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ON SIMPLE EXTENDED LIE ALGEBRAS OVER
FIELDS OF CHARACTERISTIC ZERO

ARTHUR A. SAGLE

In this paper we shall investigate algebras which gen-
eralize Lie algebras, Malcev algebras and binary-Lie algebras
(every two elements generate a Lie subalgebra). Such an
algebra A is called an extented Lie algebra (briefly el-algebra)
and is defined by

xy — — yx and J(x, y, xy) — 0

for all x,y in A where J(x, y, z) — xy-z + yz-x + zx-y. We
prove the following.

THEOREM. Let A be a simple finite dimensional el-algebra
over an algebraically closed field of characteristic zero, then
A is a simple Lie algebra or the simple seven dimensional
Malcev algebra if and only if the trace form, (x, y) = trace
RxRy, is a nondegenerate invariant form.

The identities for right multiplications in the Lie [1] and Malcev
[2] algebras mentioned in the theorem yield that the form (x, y) is non-
degenerate and invariant i.e. {xy, z) = {x, yz); so this paper is concerned
with the converse statement. All algeras considered in this paper are
finite dimensional.

2 Precartan subalgebras* In this section we shall consider sub-
algebras of an arbitrary anti-commutative algebra analogous to Cartan
subalgebras of a Lie algebra.

DEFINITION. A subalgebra N of an anti-commutative algebra A
is a precartan subalgebra if

1. N is a nilpotent Lie subalgebra of A;
2. the mapping N—> EL(A): n —-> Rn is a representation of N where

Rx or R(x) denotes the mapping α —* ax and EL(A) denotes the Lie
algebra of all linear transformations on A.

Thus N is a Lie subalgebra of A such that there exists an integer
k with ( {nλn^ nk) = 0 for all nt in N and [Rn, Rm] — Rnm for
all n, m in N.

Now R(N) — {Rn :ne N} is a Lie algebra of linear transformations
which is also a nilpotent Lie algebra of linear transformations:
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0 =

So if we assume the base field F is algebraically closed we can, an-
alogous to Lie algebra theory, decompose A into a direct sum of weight
spaces relative to R(N):

A = A(N, 0) 0 Σ A{N, a)

where if λ: R(N) -> F: Rn-+X(Rn) = X(n) is a weight of R(N), then
the weight space corresponding to λ is

A(N, λ) = {x in A: all n in JNΓ, &(#* - X(n)I)* = 0
for some integer ί > 0} = Π

where A(Rn, X(n)) — {xe A: x(Rn — \{n)I)m = 0 for some integer m>0}.
By Lie's theorem the weights λ are linear functionals on R(N) and can
actually be considered as linear f unctionals on N via \(n) = λ(i?n) and
noting i2% is a linear transformation. The following facts concerning
the above decomposition are known from Lie algebra theory [1],

THEOREM 2.1.

1. Precartan subalgebras exist.
2. The weight spaces A(N, λ) are R(N)-invariant subspaces.
3. λ is the only weight of R(N) in A(N, λ).
4. If M is a precartan subalgebra of A containing N, then

M(zA(N,0).
5. There exists an element n in N such that A(N, 0) = A(Rn, 0).
6. There are finitely many weights.

DEFINITION. The normalizer Z{B) of a subalgebra B of an anti-
commutative algebra A is the set of all x in A such that xBczB.

PROPOSITION 2.2. Let N be a precartan subalgebra of an anti-
commutative algebra A over an algebraically closed field, then N =
Z{N) if and only if N = A(N, 0).

Proo/. First note Z(N) c A(iV, 0). For if a? € Z(N), then for all
ne N, xRn — xne N and since N is a nilpotent Lie subalgebra of A,
there exists an integer k with xR\ = 0 and so xe A(N, 0). Thus not-
ing that N(zZ(N) we always have

NdZ(N)dA(Nf 0) .

In particular if JNΓ =£ Z(iV), then JV Φ A(N, 0).
Next assume N Φ A(N, 0), then we shall show N Φ Z(N). A(N, 0)

and N are lϋ(iV)-invariant subspaces and R(N) restricted to A(N, 0) is
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a nilpotent Lie algebra of linear transformations. Hence we obtain

a nilpotent Lie algebra of linear transformations R(N) acting in the

nonzero space A(N, 0)/N. Now by EngeΓs theorem there exists an

x = x + NΦθ in A(N, 0)/N such that xR(N) = 0, But this means

0 = xRn — xRn for all n in N and so xNcz N. But by definition of

Z(N), x e Z(N). However x Φ 0 means x is not in N and so N Φ Z(N).

DEFINITION. A precartan subalgebra N of an anti-commutative
algebra A is a Cartan subalgebra of A if N = Z{N).

Cartan subalgebras are difficult to find, however if there exists an
element u in A such that N — A(RU, 0) is a precartan subalgebra of
A over an algebraically closed field, then N is a Cartan subalgebra.
For decompose A relative to R(N), then Ncz A(N, 0) = Π % 6 * A(i?n, 0) c
A(RU, 0) — N and the results follow from Proposition 2.2.

The following notation will be used: if h(xl9 , xn) is a function
of n indeterminates such that for any n subsets B{ of A the elements
h(bl9 , 6n), for 6< e ^ , are in A, then /&CBi, β , Bn) denotes the linear
subspace spanned by all the elements h(bu •••,&») for b{e B{. Also
we shall identity the element b and the set {b}.

3. Identities* We shall now restrict ourselves to el-algebras, that
is, we assume the algebra A satisfies

(3.1) xy = — yx and J(x, y, xy) = 0

for all x,y in A. First we note for any anti-commutative algebra A
that a straightforward calculation yields

(3.2) wJ(x, y, z) — xJ(y, z, w) + yJ(z, w, x) — zJ(w, x, y)

= J(wx, y, z) + J(yz, w, x)

+ J(wy, z, x) + J(zx, w, y)

+ J(wz, x, y) + J(xy, w, z)

for all w, x, y, z in A.

Next a linearization of (3.1) yields

(3.3) J(xy, y, z) + J(zy, y,x) = 0

for all x, y, z in A and a further linearization of (3.3) yields

(3.4) J(wx, y, z) + J{yzy w, x) = J(wy, z, x) + J(zx, w, y)

= J(wz, x, y) + J(xy, w, z)

for all w, x, y, z in A. Combining (3.2) and (3.4) we have

(3.5) wJ(x, y, z) — xJ{y, z, w) + yj(z, w, x) — zJ(w, x, y)

= 3[J(wx, y, z) + J(yz, w, x)]
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for all w, x, y, z in A.
For the remainder of this paper we shall assume A is a simple,

finite dimensional el-algebra over an algebraically closed field of charac-
teristic zero; however it should be clear when these various conditions
can be relaxed. Let N be a precartan subalgebra of A and decompose

A = A(N, 0) 0 Σ A(N, λ)

relative to R(N). Next let m,ne N and w,zeA, then from (3.4) we
have

J(wn, m, z) + J{mz, w, n) = J(wm, z, n) + J(zn, w, m)

= J(wz, n, m) + J(nm, w, z)

= J(nm9 w, z)

since m,ne N and J(A,n,m) — 0. Now set wx = wRn and wk

= wk^xRn — wRt and set ^ = ^J?m, ̂ fc = zh-JRn + zR{mRl~x) for & = 2, 3, .
From the above set of equations we have

(3.6) J(wRn, m, z) = J{w, wιRn, z) + J{w, n, zRm) ,

that is,

J(wl9 m, z) = J(w, mRn, z) + J(w, n, sα) .

Now assume

J(wkf m, z) = J ( ^ , mi2^, z) + J(w, w, «*) ,

then for k + 1 we have

J(wk+1, m, z) — J(vRl, m, z) , where v =

= J(vkf m, «) , where vk =

= J(^, mi?^, 2) + J(v, n9 zk), using induction hypothesis

= J(wRn, mRk

n9 z) + J(wRn, n, zk)

= J(w, (mRk

n)Rn, z) + J(w, ^, zR{mRt))

+ J(^;, ̂ i2w, sfc) + ^ ( ^ , w, *̂-Bn) $ using (3.6) twice

= J(w, mRk

n

+\ z) + J(w, n, zk+1) .

