ(x)dg(x) —0 form=1,23 .
0

But, f(z) = (1 — )" — 2" for n=1,2,3, --+ so that
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(9) | A@dg@) = | @~ aydg@) — [ ordg(e) ,

and consequently (8) holds if and only if {b,} is a symmetric moment
sequence. It follows from (9) and (2) that He¢' = ¢’ and from the
preceding Lemma that {b,} and {¢,} are symmetric relative to H.

Conversely, if {b,} and {c,} are symmetric relative to H, it follows
that Hb = b, and if {b,} is defined as in (7), then {b,} is a symmetric
moment sequence,

THEOREM 2. If g(x) s of bounded wvariation on [0,1] and {z,}
is the moment sequence determined by g(x), the following two state-
ments are equivalent:

S (i) {z.) is a symmetric moment sequence, and

(ii) there do mot exist uncountably many x in [0, 1] for which

g(x) + g(1 — 2) # g(1) + 9(0).

Proof. Suppose (i). Then let w =1 — x so that,
2, = g:(l — a)dg(s) = S:u?’dg(l )= —S:u"dg(l —w).

Thus, 51(1 — wydg(a) = —Sle’dg(l — @) 5o that for p = 0,1,2, +--,
0 0

(10) S:x”d[g(x) +g1l—2)]=0.

Since g(x) — g(1 — x) is of bounded Variation on [0,1], (10) implies.
that for every k(x) continuous on [0, 1], E k(x)d[g(x) + g(1 — x)] = 0.
This, [4, p. 69], implies (ii). Reversing the0 steps leading to (10) shows
that (ii) implies (i).

An interesting example of a function satisfying (ii) is provided
by Evans in [1].

THEOREM 3. Suppose g(x) ts of bounded variation on [0,1] and
suppose {a,} s the moement sequence generated by g(x). The following
statements are equivalent:

(i) {a,} ts @ symmetric moment sequence,

(ii) Hd =d,

(iii) {a,} and the Cesdro moment sequence {c,} are symmetric
relative to H, and

(iv) the difference matrixz (da) having base sequence {a,} is sym-
metric about the main diagonal.

Proof. Theorem 1 implies the equivalence of (i), (ii), and (iii).
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(i) implies (iv) provided

) a1 — 2rdgle) = Slx"(l ~zydg(x)  for mym=0,1,2, - .
.0 0

Let w = 1 — x so that Slx’”(l — x)"dg(x) = So(l — w)"u"dg(1 —u). Thus

(11) may be rewritten as

(12) —S:a — wyrardg(l — ) = S:x”(l — 2)"dg(x)
- S:x"(l — 2)d[g(z) + g1 — x)] = 0.

That (12) is the case for {a,} a symmetric moment sequence follows
from (ii) of Theorem 2. (iv) implies (ii) since (iv) implies that a, =
A" A,, which is the same as saying that Ha' = a’. Thus the equivalence
of the four statements is established.

I am grateful to Professor H. S. Wall for some comments which
have been of considerable value in the preparation of this paper.
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