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ON SIMPLE EXTENDED LIE ALGEBRAS OVER
FIELDS OF CHARACTERISTIC ZERO

ARTHUR A. SAGLE

In this paper we shall investigate algebras which gen-
eralize Lie algebras, Malcev algebras and binary-Lie algebras
(every two elements generate a Lie subalgebra). Such an
algebra A is called an extented Lie algebra (briefly el-algebra)
and is defined by

Yy = — Yx and Jx, y,2y) =0
for all z,y in A where J(,y,?2) =2y-2 +yz-x +z2x-y. We
prove the following.
THEOREM. Let A be a simple finite dimensional el-algebra
over an algebraically closed field of characteristic zero, then
A is a simple Lie algebra or the simple seven dimensional

Malcev algebra if and only if the trace form, (x,y) = trace
R.R,, is a nondegenerate invariant form.

The identities for right multiplications in the Lie [1] and Malcev
[2] algebras mentioned in the theorem yield that the form (x, y) is non-
degenerate and invariant i.e. (vy, 2) = (x, y#); so this paper is concerned
with the converse statement. All algeras considered in this paper are
finite dimensional.

2. Precartan subalgebras. In this section we shall consider sub-
algebras of an arbitrary anti-commutative algebra analogous to Cartan
subalgebras of a Lie algebra.

DEFINITION. A subalgebra N of an anti-commutative algebra A4
is a precartan subalgebra if

1. N is a nilpotent Lie subalgebra of A;

2. the mapping N — E;(A) : » — R, is a representation of N where
R, or R(x) denotes the mapping a— ax and E (A) denotes the Lie
algebra of all linear transformations on A.

Thus N is a Lie subalgebra of A such that there exists an integer
k with (-+- (nm,) «++n,) =0 for all »; in N and [R,, R,] = R,, for
all n, m in N.

Now R(N) ={R,:n€ N} is a Lie algebra of linear transformations
which is also a nilpotent Lie algebra of linear transformations :
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0 = R[(nm) * - -)ny)] = [R((ny1,) « + *)yy), R(ny)]
= eeee =[++- [RB(n), R(n,)], - -+, R(n,)] .

So if we assume the base field F' is algebraically closed we can, an-
alogous to Lie algebra theory, decompose A into a direct sum of weight
spaces relative to R(N):

A=AN,0 %A(N, )

where if M: R(N)— F: R, — MR,) = \(n) is a weight of R(N), then
the weight space corresponding to \ is

AN,\) ={x in A: all n in N, (R, — Mn)I)) =0
for some integer t > 0} = N A(R,, M(n))
nEN

where A(R,, M(n)) = {x € A: x(R, — Mn)I)™ = 0 for some integer m >0}.
By Lie’s theorem the weights A are linear functionals on R(N) and can
actually be considered as linear functionals on N via \n) = MR,) and
noting R, is a linear transformation. The following facts concerning
the above decomposition are known from Lie algebra theory [1].

THEOREM 2.1.

1. Precartan subalgebras exist.

2. The weight spaces A(N, \) are R(N)-invariant subspaces.

3. M\ s the only weight of R(N) in A(N, \).

4. If M is a precartan subalgebra of A containing N, then
Mc A(N, 0).

5. There exists an element n in N such that A(N,0) = A(R,, 0).

6. There are finitely many wetghts.

DEFINITION. The normalizer Z(B) of a subalgebra B of an anti-
commutative algebra A is the set of all # in A such that xBC B.

ProrosiTION 2.2. Let N be a precartan subalgebra of an anti-
commutative algebra A over an algebraically closed field, then N =
Z(N) if and only if N = A(N, 0).

Proof. First note Z(N)c< A(N, 0). For if xe Z(N), then for all
ne N, xR, = xne N and since N is a nilpotent Lie subalgebra of A,
there exists an integer k& with #R! = 0 and so x€ A(N, 0). Thus not-
ing that Nc Z(N) we always have

NcC Z(N)c A(N, 0) .

In particular if N = Z(N), then N = A(N, 0).
Next assume N # A(N, 0), then we shall show N = Z(N). A(N,0)
and N are R(N)-invariant subspaces and R(XN) restricted to A(N, 0) is
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a nilpotent Lie algebra of linear transformations. Hence we obtain

a nilpotent Lie algebra of linear transformations R(NN) acting in the
nonzero space A(N, 0)/N. Now by Engel’s theorem there exists an

T=x-+N=#0 in A(N, 0)/N such that xR(N) =0, But this means
0 = %R, =zR, for all n in N and so N N. But by definition of
Z(N),xc Z(N). However T +# 0 means « is not in N and so N # Z(N).