Thus for every mfne N and w,ze A,

(3.7) φ β j , m, 2) = J(w, mRk

n, z) + J(w, n, zk)

where zx — zRn and zk — zk-λRn + zR{mRl) k — 2, 3, .
Let { be the dimension of A(N, 0), then choosing k large enough

e.g. k ^ I + 2 and using iVc A(iV, 0) we have mRk = 0 and

(3.8) /(wfc, m, «) = J(w, n, zk)

where k Ξ> I + 2, ^^ = wiϋ£ and now f̂c = zk^R
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We shall use (3.8) with the following lemmas to prove

(3.9) A(N, σ)A{N, p) c A(N, p + σ) if p Φ σ .

LEMMA 3.10. Let p be any weight of N and ne N, then Rn is
nonsingular on A(N, p) if and only if p{n) Φ 0.

LEMMA 3.11. Let p, σ be any nonzero weights of N in A with
p Φ σ, then there exists ue N such that p(u) Φ σ(u) and Ru is non-
singular on A(N, p).

Proof. Since p Φ σ, there exists he N with p(h) Φ σ(h). If Rh

is nonsingular on A(N9 p), we are finished. Otherwise Rh is singular
on A(N, p) and by Lemma 3.10, 0 = p(h) Φ σ(h). Now there exists
k e N so that Rk is nonsingular on A(N9 p), since p Φ 0 and so p(k) Φ 0.
If σ(k) Φ p{k), then we are finished. Otherwise if σ(k) — p(k), set
u = h + k and note σ(u) = σ(h) + σ{k) = σ{h) + p{k) Φ p(k) = p(k) +
p(h) = p(h + k) = p(u) and also p(u) Φ 0 so that Ru is nonsingular on
A(N, p).

For the proof of (3.9) first consider the case σ = 0 and p Φ 0
Let z e A(N, 0), w e A(N, p) and m,ne N, then we see by definition
that zk e A(N, 0) for all k. But for k > I + 2 (where £ = dimension
A(N, 0)) we see zk — zk_Ji% and this implies Zι+2+k — z^JR1^ and so
for large enough M, zk = 0 for all k ^ M. This and (3.8) imply
J(wk, m, z) = 0 for all k ^ M. But since w^ = wRl where w e A(N, p)
with p Φ 0, there exists ne N with i?% nonsingular on A(JV, >̂) and
therefore A(N, p) = A(iV, /t>)22J. Thus any a? e A(N, p) is of the form
x = ^ β ^ for some w 6 A(iV, />) and therefore J(x, m, z) = 0. But m and
z are arbitrary in iV and A(N9 0) respectively which implies

(3.12) J(A(N, p), A{N, 0), JNΓ) = 0 .

Next consider the case 0 Φ σ Φ p Φ 0 and let w e A(N, p), ze A(N, σ)
and m,ne N. Then from (3.8) we have for k large enough,

l, m, z) — J(wk, m9 z)

= J(w, n, zk), where zk = ^ ^ Λ

(3.13) = J ( ^ , n9 zk^n)

= - J(zk-in, n9 w)

— J(wn, n, ^_i), using (3.3) .

Therefore for x — zk^e A(N, σ) we have from (3.13)

J(w, n9 x(Rn — σ(n)I)) — J(w(Rn — σ(n)I), n, x)
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and by induction

J(w, n, x(Rn - σ(n)iY) = J(w(Rn - σ(n)I)\ n, x) .

But since x e A(N, σ)9 the left side of the above equation is zero for
large enough t and so J(w(Rn — σ(n)I)\ n, x) = 0 for all ne N. Now
choose n — u of Lemma 3.11, then since σ(u) Φ p{u), Ru — σ(u)I is
nonsigular on A(N, p) and therefore for any integer t > 0, A(N, p) —
A{N, p){Ru - σ(u)iy. Thus any v e A(N, p) is of the form v = w(Ru -
σ(u)iy and therefore J(v9 u, x) = 0 where x and u are defined above.
Thus using the preceding notaion and (3.13) we have

0 = J(vu, u, x), since vu e A(N, p)

= J{vu, u, zk^)

= J(v, u9 zk^u)

— J(vRΪ, m, z) .

But also from Lemma 3.11, Ru is nonsigular on A(N, p) so that
A(N, p) = A(N, p)Rl. Thus by the choise of z,m,v we have

(3.14) J(A(N, p), A(N, σ), N) = 0 if 0 Φ σ Φ p Φ 0 .

Using the usual Lie algebra arguments we combine (3.12) and (3.14) to
obtain

(3.9) A(N, ρ)A(N, σ) c A(N, p + σ) if p Φ σ .

Next we prove

(3.15) J(A(N, p), A(N, σ), A(N, τ)) = 0 if p Φ σ Φ τ Φ p .

For let ne N,xe A(N, P),yz A(N, σ) and ze A(N9 τ), then assuming
first that p Φ σ + τ we have, using (3.5) and (3.12) or (3.14),

nJ(x, y, z) = 3[J(nx, yf z) + J{yz, n, x)]

= 3J(nx, y, z) .

Therefore J(x, y, z)(Rn - 3p(n)I) =3J(x(Rn - p(n)I), y, z)
and we proceed by induction to conclude

J(x, yf z){Rn — Zp(n)iy = 0 for large enough t .

Thus with pΦσΦτφpwe conclude

J(A(N, p), A{N, σ), A(N, τ)) c A(N, 3/0) if p Φ σ + τ .

By the symmetry of the p9 σ and τ we also conclude

J(A(N9 ρ)9 A(N9 σ), A(N9 τ)) c A(N, 2σ) if σ Φp + τ and
J(A(N, ρ)9 A(N9 σ)9 A(N9 τ)) c A(N, 3τ) if τ Φ p + σ .
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Now suppose p == σ + τ. If σ — p + τ, then τ = 0 and therefore
σ — p, a, contradiction; thus σ ^ /? + τ. Similarly we have τ Φ p + σ
and from these we may conclude

J(A(N, p), A{N, σ), A(N, τ)) c A(N, Sσ) n A(ΛΓ, 3τ) = 0 .

Next suppose p Φ σ + τ. If both σ = /> + r and τ = p + σ we
obtain σ = r, a contradiction; thus σφ p + τ or τΦ p + σ and using the
equations involving J(A(N, p), A(N, σ), A{N, τ)) we see that this ex-
pression is also zero in case p Φ σ + τ. This completes the proof.

4* Some assumptions* The el-algebra identities do not appear
strong enough to determine A(N, αf in any reasonable manner, so we
assume N is a precartan subalgebra such that

(4.1) A(N, of c Σ A(#, β) if α ^ 0 .
1=7*0

That is, if x,ye A(N, α) and xy— Σβ zβ> ^hen no % is in A(N, 0) except
zβ — 0. By considering Lie and Malcev algebras, this is a natural
assumption. Now let

B = Σ AίiNΓ, β)A(N, - β) 0 Σ A(iSΓ, α)

where we use the usual convention that if — β is not a weight of N,
then A(N, - β) = 0. By (3.9), Σ^o A(JV, £M(iV, - /5) c A(iSΓ, 0) and
for any weight 7 Φ 0 of N we have

BA(N, 7) c A(iSΓ, O)A(iSΓ, 7) + Σ A(N, α)A(N, 7)

c A(N, 7) + A(iV, Ύ)A(N, 7) + A(ΛΓ, 7)A(i^f - 7)

Σ
#o±c B, using (4.1) .

Next from (3.15) we have for any β Φ 0,

J(A(N, β), A(N, -β), A(N, 0)) = 0 .

From this it follows that

[A(N, β)A(N, - β)]A(N, 0) c [A(N, β)A(N, 0)]A(N, - β)

+ [A(N, - β)A(N, 0)]A(N, β)

c A(N, β)A(N, - β)

and so

BA(N, 0) c Σ [Λ(N, β)A(N, - β)]A(N, 0) + Σ A(N, α)A{N, 0)<zB .

Thus B is an ideal of A and since A is simple B = 0 or B = A. This
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proves

THEOREM 4.2. If A is a simple el-algebra and N a precartan
subalgebra suck that (4.1) holds, then

1. A = Σ A(N, β)A(N, - B) © Σ 4(-W, α)
0=7*0 α ί ^ O

A(tf, 0) = Σ A(AΓ, /8)A(tf, - β); or

2. ί&e only weight of N is 0 cmd A = ̂ L(iV, 0).

COROLLARY 4.3. If A is an el-algebra as in Theorem 4.2, then
A(N, 0) is a subalgebra. Furthermore if conclusion (1) of the theorem
holds, then A(N, 0) is a Lie subalgebra.

Proof. If conclusion (2) holds, the result is trivial. So assume
conclusion (1) holds, then A(N, 0) = Σ**o A(N, β)A(N, - β) and as
before

A(N, 0)A(N, 0) - Σ IA(N, β)A(N, - β)]A(N, 0) c A(N, 0) .

Next for any β Φ 0 we shall show

J(A(N, β)A(N, - β), A(N, 0), A(N, 0)) - 0

and therefore A(N9 0) will be a Lie subalgebra. Let xe A(N, β),ye
A(N, - β) and s, t e A(i\T, 0), then using A(N, 0)2 c A(i\Γ, 0) and (3.15)
we have

J(xy, s, t) = J ( ^ , s, t) + J(st, x, y)

= J(ίcs, ί, #) + J(ίj/, a?, s), using (3.4)

= 0, using (3.15) .

COROLLARY 4.4. If A is an el-algebra as in Theorem 4.2 which
satisfies conclusion (1), then the mapping A(N,0)-+R(A(N,0)):m-+
Rm is a representation of the Lie algebra A(N, 0).

Proof. From Corollary 4.3 it suffices to prove

J(A(N, β), A(N, 0), A(N, 0)) = 0 for any β Φ 0 .

Let w e A(N, β) and y,ze A(N, 0), then for any n e N we have

J(wn, y, z) — J(wn, y, z) + J(yz, w, n), using (3.12)

= J(wy, z, n) + J(zn, w, y)

= J(zn, w,y), using (3.12)
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and by induction we have

J(wRif y, z) = J(zRi, w, y) .

But for large enough t, zRl = 0 and so for any ne N and t large
enough J{wRι

ny y,z) = 0. However there exists in ne N so that Rn

and therefore Rι

n is nonsingular on A(N, β) and the usual argument
proves the corollary.

COROLLARY 4.5. // A is an el-algebra as in Theorem 4.2 which
satisfies conclusion (1) for some precartan subalgebra N, then A(N, 0)
is a Cartan subalgebra provided A(N, 0) is a nilpotent Lie sub-
algebra.

Proof. Let M — A(N, 0), then from Corollary 4.4 and the hypoth-
esis we see that M is a precartan subalgebra and from § 2

NaM = f)A(Rn,0) .
nβJSί

Thus decompose A = A(M, 0) © Σβ=̂ o A(M, β) relative to R(M) and we
must show A(M, 0) c M. Well,

Na A(N, 0) = M e A(M, 0) = n A(Rm, 0)
mβM

and since Na M we have Π m63fA(iίm, 0) c Π neNA{Rn, 0) = Λf. Thus
A(M, 0) = Af.

As in Lie algebras we make the following

DEFINITION. An element u in an el-algebra A is regular if the
dimension of A(RU, 0) is minimal.

COROLLARY 4.6. If A is an el-algebra as in Theorem 4.2 which
satisfies conclusion (1) for the precartan subalgebra N — Fu where
u is regular, then A(N, 0) is a Cartan subalgebra.

Proof. From Corollary 4.5 it suffices to prove A(N, 0) is a nil-
potent Lie subalgebra and the proof in [1, Th. 3.1] can easily be
modified to prove this fact.

Next we investigate the symmetric bilinear form (x,y) — trace
RxRy and impose a condition on it which is satisfied by Lie and
Malcev algebras and implies assumption (4.1). Some notation: for
xeA or S,TaA,(x9S) denotes {(x,S):seS} and (S,T) denotes
{(s, t): se S and te T}. (x, y) is an invariant form if (xy, z)
= (x, yz) for all x, y, z e A.

THEOREM 4.7. Let N be any precartan subalgebra of A and decom-
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pose A = A(N, 0) 0 Σ«

1. if (%,y) is an invariant form, then

(A(N,a),A(N,β)) = 0 ifa+βΦO;

2. if (x, y) is a nondegenerate invariant form, then

A(N, af c Σ A(N, β) if a Φ 0

furthermore there exists a precartan subalgebra No such that No — Fu
where u is regular and A Φ A(N0, 0).

Proof. (1) Suppose (x, y) is an invariant form and let xe A{Nya),
y e A(N, β) and ne N. Then by induction we have

(x(Rn - a(n)I)\ y) = ( - l)*(x, y{Rn + a{n)If)

for k = 1, 2, . But for large enough k, (x{Rn — oc{n)I)k, y) — 0, since
x e A(N, a) and so (x, y(Rn + a{n)I)k) — 0. But since β Φ — a, there
exists ne N with (Rn + a(n)I)k nonsingular on A(N, β) and therefore
A(N, β) = A(N, β)(Rn + a(n)I)K This proves (1),
(2) Suppose (x, y) is a nondegenerate invariant form, then there
exists ne A such that (n,n) = trace R2

n Φ 0; otherwise by lineariza-
tion, (x, y) = 0 for all x9ye A. Thus JKn is not nilpotent and we can
choose an element u e A such that A Φ A(RU, 0) and u regular. Thus
No = Fu is a precartan subalgebra such that A Φ A(NQ, 0). Next let
a Φ 0 and x, y e A(ΛΓ, α) and a, # e A(iV, α) and &# = s0 -t- Σβ^o ̂ β where
iV is any precartan subalgebra. Now for y Φ 0 we have

(s0, A(JV, 7)) = 0, using part (1) .

For 7 = 0 we have

(x, yA(N, 0)) - Σ (zβ, A(N, 0))

= 0 , using part (1) .

Thus (z0, A) = 0 and since (a?, y) is nondegenerate z0 = 0.
For the remainder of this paper we shall assume (x, y) is a non-

degenerate invariant form on A. With this assumption we may con-
clude that A has a precartan subalgebra No such that (4.1) actually
holds, A Φ A(N0, 0) and A(N0, 0) is a Cartan subalgebra. Thus we
may assume the existence of a Cartan subalgebra N — A(N, 0) Φ A
satisfying 4.1, and call A " t h e usual el-algebra." We shall work
with a fixed Cartan subalgebra described above and use the notation
A(a) or Aa for A(N9 a) and also N for A{N, 0). The proof of the
following is similar to the proof for Lie algebras [1, Section 4,1].
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THEOREM 4.8. Let A be the usual el-algebra, then
1. (x,y) is nondegenerate on N and for x,y e N, (x,y) = Σ P Npp(x)p(y)
where the sum is over all weights p and Np = dimension A(p).
2. N2 = 0.
3. 0 Φ p is a weight if and only if 0 Φ — p is a weight; furthermore
A(p) and A(— p) are dual relative to (xfy) so that dimension A(p) —
dimension A{— p).
4. Let ΛΓ* be the dual space of N. If geN*, then there exists a
unique element nge N such that g(n) — (n, ng) for all ne N. Further-
more the mapping iV* —+ N: g —• ng is a bisection.
5. If I — dimension N over F, then there are I linearly independent
weights of N and these form a basis of iV*. Furthermore if p,σe
iV* and rip, nσ are determined as in (4), then the symmetric bilinear
form < p, σ > = (np, nσ) is nondegenerate on N*.
6. If p is a nonzero weight of N and xp e A(p) is such that

xpRn = p(n)xp for all ne N

and if cc_p is any element in A(— p), then

JU pΛp \JUpj Jϋ pJ ιf/p

where np is determined in (4).
7. p(np) Φθ if pφO.
We shall prove (7) since its proof is different from the proof of the
corresponding statement in [1]. First we need

LEMMA 4.9 Let A = ΛΓ© Σ«*oΆ(#) be the usual el-algebra with
Cartan subalgebra N = Σ«^o A(a)A(— a). Let <f> be any weight of N
and p any nonzero weight of N and let he Σ7=i A(ip)A(— ip). Then
φ(h) — rp(h) where r is a rational number.