DEFINITION. A precartan subalgebra N of an anti-commutative
algebra A is a Cartan subalgebra of A if N = Z(N).

Cartan subalgebras are difficult to find, however if there exists an
element # in A such that N = A(R,, 0) is a precartan subalgebra of
A over an algebraically closed field, then N is a Cartan subalgebra.
For decompose A relative to B(N), then Nc A(N, 0) = N ,ex A(R,, 0) C
A(R,, 0) = N and the results follow from Proposition 2.2.

The following notation will be used: if A(x,, ---, 2,) is a function
of n indeterminates such that for any » subsets B, of A the elements
h(,, -+-,b,), for b,€ B;, are in A, then A(B,, ---, B,) denotes the linear
subspace spanned by all the elements A(b, ---,b,) for b,e B;,. Also
we shall identity the element b and the set {b}.

3. Identities. We shall now restrict ourselves to el-algebras, that
is, we assume the algebra A satisfies

3.1 Y = — Yx and J@,y,2y) =0

for all x,y in A. First we note for any anti-commutative algebra A
that a straightforward calculation yields

3.2) wd(x, ¥, 2) — xJ(y, 2z, w) + yJ(z, w, x) — zJ(w, x, y)
= J(wz, y, 2) + J(yz, w, x)
+ J(wy, 2, x) + J(ze, w, y)
+ J(wz, x, y) + J(@y, w, 2)

for all w,x,y,z in A.
Next a linearization of (3.1) yields

(3.3) J(xy, v, 2) + J2y,y, ) =0
for all «,y,2 in A and a further linearization of (3.3) yields

(3.4) J(wax, y, 2) + J(yz, w, x) = J(wy, 2, x) + J(zx, w, y)
= J(wz, x, y) + J(@y, w, 2)

for all w,x,y, 2 in A. Combining (3.2) and (3.4) we have

(3'5) w‘](m’ Y, Z) - C]'}J(y, z, w) + yJ(Z, w, ﬂ}') - ZJ(W, xr, y)
= 3[J(wz, y, 2) + J(yz, w, )]
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| for all w,,y,z in A.

For the remainder of this paper we shall assume A is a simple,
finite dimensional el-algebra over an algebraically closed field of charac-
teristic zero; however it should be clear when these various conditions
can be relaxed. Let N be a precartan subalgebra of A and decompose

A= AN,0)® 3 AN, )

relative to B(N). Next let m,ne N and w, z€ A, then from (3.4) we
have

J(wn, m, 2) + J(mz, w, n) = J(wm, z, n) + J(zn, w, m)
= J(wz, n, m) + J(nm, w, 2)
= J(nm, w, z)
since m,ne N and J(4,n,m)=0. Now set w,=wR, and w,

=w,_,R,=wR! and set 2, =2R,,,2, = 2,_,R, + zZR(mR: ) for k=2, 3,---.
From the above set of equations we have

(3'6) J('WR,,” m, Z) = J(w; mRm z) + J(wr n, ZRm) ’

that is,
J(wly m, z) = J(w! mRm Z) + J(w, n; zl) .

Now assume
J(wky m’ z) = J(’W, le,i, Z) + J(wy n, zk) ’

then for & + 1 we have

Jwyyy, m, 2) = JWRE, m,z), where v = wR,

= J(vg, M, 2) , where v, = vRE
= J(v, mRk, z) + J(v, n, 2;), using induction hypothesis
= J(wR,, mRk, z) + JwR,, n, z,)
= J(w, (mR})R,, 2) + J(w, n, zR(mE))
+ J(w, nR,, z,) + J(w, n, z,R,), using (3.6) twice
= J(w; mRZ‘H, Z) + J(’bl), n, zk+1) .

Thus for every m,ne N and w,z€ A,

3.7 JwRE, m, 2) = J(w, mRE, z) + J(w, n, 2,)

where z, = 2R, and z, = z,,R, + zR(mR)k =2,3, «--.
Let ! be the dimension of A(N, 0), then choosing k large enough
e.g. k =1+ 2 and using Nc A(N, 0) we have mR: = 0 and

(3'8) J(wk’ m, Z) = J(w’ n, zk)

where k=1 + 2, w, = wR} and now 2z, = 2,_,R,.
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We shall use (3.8) with the following lemmas to prove
3.9) A(N, 0)A(N, p)Cc A(N,p + o) if p+#o0.

LEMMA 3.10. Let p be any weight of N and ne N, then R, 1s
nonsingular on A(N, p) ©f and only if p(n) # 0.

LemmA 3.11. Let p,0 be any monzero weights of N in A with
Q0 + o, then there exists uwe N such that p(u) # o(u) and R, is non-
singular on A(N, p).

Proof. Since p # o, there exists he N with p(h) = o(h). If R,
is nonsingular on A(N, p), we are finished. Otherwise R, is singular
on A(N, p) and by Lemma 3.10, 0 = p(h) +# o(h). Now there exists
ke N so that R, is nonsingular on A(N, p), since p = 0 and so p(k) # 0.
If o(k) = p(k), then we are finished. Otherwise if o(k) = p(k), set
u =h + k and note a(u) = a(h) + o(k) = a(h) + p(k) = pk) = p(k) +
o(h) = p(h + k) = p(u) and also p(u) = 0 so that R, is nonsingular on
A(N, p).

For the proof of (3.9) first consider the case ¢ =0 and p + 0.
Let z€ A(N, 0), we AN, p) and m,nec N, then we see by definition
that z,¢€ A(N,0) for all k. But for k¥ > 1 + 2 (where I = dimension
A(N, 0)) we see z, = z,_,R, and this implies 2,4, = 2,_.B.*® and so
for large enough M,z, =0 for all k= M. This and (3.8) imply
J(wy, m,2z) =0 for all k = M. But since w, = wR! where w € A(N, p)
with o # 0, there exists ne N with E, nonsingular on A(N, o) and
therefore A(N, p) = A(N, p)R:. Thus any x € A(N, p) is of the form
x = wRk for some w e A(N, p) and therefore J(x, m, 2) = 0. But m and
z are arbitrary in N and A(N, 0) respectively which implies

(3.12) J(A(N, p), AN, 0), N) = 0.

Next consider the case 0 # g # p #= 0 and let we A(N, p), z€ A(N, o)
and m,n€ N. Then from (3.8) we have for k large enough,

JwRE, m, 2) = J(w,, m, z)
= J(w, n, 2,), where z, = z,_,R,
(3.13) = J(w, n, 2,_m)
= — J(zy_m, 0, W)
= J(wn, n, 2,_,), using (3.3) .
Therefore for & = 2,_,€ A(N, 6) we have from (3.13)

J(wy n, x(Rn - 0'(7’0)[)) = J(w(Rn - U(n)I), ", x)



626 ARTHUR A. SAGLE

and by induection
J(w, n, (R, — o(m)I)’) = Jw(R, — o(n)I)’, n, x) .

But since x € A(N, o), the left side of the above equation is zero for
large enough ¢ and so J(w(R, — a(n)I)’, n,x) = 0 for all ne N. Now
choose n = u of Lemma 3.11, then since o(u) # p(w), R, — o(w)I is
nonsigular on A(N, p) and therefore for any integer ¢t > 0, A(N, p) =
A(N, p)(R, — o(uw)])’. Thus any ve A(N, p) is of the form v = w(R, —
o(w)I)t and therefore J(v, u, ) = 0 where # and w are defined above.
Thus using the preceding notaion and (3.13) we have

0 = J(vu, u, x), since vu € A(N, p)
= J(vu, U, 2;_,)
= J(w, u, 2,_u)
= J(wRt, m, z) .

But also from Lemma 3.11, R, is nonsigular on A(N, p) so that
A(N, p) = A(N, p)Rt. Thus by the choise of 2z, m, v we have

(3.14) J(AN, p), AN, o), N) =0 if 00 - p=0.

Using the usual Lie algebra arguments we combine (3.12) and (3.14) to
obtain

(3.9) A(N, p)A(N,0)Cc A(N,p+o0)if p+o0.
Next we prove
(3.15) J(A(N, p), AN, 0), AN, 7)) =0if p#+o+T+p.