Proof. If φ — rp for some rational number, then we are finished.
Otherwise φ Φrp for any rational number r and we consider

M= ΣkA(ψ +kρ) fc = 0, ± 1, ± 2 , •••.

Now since there are finitely many weights we may write h = Σ A ^*
where ht e A{ip)A{— ip) and therefore h{ = YΛάx

ά{iρ)xj{— ip) where xj(kρ)
e A(kp)f k — ± ί. Now since h{e N, M is ^(^^-invariant and so R(h)
-invariant. But since Φ Φrp for any rational number r, we use (3.9)
to see that M is also R(xj(ip))- and R(xj(— i/>))-invariant for i — 1, , m.

Next for z = Σ Λ e M where zk e A(φ + kp) we have, using (3.15),

J(z, xj(ip), xj(- ip)) = Σ*kJ(*k, rfΰP), xj(- ip)) = 0 .

Therefore on M we have
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so that on M

R(h) = Σ*Λ(fc*) - ΣJWtfP)), R(x'{- ip))] .

Therefore trace^.R(fo) = 0. But since he N we can calculate the trace
of R(h) on ikf from its matrix to see that

R(h) = Σ * #Φ+*P(0

(ΣkkNφ+kp)pβ) ,

where iVφ+A.p = dimension A(φ + A;̂ ). The result now follows.
For the proof of 4.8.7 suppose p is a nonzero weight of N such

that p{np) = 0. Then for any ne N we have

/>O) = (n, np) = Σα. ̂ a:(^p)a(^) ,

summed over all weights a. Now we can find an element x_p e A{— p)
such that (ccp, cc_p) — 1 and therefore from 4.8.6, np — X-Pxp and so
using Lemma 4.9 we have a(np) = rp{np) = 0 where r is a rational
number depending on a and p. Therefore p{n) — 0 i.e. p — 0, a
contradiction.

Finally we use the nondegenerate invariant form (x, y) to obtain
more information on A{af.

THEOREM 4.10. Let A be the usual el-algebra, then

A(af(zA(-a) + A(2a) .

Proof. For a = 0 we know the result. Suppose a Φ 0; if A(af =
0, then we are finished. So assume A(α:) 2 ^0, then since (x9 y) is
nondegenerate there exists a weight /3 such that

(A{a)\ A(β)) Φ 0 .

Case 1. If β Φ a, then

0 =* (A(α)2, A(/3)) = (A(a), A(a)A(β)) c (A(α), A(a + /3)) .

Thus a + β must be a weight and so by Lemma 4.7.1, a + (a + /8) =
0, that is, £ = — 2α,

2. /S = a:.
Thus we have (A(a)\ A(— 2a) + A(α)) Φ 0. Now let a?f ye A(a)

and α??/ = ^ Λ Suppose there exists a component zy with Ί Φ — a
or 2α, then we have
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(xy,A(-y)) = (x,yA(~-y))

c (A(a)t A(a — 7)), since 7 Φ — a

= 0, since α + (α — 7) Φ 0 .

Thus

0 = (xy, A(— 7))

= (2y, A( — 7)), using Lemma 4.7.1.

Therefore by Theorem 4.8.3, zΊ — 0 and so xy — z^a + z2ω.

5* Weight space subalgebras* Let A — N © ΣP^OA(JO) be the
usual simple el-algebra discussed in § 4. Since we know — p is a
weight if and only if p is a weight, we may eliminate superfluous
weight spaces and write

where p is a nonzero weight. Now for a fixed nonzero weight p we
shall consider the weight space subalgebra

B(p) = ΣiA(-kρ)®£iA(- kp)A(kp) 0 Σ A(kp)
k=l k=i k = l

and show it actually equals

where n? determined in Theorem 4O8.4. In the next section we shall
show B(p) is the split 3-dimensional simple Lie algebra or the simple
7-dimensional Malcev algebra obtained from the split Cayley-Dickson
algebra.

PROPOSITION 5.1. Let B(p) be a weight space subalgebra, then
Σ*=iΆ(- kρ)A(kp) = npF.

Proof. Let B — ̂ kA(— kp)A(kp), then it suffices to show dimen-
sion 5 = 1; for 0 ^ npeB and we would have B = npF. To show
this let B* denote the dual space of B and prove dimension 5* = 1.
Since dimension B = dimension B* we have the results. Let xe Abe
such that for any ae B(p)9 axe B(p) and set

Rx: B{ρ) -> B(p): a—>ax ,

Let x,ye B{ρ) and set
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fix, y) = trace R%Ry(= traceBlι>)RxBy) .

f(x, y) is a bilinear form on Bip) and the fact that dimension B* = 1

is a consequence of the following lemma.

LEMMA 5.2. 1. f(x, y) is nondβgenerαte on B and
2. dimension B* — 1.

Proof. Since there are finitely many weights we can apply
Theorem 4.8 to show that for any h,keB, f(h, k) = trace R(h)R(k) =

trace

H. 0 •κm
0

Lo

where

o ^
and

3p(k))

Now suppose there exists be B such that for all ke B

0 = /(6, k) = (Σy 23*Ns,)pφ)PΦ) .

Set fc = 6 to conclude />(6) = 0. Now since b e B = Σ ; A(jp)A(— jp)
we have form Lemma 4.9 that for any weight 0 of JV in A, ψ(b) =
r/e>(6) = 0. Now for any xe N we can apply Theorem 4.8.1 to conclude
(cc, 6) = 0 and therefore 6 = 0. Thus f(x, y) is nondegenerate on B.

Next let geB*, then since f{x,y) is nondegenerate on B, there
exists a unique δ e ΰ so that for all

h e Bg(h) = /(/ι, 6) = (Σ, 2f

where c e F. Thus J5* = /λF is of dimension one.

COROLLARY 5.3. B(p) = Σ* A(-

Put i2(wp) into its Jordan canonical form on A(— p). Thus we can
write
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A(- p) = 17(1, - p) 0 0 U(k, - p)

where each U(j9 — p) has a basis {zjl9 , zjm.} such that, if

p = ρ(np),

ZnR{nP) = - pz3l and

z3iR{np) = - pzji + z3i^

i — 2, 3, , m3. We shall consider just one of the iu(wp)-invariant
spaces U(j, — p) and denote it by U = {zu , zm}. We use symmetry
to argue similar results for the other spaces and also for the weight
p.

LEMMA 5.5. Let xeA(p) he suck that xR(np) =px, then ztx =
λ^ p and λ, == 0 for i = 1, , m — 1.

Proof. From Proposition 5d z{x = λ^ p and from (3.15) we have
for i — 2, , m that

0 = J(zif x9 np) — ZiX Up + xnp*Zi + npz{'X

= pxzi - (- pz{ + z^x = z^x ,

also using Theorem 4.8.2. Thus Xt = 0,ί = 1, •••, m— 1.

PROPOSITION 5.6. J(zit z3? np) = 0 for ΐ, y = 1, , m.

Proof. Using the skew-symmetry of J(α, 6, c), it suffices to show
J(zif zh np) — 0 for i ^ i and i = m, m — 1, , 1. We use induction
on j . First for j = m, J(zm9 zm, np) — 0. Next for j = m — 1 we have

) + pi), np)

= J(^m J 2;mwp, np)

= 0, using (3.1) .