For let ne N,xz<c A(N, p),y< A(N, o) and z€ A(N, 7), then assuming
first that o #* o0 4+ 7 we have, using (3.5) and (3.12) or (3.14),

nd(x, y, 2) = 3[J(nx, y, 2) + J(yz, n, v)]
= 3J(nx, ¥y, 2) .

Therefore J(x, ¥, 2)(R, — 3p(n)I) =3J(x(R, — p(n)I), y, )
and we proceed by induction to conclude

J(x, ¥, 2)(R, — 3p(n)I)' = 0 for large enough ¢ .
Thus with p#0F T+ We conclude
J(A(N, p), A(N, o), A(N, 7)) C AN, 3p) if p#+0+ 7.
By the symmetry of the p, 0 and 7 we also conclude

J(A(N, p), A(N, 0), A(N, 7)) = AN, 30) if o #p + ¢ and
J(A(N, p), AN, 6), A(N, 7)) CA(N,30) if c £ p+ 0.
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Now suppose p =0 + 7. If 6 =p + 7, then ¢ = 0 and therefore
o = p, a contradiction; thus o = o + 7. Similarly we have = p + ¢
and from these we may conclude

J(A(N, p), A(N, 6), AN, 7)) © A(N, 30) N A(N, 3t) = 0 .

Next suppose p#0+ 7. If both co=p+7and 7=p0 + 0 we
obtain 0 =7, a contradiction; thus ¢+ 0+ 7 or 7 +# 0+ o and using the
equations involving J(A(N, p), A(N, o), A(N, 7)) we see that this ex-
pression is also zero in case p # o + . This completes the proof.

4. Some assumptions., The el-algebra identities do not appear
strong enough to determine A(N, )’ in any reasonable manner, so we
assume N is a precartan subalgebra such that

4.1) A(N, o)’ C B; AN,B) if a+0.
0
That is, if =, ye A(N, a) and xy= >4 25, then no zg is in A(N, 0) except

2 = 0. By considering Lie and Malcev algebras, this is a natural
assumption. Now let

B :g; AN, BANN, — B @ 3, AN, )

where we use the usual convention that if — 8 is not a weight of N,
then A(N, — B8) =0. By (3.9), g AWV, BAN, — B) < A(N, 0) and
for any weight v = 0 of N we have

BA(N, v) c A(N, 0)A(N, 7) + Lgﬁ% A(N, a)A(N, 7)

C A(N,7) + AN, AN, 7) + AN, VAN, — )
+ B, AW

C B, using (4.1) .
Next from (3.15) we have for any 8 # 0,

J(A(N, B), A(N, —B), A(N,0)) =0.
From this it follows that

[A(N, B)A(N, — B)]A(N, 0) C [A(N, B)A(N, 0)JA(N, — B)
+ [A(N, — B)A(N, 0)JA(N, B)
C A(N, B)A(N, — B)
and so

BA(N, 0) © 33 [A(N, B)A(N, — B)JA(N, 0) + 33 AN, ) A(N, ) B..

Thus B is an ideal of A and since A is simple B=0 or B = A. This
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proves

THEOREM 4.2. If A is a simple el-algebra and N a precartan
subalgebra such that (4.1) holds, then

1. A =5 AN, AN, — B)® 3, AN, ) and
A(N,0) = 5, AN, B)A(N, — B); or

2. the only weight of N is 0 and A = A(N, 0).

COROLLARY 4.3. If A is an el-algebra as in Theorem 4.2, then
A(N, 0) is a subalgebra. Furthermore if conclusion (1) of the theorem
holds, then A(N,0) is a Lie subalgebra.

Proof. If conclusion (2) holds, the result is trivial. So assume
conclusion (1) holds, then A(N,0) = ., AN, B)A(N, — B) and as
before

A(N, 0)A(N, 0) = > [A(N, B)A(N, — B)]A(N, 0) c A(N, 0) .

B0

Next for any 8 = 0 we shall show
J(A(N, B)A(N, — B), A(N, 0), A(N, 0)) =0

and therefore A(N, 0) will be a Lie subalgebra. Let xe€ A(N, B),ye¢
A(N, — B) and s, te A(N, 0), then using A(N, 0)’C A(N, 0) and (3.15)
we have
J(xy, s, t) = J(zy, s, t) + J(st, z, y)
= J(xs, t,y) + J(ty, =, 8), using (3.4)
= 0, using (3.15) .

COROLLARY 4.4. If A is an el-algebra as in Theorem 4.2 which
satisfies conclusion (1), then the mapping A(N, 0) — R(A(N, 0)): m —
R, is a representation of the Lie algebra A(N, 0).

Proof. From Corollary 4.3 it suffices to prove

J(A(N, B), A(N, 0), A(N,0)) =0 for any 8+0.
Let we A(N, B) and y, z€ A(N, 0), then for any »€ N we have
J(wn, y, z) = J(wn, y, 2) + J(yz, w, n), using (3.12)

= J(wy, 2, n) + J(zn, w, y)
= J(zn, w, y), using (3.12)
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and by induction we have
JwR;, y,2) = JE;, w,y) .

But for large enough ¢,zR. =0 and so for any n€ N and ¢ large
enough J(wR;,y,z) = 0. However there exists in ne N so that R,
and therefore R! is nonsingular on A(N, 8) and the usual argument
proves the corollary.

COROLLARY 4.5. If A s an el-algebra as in Theorem 4.2 which
satisfies conclusion (1) for some precartan subalgebra N, then A(N, 0)
18 a Cartan subalgebra provided A(N,0) is a wnilpotent Lie sub-
algebra.

Proof. Let M = A(N, 0), then from Corollary 4.4 and the hypoth-
esis we see that M is a precartan subalgebra and from §2
NcM=nAR,0).
nEN

Thus decompose A = A(M, 0) P >p.0 A(M, B) relative to R(M) and we
must show A(M, 0)c M. Well,

NcC A(N,0) = Mc A(M, 0) = n A(R,, 0)
meM

and since NC M we have N ,exAR,,0)C N,ex AR, 0) = M. Thus
A(M, 0) = M.

As in Lie algebras we make the following

DEFINITION. An element % in an el-algebra A is regular if the
dimension of A(R,, 0) is minimal.

COROLLARY 4.6. If A is an el-algebra as in Theorem 4.2 which
satisfies conclusion (1) for the precartan subalgebra N = Fu where
w 18 regular, then A(N, 0) is a Cartan subalgebra.

Proof. From Corollary 4.5 it suffices to prove A(N,0) is a nil-
potent Lie subalgebra and the proof in [1, Th. 3.1] can easily be
modified to prove this fact.

Next we investigate the symmetric bilinear form (x,y) = trace
R,R, and impose a condition on it which is satisfied by Lie and
Malcev algebras and implies assumption (4.1). Some notation: for
xeA or S, TCA,(x,S) denotes {(x,S):se€S} and (S, T) denotes
{(s,t):seS and teT}. (v,y) is an wnvariant form if (xy,z)
= (x, yz) for all x,y,zc A.

THEOREM 4.7. Let N be any precartan subalgebra of A and decom-
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pose A = A(N, 0) D S.AN, ), then
1. if (z,y) is an invariant form, then

(AN, @), AN, B)) =0 if a+B+0;
2. if (x,y) 18 a nondegenerate invariant form, then

A(N, a)zcﬁ%A(N, B) ifa+0;

Jurthermore there exists a precartan subalgebra N, such that N, =Fu
where w 18 regular and A # A(N,, 0).

Proof. (1) Suppose (x, ¥) is an invariant form and let z € A(N, ),
ye A(N, B) and ne N. Then by induction we have

@R, — a@)D)",y) = (— V"=, y(R, + a@)])")

fork=1,2,---. But for large enough k, (x(R, — a(n)I)*, y) = 0, since
x€ A(N, @) and so (x, y(R, + a(n)I)*) = 0. But since 8 # — «, there
exists ne€ N with (R, + a(n)I)* nonsingular on A(N, 8) and therefore
A(N, B) = A(N, B)(R, + a(rn)I)t. This proves (1).

(2) Suppose (x,y) is a nondegenerate invariant form, then there
exists ne€ A such that (n, n) = trace RZ # 0; otherwise by lineariza-
tion, (x,y) = 0 for all #,yc A. Thus R, is not nilpotent and we can
choose an element uw € A such that 4 + A(R,, 0) and w regular. Thus
N, = Fu is a precartan subalgebra such that A # A(N,, 0). Next let
a+0and z,yc AN, a) and x, y € A(N, @) and xy = 2, + >, 2s Where
N is any precartan subalgebra. Now for v # 0 we have

(29, AN, 7)) = 0, using part (1) .
For v = 0 we have
(20y A(N, 0) = (vy — B%zﬂ, A(N, 0))
(@, yA(N, 0)) — >, (25, A(N, 0))

BF0

=0, using part (1).