Now assume that for all j = m, m — 1, - -, m — q we have shown
J(zj9 Zj,np) = = J(zm, zj9 np) = 0, then we must show similar results
for j — 1 = m — (q + 1). We always have J{z3-_u z3-_u np) = 0 and next

J(zj9 z3'-l9 np) = J(zj9 z3-{R{np) + pi), np)

= J(zj9 zάnp, np) = 0 .

So we now assume

J(Zj--l9 z5-l9 np) = = J(z3^1+k, %^1Λ np) = 0

for i — 1 < j — 1 + k < m; we then have,
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J(zs-.x, zj+k, np) = J(Zj(R(np) + pi), zj+k, np)

= J(zjnp, zj+k, np) + ρJ(zjf zj+k, np)

= J{ZjUp, Zj+k, np), using the first induction

hypothesis.

= - J{ZjUp, np, zj+k)

= J(zj+knp, np, Zj), using (3.3)

= - pJ(zj+k, np, Zj) + J(Zj_1+k, np, Zj)

PROPOSITION 5.7. For all n e N, J(zi9 zjf n) = 0 and U2 c A(— 2p).

Proof. It suffices to show that for any weight a Φ 0 we have
J(zif Zj, nσ) = 0 where nσ is determined in Theorem 4.8.4; for we see
that the elements nσ span N as a vector space. Now iί σ = Xp where
λ e ί 7 , it is easy to see that nσ — \np and so from Proposition 5.6
J(zif Zj, nσ) — 0. Next assume a is not a scalar multiple of p and
choose elements xσ and #_σ as in Theorem 4.8.6 so that X-σxσ = nσ.
Now noting that ^ e A ( - pf c A(/θ) 0 A(— 2|0) we have, using 3.15,

J(z{zh x-σ, xσ) e J(A(p), A ( - σ),

+ J ( A ( - 2p), A ( - σ), A(σ)) = 0.

Thus we have

e/(^σ, Zu Zj) = J(X-σXσ, Zi9 Zj) + J(z{Zj, α_ σ , Xa)

= 0, using (3.15) .

Next let u, ve U, then by linearity J(u, v, np) — 0 and since U is
i2(^p)-invariant subspace, the usual argument shows (uv)(R(np) + 2pl)k

— 0 for k large enough. But we know uv = x + y where x e A(p), y e
A(— 2ρ) and therefore for k large enough,

0 = (uv - y)(R(np) + 2piγ = x(R(np) + 2pl)\

If x Φ 0, this implies there exists 0 Φ z e A(/θ) so that z(R(np) +
= 0 and therefore — Spz — z(R(np) — |θZ). Iterating this formula

and using p Ξ />(^P) ^ 0 we obtain z — 0, a contradiction. Thus # = 0
which proves the second part.

PROPOSITION 5.8. Let x e A(ρ) be such that xR(np) = px, then
Jfe, 2 i f a;) = 0 for i, j = 1, , m.

Proof. It suffices to show J(zi9 zjf x) — 0 for all ΐ ^ j" and
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j •= m, , 1. The case j = m is trivial and for j — m — 1 we have

J(zm, zm-l9 x) = J(zm, zm(R(np) + pi), x)

= - J(α;zm, zm, wp), using (3.3)

= 0, using Lemma 5.5.

Assume we have shown for j — m, m — 1, , m — k

J(zif Zj, x) = 0 for i = i , j + 1, , m .

We shall show for j — m — (k + 1) that

J(2 i f ^ , a?) = 0 for i = j , j + 1, , m .

As above, the cases i = j and i = j + 1 are clear. So assume

Jfo, «y, a;) = 0 for i = j , j + 1, , j + t - 1

where j < j + t — 1 < m. Then for i + 1 = j + £ we have

J(zj+U zh x) = J(zj+t, zj+1(R(np) + pi), x)

= Jfa+t, Zj+inP, x) 4- M ^ +t, Si+i, »)

= J f e +ί, ^i+i^p, a?) ,

using the first induction hypothesis

= - [J(zj+1np, zj+t, x) + J(zj+tx, zj+u np)] ,

using Lemma 5.5

= - [J(zj+1zj+t, x, np) + J(xnp, zj+1, zj+t)]

= — J(xnPf Zj+l9 Zj+t) , using Proposition 5.7

= pJ(zj+t, zj+u x)

= 0 , using induction hypothesis.

This proves the result.
To use the preceding results we need the following remark: Let

V be an R(np)-invariant subspace of the weight space A(σ), then
traceFi2(^p) = <?{np)μ where μ is the dimension of V.

PROPOSITION 5.9. Let x e A(ρ) he such that xR(np) = px and sup-
pose xU Φ 0, where we use the notation U = {zu •• ,zm} preceding
Lemma 5.5. Then the dimension of U is one.

COROLLARY 5.10. If x is given as above and xU(j, — p) Φ 0,
then the dimension of U(j, — p) is one.

Proof. Let Uι == U = {zlf , zj denote the set of elements of
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A{—p) we have been considering. Set ?72 = UUaA(— 2p), using
Proposition 5.7; and set Uk = U^JJa A{— kp). Then since there are
finitely many weights, there exists an integer M so that UM Φ 0 but
UM+1 = 0. Let P= xF(B n?F@ Σιk=iUk, then we shall show: (1) P
is Rx-,R(np)- and i?(2m)-invariant (2) J(z, x, zm) = 0 for all zeP.
Then from Lemma 5.5 and the hypothesis we see xzm = Xnp where
X Φ 0 and using the standard Lie algebra trace argument we shall
show that the dimension of U is one.

Suppose (1) and (2) have been proved and consider the trace argu-
ment. From (2) we see

0 = J(z, x, zm) = z([R(x)f R(zm)] - R(xzJ) .

Thus as linear transformations on P we have

R(np) — l/\R(xzm), since X Φ 0

= l/\[R(x), R(zJ]

and so tracePi2(^p) = 0. But from the matrix of R(np) on P we see
traceP R(n9) = (p + 0 - μLp - 2μ2p - - MμMρ) where μi is the
dimension of U{. Thus since p = p(np) Φ 0, μx = 1, μ2 — = μM = 0.

We now prove (2). If z = x or z = np, the result follows. If
z e Uu then use Proposition 5.8. Finally if z e Ui for i > 1, then
j? e A(— ip) and so J(z, x9 zj e J(A(— ip)9 A{ρ), A(— p)) = 0. Now for
an arbitrary element ze P use the above and linearity.

Next we prove (1). Since zme Ul9 each Ui — Ui_1U1 is such that
UizmdUiU1= Ui+1. Furthermore since xzm = Xnp and npzmeU1 we
see P is i?(2TO)-invariant. Next we shall show P is i?(wp)-invariant.
First xR(np), npR(np) and UλR(np) are all contained in P. We have
UJR{np) c Uύ next assume UiR(np) c UiΛ Then for Ui+1R(np) we note
that any a e Ui+1 is of the form a — ^a^Zj where aiό e Ui9 z3- e Ulm Since
UiCi A(— i/o) we have

0 = J(aijf Zj, np), using (3.15) or Prosposition 5.6

= (aiάz3)np + {zάnp)ai5 + {npai3)Zj .

Therefore

aR{np) = Σ i (^i^i)^P

= Σ i aitejnp) + Zj{npai3) .

Now ai3 {z3 np)e UiU1(Z Ui+1 and by induction hypothesis npai3e Ui and
therefore z3(npai3) e Ui+1. Thus Ui+1R(np) c Z7ί+1 and P is JS(^P)-
in variant.

Finally we shall show P is _#(#)-invariant. The elements xR(x)9

npR(x) and z^R(x) = λ^ p are all in P, Thus it suffices to show U{R{x) c
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P for i > 1. Now from Proposition 5.8 we have

0 = J(zif zs, x)

Thus (ZiZj)R(x) = \npZj — XjUpZt e Uι which yields U2R(x) c Uλ. Now
assume UiR(x) a Ui-U then since Ui+1= VJJ^ and P { c 4 ( - i / ) ) we
have for any a — Σ α^Zj € Ϊ7ί+1 that

0 = J(α ί y, sy, a?)