Thus (2, A) = 0 and since (x, ) is nondegenerate z, = 0.

For the remainder of this paper we shall assume (x,y) is a non-
degenerate invariant form on A. With this assumption we may con-
clude that A has a precartan subalgebra N, such that (4.1) actually
holds, A # A(N,, 0) and A(N,, 0) is a Cartan subalgebra. Thus we
may assume the existence of a Cartan subalgebra N = A(N,0) = A
satisfying 4.1, and call A ‘‘the usual el-algebra.” We shall work
with a fixed Cartan subalgebra described above and use the notation
A(a) or A, for A(N, @) and also N for A(N,0). The proof of the
following is similar to the proof for Lie algebras [1, Section 4.1].
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THEOREM 4.8. Let A be the usual el-algebra, then
1. (x,y) s nondegenerate on N and for x,y € N, (x,y) = > Np(x)0(y)
where the sum 1is over all weights p and N, = dimension A(p).
2. N*=0.
3. 0+ p is a weight if and only if 0 = — 0 is a weight; furthermore
A(p) and A(— p) are dual relative to (x,y) so that dimension A(0)=
dimension A(— p).
4. Let N* be the dual space of N. If ge N*, then there exists a
unique element n, € N such that g(n) = (n, n,) for all ne N. Further-
more the mapping N* — N:g—n, is a bijection.
5. If | = dimension N over F, then there arel linearly independent
weights of N and these form a basis of N*. Furthermore if p,0¢
N* and n,, n, are determined as in (4), then the symmetric bilinear
Jorm < p,0 > = (n,, n,) is nondegenerate on N*.
6. If p is a nmonzero weight of N and x,€ A(0) is such that

2R, = p(n)x, for all ne N
and of x_, 1s any element in A(— p), then
T_pXp = (xp, T_p)Np

where n, 1s determined in (4).

7. pn,) #=0 ¢f p+=0.

We shall prove (7) since its proof is different from the proof of the
corresponding statement in [1]. First we need

LEMMA 4.9 Let A = N@ Y.z A(a) be the usual el-algebra with
Cartan subalgebra N = 3., A(@Q)A(— «). Let ¢ be any weight of N
and O any nonzero weight of N and let he >, A(1P)A(— i10). Then
#(h) = ro(h) where v s a rational number.

Proof. 1f ¢ = rp for some rational number, then we are finished.
Otherwise ¢ #rp for any rational number r and we consider

M= 3, A($ +kp) E=0,+1,+2 .

Now since there are finitely many weights we may write A = >\™ h;
where h; € A(tp)A(— ip) and therefore h; = 3,2/ (¢0)x’(— 10) where x’(kp)
e A(kp), k = &+ i. Now since h;€ N, M is R(h;)-invariant and so R(h)
-invariant. But since ¢ ##rp for any rational number r, we use (3.9)
to see that M is also R(x7(10))- and R(x/(— 1p))-invariant for ¢ =1, -, m.

Next for z = 32, € M where z,€ A(¢ + kp) we have, using (3.15),

J(z, 27(10), 2°(— ip)) = X J(2, 2/(1P), &'(— ip)) = 0 .

Therefore on M we have
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R(h;) = >5; R(z'(10)%7(— 10))
= 3[R (20)), R(x(— 1p))]
so that on M

R(h) = 3% R(h:) = X[ R(@7(20)), R(x'(— ip))] -

Therefore trace, R(h) = 0. But since h€ N we can calculate the trace
of R(h) on M from its matrix to see that

tracey R(h) = 3 Nyiio(9 + kp)(R)
- (ZkN¢+kP)¢(h) + (ZkkN¢+kp)P(h) ’

where Ny, = dimension A(¢ + kp). The result now follows.
For the proof of 4.8.7 suppose o is a nonzero weight of N such
that p(n,) = 0. Then for any ne€ N we have

p(n) = (n, n,) = Zw Nwa(np)a(n) ’

summed over all weights @. Now we can find an element z_,e A(— p)
such that (x,,x_,) =1 and therefore from 4.8.6, n, = x_x, and so
using Lemma 4.9 we have a(n,) = rp(n,) = 0 where r is a rational
number depending on « and p. Therefore p(n) =0 ie. p=0, a
contradiction.

Finally we use the nondegenerate invariant form (x, y¥) to obtain
more information on A(a).

THEOREM 4.10. Let A be the usual el-algebra, then

Ay c A(— a) + AQ«a) .
Proof. For a = 0 we know the result. Suppose a = 0; if A(a)* =
0, then we are finished. So assume A («)*+# 0, then since (x,y) is
nondegenerate there exists a weight 8 such that
(Aay, A(B)) # 0.
Case 1. If B+ «, then
0 # (A(a), A(B)) = (A(@), A(@A(B)) < (A(a), Al + B)) .

Thus a + B8 must be a weight and so by Lemma 4.7.1, @ + (& + B)=
0, that is, 8 = — 2a.

Case 2. B =a.

Thus we have (A(a)*, A(— 2a) + A(a)) + 0. Now let z,yc A(a)
and oy = >,,2,. Suppose there exists a component 2z, with v # — «
or 2«, then we have
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(wy, A(— 7)) = (xy yA(— 7))
C (A(@), A(a — 7)), since 7 # — «
=0, since « + (@ —7)#0.

Thus
0 = (xy, A(— 7))

= 20’(20'9 A(—“ 7))
= (2y, A(— 7)), using Lemma 4.7.1.

Therefore by Theorem 4.8.3, z, = 0 and 0 2y = 2_, + %y

5. Weight space subalgebras. Let A = N >, ,A(p) Le the
usual simple el-algebra discussed in § 4. Since we know — pis a
weight if and only if o is a weight, we may eliminate superfluous
weight spaces and write

A=S,A- 0B NG, Alp)

where 0 is a nonzero weight. Now for a fixed nonzero weight o0 we
shall consider the wetght space subalgebra

B(p) = 3, A(— 1p) © 5, A(— k)Ako) @ 3, Alko)
and show it actually equals

A(— p) D nF D A(p)

where 7, determined in Theorem 4.8.4. In the next section we shall
show B(p) is the split 3-dimensional simple Lie algebra or the simple
T-dimensional Malcev algebra obtained from the split Cayley-Dickson
algebra.

ProposITION 5.1. Let B(p) be a weight space subalgebra, then
2uZA(— kp)A(kp) = n,F.

Proof. Let B = 3,,A(— kp)A(kp), then it suffices to show dimen-
sion B=1; for 0+ n,€ B and we would have B = n,F. To show
this let B* denote the dual space of B and prove dimension B* = 1.
Since dimension B = dimension B* we have the results, Let x€ A be
such that for any a € B(p), ax € B(p) and set

R,: B(o) — B(p):a — ax .

Let x, y € B(p) and set



634 ARTHUR A. SAGLE

f(x, y) = trace R,R (= tracez, R,.R,) .
f(x,y) is a bilinear form on B(p) and the fact that dimension B* =1

is a consequence of the following lemma.

LEMMA 5.2, 1. f(x,y) 1s nondegenerate on B and
2. dimension B* =1,

Proof. Since there are finitely many weights we can _apply
Theorem 4.8 to show that for any #, ke B, f(h, k) = trace R(h)R(k) =

H, 0 K, 0
trace H, K,
L0 H_, 0 K_,
= (%25’ N,,)o(h)o(k)
where
Jo(h) 0 jo(k) 0
H; = . and K; =
* Jp(h) * Jp(k)

Now suppose there exists b€ B such that for all ke B

0 = fb, k) = (X 25°N,,)p(0)p(k) .

Set k =b to conclude p(b) =0. Now since be B = 3, A(j0)A(— jp)
we have form Lemma 4.9 that for any weight ¢ of N in A4, ¢(b) =
ro(d) = 0. Now for any xe€ N we can apply Theorem 4.8.1 to conclude
(,b) = 0 and therefore b = 0. Thus f(x,y) is nondegenerate on B.

Next let ge B*, then since f(x,y) is nondegenerate on B, there
exists a unique b€ B so that for all

he Bg(h) = f(h, b) = (X, 25°N,;)p(b)o(h) = cp(h)
where ce F. Thus B* = pF is of dimension one.
CoROLLARY 5.3. B(p) = 3, A(— kp) ® n,F P X, Akp) .