= (ai5z3)x + (z3'X)ai3- + (xai3)z3-

where by the induction hypothesis δ^ = a α^ G C/^j. Thus we conclude
Ui+1R(x) c E7<.

PROPOSITION 5.11. Let A ( - p) = U(l, - ô) © 0 U(k, - /o) be

the decomposition of A(— p) when R(np) is put into Jordan canonical
form. Then the dimension of all the U(i, — p) is one.

Proof. Suppose there exists U(j, — p) = {yu , ym} of dimension
m > 1. Then putting R(np) into its Jordon canonical form on A(p),
that is, writing A{p) = 17(1, p) 0 . . . 0 U(q, p) we see y1U(kf p) = 0
for every A; = 1, , q. For otherwise by an argument similar to that
in Proposition 5.9 we have the situation y1R(np) = — pyx and ViU{k,p) Φ 0
for some k and therefore the dimension of U(k, p) is one. But this
means U(k, p) — xF where xR(np) — px and 0 Φ xyλe xU(j, — p). So
again by Proposition 5.9, the dimension of U(j, — p) is one, a con-
tradiction. Thus we have y^Uik, p) — 0 for all k and therefore yλA{p) —
0. But using the nondegenerate invariant form (u, v) this yields for
every z e A{ρ)y - ρ(z, y,) = (z, y1np) = (zyu np) = 0. Thus (A(p), yj = 0
and since y1eA(— p) we have yλ — 0, a contradiction.

Proposition 5.11 means R(np) can be diagonalized on A(— p) and
by a symmetrical argument R(np) can be diagonalized on A(p). Simi-
larly R(nkp) can be diagonalized on A(± kp). But since nkp — knp

we see R(np) can be diagonalized on A{± kp) and therefore on the
weight space subalgebra B(p). We use these facts in the remainder
of this section to show that B(ρ) = A(— ρ)@npF@A{p).

Let v be a fixed element in A(p) where p is any nonzero weight
and let

E{v) = {x e A(p): xv e A(2p)} .

Since v2 — Oe A(2p), ve E(v). We shall now show
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LEMMA 5.12. E(v) — vF .

Proof. Clearly E=E(v) is a subspace. Now let yeA(— p) be
such that np = yv and let

Q = yF® npF® Eφ ER(v) 0 © ER(vy

where t is such that ER(v)* Φ 0 but ER(v)t+1 = 0. We shall show (1)
Q is R{np)-} R{y)- and jR(»-invariant; (2) J{q, v, y) = 0 for all g e Q.
Then by the usual trace argument we shall show the dimension of E
is one which proves the result.
(1). Q is R(np)-invariant. First yR(np), npR(np) and ER(np) are all
in Q. Now if x e E then z = xRj{v) e ERj(v) c A((j + ] » . Since R(np)
acts diagonally in A((j + 1)^) we have zR(np) = (j + l)ps e ERj(v).
Next Q is jR(/y)-invariant by the choice of y and since i e ί i . Finally
Q is jβ(2/)-invariant. We know yR{y), npR{y) and JEB(i/) are all in Q,
noting ER(y) c wpî . So let xeE, then we shall show (xR(v))R(y) e E
and therefore (ER(v))R(y) c #. We have

- ρJ(y, x, v) = %wp> α?f v)

= ^(2/^P, #, v) + /(αjv, /̂, np), using αjv e A(2|θ) and

(3.15)

= J(yx, v, np) + J(vnp, y, x)

— pJ(v, y, x), since yx e npF

= pJ(y, x, v) .

Therefore J(y, x, v) = 0 and from this, (xv)y = (α;7/)v + ίc(^) e ^ F +
xFdE. Now assume (ER(v)j)R(y) a ER(v)j-\ then for w = zR(v)e
ER(vY+1 where s e JE'JSίv)̂  c A((i + l)<o) we have 0 = J(z, v, y) =

+ (vy)z + (i/2)v. From this we obtain

wR(y) — (zv)y = — (i^)« — (yz)v — npz + 2'v e ER(v)J

where zf — yzz ER{v)ά~x using the induction hypothesis. Thus by the
choice of w we have (ER(v)j+1)R(y) c JBB(t )^

Next we prove (2). First if q — y or q — np, then J(q, v, y) = 0.
Now for qe E we see from the above proof that J(q, v, y) — 0 (by the
change of notation of x to q). Now for q 6 ER(v)j c A((i + 1)^) we
have by (3.15), J(q, v, y) — 0. Thus by linearity we have for all qeQ,
J(Q, v, y) = 0.

Next we apply the standard trace argument. On Q we have from
(2) that

q([R(v)f B(y)] - R{vy)) = 0

so that on Q we have R(np) = [R(y), R(v)] and therefore traceρ R(np) = 0.
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But from the matrix of R(np) on Q, remembering R(np) acts diagonally
on B{ρ)y we see traceρ R(np) = — p + 0 + μφ + 2μφ + + (t + l)μtp
where μ3- is the dimension of ER(v)j. Thus since p Φ 0, μ0 = 1 and

^ = = μ t = 0.

THEOREM 5.13. Let p be a nonzero weight, then the only integral
multiples of p which are weights are 0, ± p. Thus the weight space
subalgebra B(p) = A(— p) 0 npFQ) A(ρ) and therefore A(pf aA(—p).

Proof. Let x e A(p) and yeA(—p) be such that xy — np and let

R =

Then R is R(np)- and i2(τ/)-invariant. Next we shall show R is ϋ!(#)
-invariant. Clearly the elements xR(x),npR(x), yR(x) and A(— kp)R{x)
for /c Ξ> 3 are all in R. So we must show A(— 2p)R(x) c R. For any
2€ A(— 2p) we have

0 = J(z, x, y) = (2a;)y + («i/)« + (^)ίc = (zx)y + ^P2: + (^)α

and from this (zx)y e A(-2ρ) + A(-3p)A(ρ)a A(-2ρ). Thus the
element zxeA(~ 2p)A{p) czA(—p) is contained in the set E(y) discussed
in Lemma 5.12 and E{y) equals yF. Thus A{— 2p)R(x)ayFaR so
that R is iu(a;)-invariant.

Now for any qeR, J(q, x, y) = 0 and therefore R(np) — R(xy) —
[R(x), R(y)] on R so that trace^ R(np) = 0. But from the matrix of
R(np) on R we see

traceΛ i2(wp) = p + 0 - p + 2μφ + 3/̂ 3lo +

where μk is the dimension of A(— fc/>), A; ̂  2. Thus since p ^ O we
must have μk — 0 for A; ̂  2 which shows A(— kp) = 0 and by Theorem
4.8.3, A(kρ) = 0 for k ^ 2. The fact that A^) 2 c A ( - p) now follows
from Theorem 4.10.

6* More on weight space subalgebras* In this section we
continue the discussion of weight space subalgebras and prove the
theorem mentioned in the introduction. Let B(p) = A(p) 0 nFφA(— p)
be a weight space subalgebra and {xu , xm} a basis for A(p). Since
A(— p) is dual to A(p) relative to {x, y) = t raceR x R y choose {yu , ym}
to be a dual basis for A(— p) so that we have (xif y2) — Sijm From
this we also have

(6.1) yjx, = 8iSnμ.
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For by Proposition 5.1 we have y^ — \np and therefore λ^ = \(np, np)
= (λttp, np) = (yάxif np) = (yjy x,np) = p(yjf x{) = ρS{j.

Next let x e A be such that for all a e B(p), ax e B{ρ) and set
Rz:a —>ax (see Proposition 5.1) and let B(x, y) = (l/2mp) trace RxRy,
then we have

THEOREM 6.2. B(p) is a simple subalgebra of A and B(x, y) is
a nondegenerate invariant form on B(p).

Proof. Let C Φ 0 be an ideal of B(p) containing an element
c — Σ c{x{ + conp + Σ c\y{. First assume c0 Φ 0, then from the multipli-
cative relations in B(p) we have p2c — (cnp)np — p2c0np e C and therefore
npeC which implies C = B, using A(± p)np(zA(±p). Next we shall
show that C always contains an element with a nonzero coefficient for
np. Suppose c = Σc{ x{ + Σ c ^ e C and assume some ckΦθ, then
cyk = ΣCiXiVk + ΣcteiVt = ckxkyk + cp=- cknp + cp is in C where cp e A(ρ)

and ck Φ 0. Similarly if some c\ Φ 0. Thus by the first of the proof
B(p) is simple.

To show B(x, y) is a nondegenerate invariant from on B(p), it
suffices by Lemma 5.2 to show B(x, y) is an invariant form; for in this
case {x e B(ρ): B(x, B(ρ)) = 0} is an ideal of B{ρ) which must be zero.
From identities (3.4) we have

trace R(xy)R(z) — trace R{x)R(yz) = trace R(xy-z + x yz) ,

since B(p) is a subalgebra and therefore satisfies the same indentities
as A. Thus it suffices to show trace R(z) = 0 for all z e B(p). We
have trace R(np) — 0 since dimension A(p) — dimension A(— p) and by
the action of R(np) on B(p). Similarly by the multiplicative relations
of any basis element xp of A(p) in B(p) we see that JR(#P) has a matrix
of trace zero; the same holds for R{x^p). Thus by linearity of the trace
function we have the results.

Next we investigate the identities for B{p) more closely.

)z = ί B(xy, z)np if x,y,ze A(p)

\ — B(xy, z)np if x,y,zeA(— p)

For, by the multiplicative relations in B{p), there exists λ e F with (xy)z=
Xnp. Since B(np, np) = p Φ 0 we have Xp = B(Xnp, np) = B(xy, z, np)

— B(xy, znp) and this implies the result. Using (6.3) we have

3 B(xy, z)np if x,y,ze A(p)

-W

Using (6.3) and (6.4) we have
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(6.5) J(x, y, z) = S(xy)z for x,y,ze A(σ), σ = ± p

(6.6) (xy)z + x(yz) = 0 for x,yyze A(σ), σ = ± p

(6.7) (xy)x = 0 for x, y e A{σ), σ = ± p

(6.8) 3(xy)z — 2J(x, y, z) for x,ye A(σ), ze A( — σ) and a — ± p .

For the proof of (6.8) we set σ = σ(np) and note that — σJ(x, y, z)
= J(x, y, znp) = J(znp, x, y) and J(xy z, n9) — (xy, z)np + (znp)(xy) + (np xy)z
— σxy'Z — σz'Xy + σxy*z — 3σxτ/ ^. Therefore

Sσxy z - σJ(x, y, z) = J ( ^ p , a;, j/) + J(xy, z, np)

= J(zx, y, np) + e/(^p, z, x)

= (7J(ί/, 2, X)

which completes the proof.
Next let w, x,y,ze A(σ), σ = ± p, then

wJ(x, y, z) — xJ(y, z, w) + yj(z, w, x) — zJ(w, x, y)

= 3/2[2J(wx, y, z) + 2J(yz, w, x)], using (3.5)

= 3/2[2J(2/f z, wx) + 2J(w, x, yz)\

— ZβY^yz wx + Swx yz] , using (6.8)

= 0 .

This proves the important indentity

(6.9) wJ(x, y, z) = xJ{y, z, w) — yJ(z, w, x) + zJ(w, x, y) for all

w, x, y, ze A(σ), σ — ± p .

THEOREM 6.10. If σ = ± p, then the dimension of A(σ) is one
or three.

Proof. If the dimension of A(σ) is > 1, then there exist linearly
independent elements x{ and Xj in A(σ). Let yk denote an element
in the corresponding dual basis for A(— σ), as in the first part of this
section. From (6.8), ^fax^y, = 2J(xi9 xj} yd) = 2[(xixj)yj + (Xj-y^ +
(yjXi)xj\ = 2[(xix3)yj — npx^\ and therefore

(6.11) (%ι%j)yj = — 2npXi

= 2σxi .

This last equation shows that x{Xj Φ 0. Now 0 ^ 2 / = ^ e i ( - ί j )
and therefore there exists xk e A(σ) so that yxk Φ 0; for, otherwise
yA(σ) = 0 and from this we obtain (y, A(σ)) — 0 and so y — 0.
From (6.7) we see that xk Φ x{ or xk Φ x3- and so we have three
distinct elements xif xJ9 xk e A(σ) such that, using (6.5) and (6.4),
0 Φ ^(XiX^Xf, = J(xiy xh xk) = (S/p)B(x%Xj, xknp)np. Now for any w e A(σ)
we have
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(Sσ/p)B(xixjf xknp)w = (S/p)B(xixjf xknp)wnp

j} xknp)np]

xk)

j , Xk, W) — XjJ(xk, W, Xi) + XkJ(w, Xi9 Xj)

using (6.9). Thus by (6.4) and the action of npF and A(σ) we may
conclude that the dimension of A(σ) is 3 provided xi9 Xj and xk are
linearly independent. This result is clear by the choice of xif x3- and
xk and the fact (XiXj)xk Φ 0.

Now if the dimension of A(p) is 1, we see that the weight space
subalgebra B(p) equals xpF 0 npF 0 x^.pF and is the usual split three
dimensional Lie algebra. In the other case when the dimension of
A(p) is 3, rewrite {xif xif xk) as {xu x2, x3} and letting {yu y29 y3} be the
corresponding dual basis for A(— p) we have B(p) = A(— p)@npFQ)
A(p) where

A(p) = {xu xi9 x,} , A{-p) = {yi9 y2, y3} and

Xinp = px{ , y,np = - pyi 9

y{xj = 8iάup for i, i = 1, 2, 3

A\p) c A( - |O) and A2( - /?) c A(|θ) .

Next let xi9 Xj be as above and write x^j — Σl=1a(i, j 9 n)yn, then for
any other xk we have

fax,, ^k) = ^»a(i, i , ^)(ί/ , a?*) = α(i, j 9 k) .

This formula implies α(i, ,7, fc) is a skew-symmetric function for
i, j 9 k — 1, 2, 3. Thus since α(i, j , i) — a(i, j , j) = 0 we have

XiXj = a(i, j , k)yk for A; Φ i or j" and i, j , k = 1, 2, 3 .

Thus setting α = α(l, 2, 3) 6 F, we have

^ ^ 2 = ayz , a?2ίc3 = ayλ, ^gO?! = α ^ / 2 .

Similarly if we set y{yj = Σ»=i&(^ i» ^)^n a n d ^(1, 2, 3) = b e F we see
yλy2 = 6α;3, 2/2̂ /3 = δα?! and j/β^ = δα;2. This gives the following table for
multiplication in B(p)

np

X,

x2

Xl

Vl

V*

2/s

np

0

Xl

-ρx1

0

Xi

-pχ2

ay*

0

χs

-pxs

-ay n

aVi

0

Vl

py>

nμ

0

0

0

V*

py*

0

np

0

bxs

0

0

0

Wp

— 6*2

0
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Now a and b are nonzero, otherwise B(p) would not be simple and
from (6.11) we see 2pxx = (x1x2)y2 — wyzVi — —obx1 and therefore
2p = — ah.

Next we consider Malcev algebras [2]. This is an algebra which
satisfies the identities obtained by introducing commutation x o y = xy — yx
as a new multiplicative operation in an alternative algebra. In particular
if this is done in the split Cayley-Dickson algebra C, then we obtain
an eight dimensional anti-commutative Malcev algebra C~\ In this
algebra the identity 1 of C is such that 1 ox = 0 for all xeC and so
we set C° = C~/1F. It can be shown that C° is a simple Malcev
algebra which satisfies the identities

xy — —yx and J(x, y, xz) = J(x, y, z)x ,

omitting " o " as the notation for multiplication. Furthermore C° has
a basis {u, el9 e2, e3, e[, er

2f e'3} which satisfies the relations

uei = 2ei , ue'i = — 2e\ , e{e) = δi3 u

βiβa = 2^3 , eλez = — 2^2 , eφ% = 2e[

e[e'2 = — 2β3 , ejβj = 2e 2 , βjβj = —2e1.

We now have

THEOREM 6.12. The root algebra B(p) is a seven dimensional
Malcev algebra as described above.

Proof. Since F is algebraically closed, we can find λ, μf v in F
such that Xp = —2, — λ = μv, aμ2 = 2^ and 6va = — 2//. Then make
the following change of basis in B(p):

H= λnp, Xi = μXi , Yi^vyi i = 1, 2, 3

and use the multiplication table for the np, xi9 yi to see that the
H, Xi9 Yi satisfy the above relations for a Malcev algebra with the
identification u — H9ei — Xi,) e\ = Yim

We next show that the Lie algebra of linear transformations R(N)
can be simultaneously diagonalized in A — ΣpA(-p) © N@ΣA(p)f

where the Cartan subalgebra N equals ΣpA(—p)A(p). From the
preceding discussion we know the dimension of A(p) is one or three.
Now in either case A(p)A(—p) — npF and therefore N is spanned by
such elements np for p Φ 0. Thus to show R(N) diagonalizable it
suffices to show all the linear transformations R(nσ) have this property
on each subalgebra B(p).

If the dimension of A(p) is one, then this is clear for each R(nσ),
where σ is any nonzero weight. If the dimension of A(p) is 3, then
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A(p) = {xl9 x29 x3} and A(-ρ) = {yl9 y29 y3} where {y19 y29 y3} is a dual basis
of {αjlf x29 #3} and {α?i, cc2, #3} is a basis which simultaneously triangulates
every R(n^). We now show {ylf y2, yz} has the same property. For
some an G F,

(6.13) x1R(nσ) = ^ K X

(6.14) ^2i2(^σ) = a21x1 + ρ(na)x2

(6.15)

We shall show that the α^ = 0. Using the properties of B(x9 y) and
the fact that J(x2, n*, yd = 0 we have

0 = B(J(x2, nσ, yd, np)

= B((x2nσ)yx + {nσy^x2 + (y1x2)nσ9 np)

= B((x%nσ)yl9 np) + B{{nσyd%2, np) , since yxx% = 0

= B{{x2nσ)yly np) + pB(nσyl9 x2) , since x^ p = ρx{

= B{{x2nσ)yu np)

using

B{nσyl9 x2) — trace J R O V ^ ) ^ ^ ) — trace Ri

= trace R(nσ.y1-x2 + n^yxx2) = 0 ,

since nσy1 x2 + n^y^^ nPF and trace ^(^p) = 0. Therefore since
(x2nσ)y1 e npF, we must have (a?2̂ σ )l/i = 0, since 5(wp, wp) ^ 0. Now
multiply (6.14) by ^ to obtain 0 = {x2nσ)yλ = a21xxy^ + ρ{nσ)x2y1

— —a21np and therefore a21 — 0. Similarly we can show {xznσ)y1—(xzn<r)y2

— 0 and conclude α31 = α32 = 0 so that R{nσ) acts diagonally on A(p).
Next suppose y{R{n^) = bily1 + 6ί2?/2 + 6ί3i/3 for i — 1, 2, 3, then as

before we can show (y1nσ)x2 = (y&^Xa — 0 and conclude that b12 =
618 = 0. Similarly for i = 2, 3 to obtain that iJ(wσ) acts diagonally on
A(—|O). Thus for any weights p, σ Φ 0, iZ(̂ σ ) acts diagonally on B{p).
But since N=Σσn<rF and A = 2ί

pA(- lo)0Λ/r02'pA(|θ)=:2 l

pJB( io) we have

THEOREM 6.16. For any ne N, R(n) acts diagonally in A.

We shall now prove the theorem stated in the introduction. Let
σ Φ 0 and p Φ 0, ± σ and let x e A{ρ), y e A(σ) and suppose 0 Φ xy e
A(p)A(σ) c A(p + σ) so that p + o is a weight. Let z e A(p + σ), then
for any ne N we have

, 2, w) = /(α i/, 2, n) + J(zw, a?, y)

= J(xz, n, y) + J(ny, x9 z)
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using (3.15) for the first and third equalities. Since z, xy e A(p + σ)
and J(xy, zfn) — 0 we can conclude xy-ze A(2(p + σ)) — 0, using Theorem
5.13. This proves

(6.17) A(ρ)A(σ)-A(ρ + σ) = 0 if σ φ 0 and p Φ 0, ±σ .

Next we show

LEMMA 6.18. The dimension of A(p + σ) is one if σ Φ 0 and
p Φ 0, ±σ and A(p)A(σ) Φ 0.

Proof. Suppose dimension A(p + σ) = 3, then form JB(|O + σ)
= A(—(^ + ex)) 0 np+σ.FQ)A(ρ + cr). From the hypothesis we can find
an element z = xy e A(p)A(σ) c A(/θ + o1) which is not zero and such
that zA(p + σ) Φ 0; this last statement follows from the multipli-
cative relations for the Malcev algebra B(p + σ); (briefly: otherwise,
B(z, A(-(p + σ))) = B{z, A(p + σf) = B(zA(p + σ), A(/o + σ)) =0). But
the fact zA(ρ + σ) Φ 0 contradicts (6.17).

Now let G(σ) denote a weight space of dimension one and S(σ)
denote a weight space of dimension three and set

Then A = G + S and we shall show G is an ideal in A. For any
weight p with weight space G(p) we have GG{p)(^G, since the
product of two weight spaces of dimension one is at most of dimension
one. Next if λ is a weight with weight space S(λ) of dimension
3, then G(ρ)S(X) c G(ρ + λ) by Lemma 6.18. Now if nσ e G, then
write n<r = yx where yeG(—σ),xe G(σ). If z e S(λ) (where we know
λ ^ ± cr), we have 0 = J(y, x, z) — yx-z + xz-y + zy x and therefore

nσz — yx-z = — α z y

- zyxeG(σ)S(\) G(-σ) + G(-σ)S(κ)-G(σ)c:G .

Thus GS(\)dG. Since GNaG, we combine the above results to see
that G is an ideal of A. But since A is simple G = 0 or G = A; in
the latter case A is a Lie algebra.

So next suppose G = 0 and let ^ ^ 0 be a fixed weight and σ Φ 0,
±jθ any other weight and form B(|θ) = A(—p)®npF(£)A(p).

Case 1. A(p)A(σ) = 0. Then £(,0)A(σ) = A(-/θ)A((τ) + wpA(<7). Now
if A(—ρ)A(σ) = 0 also, then ^pA(ί7) = 0. For let cce A(ρ), γeA(-p)
ΐ e such that xy — n? and let z 6 A(σ), then
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0 = J(x, y, z) — xy z + yz x + zx y = xy z = npz

and we would have!? (p)A{σ) = 0. Thus we want to show A{—p)A(σ) = 0,
so suppose this is not true. Then 0 Φ A(—p)A(σ)a A(σ — p) and
from Lemma 6.18 the dimension of A(σ — p) is one and therefore
A(σ — p) c G = 0. Thus we may actually conclude A(—p)A(σ) — 0 and
this proves

B(p)A(σ) - 0 if A(p)A(σ) - 0 .

Case 2. A(ρ)A(σ) Φ 0. Then 0 Φ A(ρ)A(σ) c A(p + σ) and again
by Lemma 6.18 the dimension of A(p + σ) is one. Thus, as above,
this yields A(p)A(σ) = 0, a contradiction. Thus we may conclude from
these cases that B(p)A{σ) = 0 if p Φ 0, σ Φ 0, ±p. This yields B(ρ)A a
B{p) which means B(p) is a nonzero ideal of A and so A = B(p).
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