Put R(n,) into its Jordan canonical form on A(— p). Thus we can
write
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A—p)=Ud, — )P -+ ® Uk, — p)
where each U(j, —p) has a basis {2, -, 2;,,} such that, if
p = pm,),

(5.4) zle(%p) = lozjl and
2 R(n,) = — Pz + 254

1 =2,3,+++,m, We shall consider just one of the R(n,)-invariant
spaces U(j, — p) and denote it by U = {z,, -+, 2,}. We uce symmetry
to argue similar results for the other spaces and also for the weight

0.
LEMMA 5.5. Let xz¢ A(0) be such that xR(n,) =px, then zx =
N, and N, =0 for © =1, m — 1.
Proof. From Proposition 5.1 z,x = N\n, and from (3.15) we have

for ¢ =2, --+, m that

0 = J(=;, 2, m,) = 280, + TNy 2; + M2 & = PTZ; — BNy T
= pxz; — (— P2; + 2,)% = 2.2,

also using Theorem 4.8.2. Thus »; =0,¢v =1, -+, m— 1.
PROPOSITION 5.6. J(2;,2,,7,) =0 for 4,7 =1, -+, m.

Proof. TUsing the skew-symmetry of J(a, b, ¢), it suffices to show
J(z,2;,m,) =0 for i =7 and j=m,m —1,---,1. We use induction
onj. First for j = m, J(2,, 2., n,) = 0. Next for j = m — 1 we have

J(zm? zmwl? 7,‘./P) = J(zmr zm(R(nP) + pI)? /n'P)
= J(zm, 2oy np)
= 0, using (3.1).

Now assume that for all j =m,m —1,---,m — q¢ we have shown
J(z;, 25, M) = o0 = J(2,, 2;, n,) =0, then we must show similar results
for j—1=m — (¢ + 1). We always have J(z,_,, 2;_,, #,) = 0 and next

J(zja Rj1y np) = J(zj’ zj(R(np) + IOI)’ np)
= J(@;, 21, M) = 0.

So we now assume
J(2jgy Bioay W) = 200 = J(Zj_y gy Tie1s Mp) = 0

for j —1<j— 14 k< m; we then have
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J(zf—l’ Ziths np) = J(ZJ(R(np) + pI): Zitry Tp)

= J(@iMy Zitay M) + P (23, Ziky )

= J(2jn,, Zj+1, M,), using the first induction
hypothesis.

= — J(zin,, My, Z514)

= J(2j 14N, Mo, Z;), USIing (3.3)

= — PJR@j1, M, 2) + J(Zio14s, Mo, 25)

=0.

ProrposITION 5.7. For all ne N, J(z;, z;, »n) = 0 and U*C A(— 20).

Proof. It suffices to show that for any weight o0 # 0 we have
J(z;, 25, ms) = 0 where n, is determined in Theorem 4.8.4; for we see
that the elements », span N as a vector space. Now if o = A0 where
AMeF, it is easy to see that n, = A, and so from Proposition 5.6
J(z;, #;, n,) = 0. Next assume o is not a scalar multiple of p and
choose elements 2, and «_, as in Theorem 4.8.6 so that z_.x, = n,.
Now noting that z;z;€ A(— p)’ C A(p) @ A(— 2p) we have, using 3.15,

J(z:z;, _q, ) € J(A(D), A(— 0), A(0))
+ J(A(— 2p), A(— 0), A(0)) = 0.

Thus we have

J(’I’Lg-, 23y zJ’) - J(x—u'xo-, (28 zi) + J(ziz:i’ Loy xv)
= J(@_2:,2;, To) + J(2i%s, T_q, 2))
= 0, using (3.15) .

Next let u,ve U, then by linearity J(u,v,n, =0 and since U is
R(n,)-invariant subspace, the usual argument shows (uv)(R(n,) + 20I)*
= 0 for k large enough. But we know uv = « + ¥y where x € A(p), ¥y €
A(— 2p) and therefore for k large enough,

0 = (uwv — Y)(B(n,) + 20I)* = a(R(n,) + 2pI)".

If « # 0, this implies there exists 0 = z€ A(0) so that z(R(n,) +
20I) = 0 and therefore — 3pz = z2(R(n,) — pI). Iterating this formula
and using o = p(n,) # 0 we obtain 2 = 0, a contradiction. Thus =0
which proves the second part.

PrOPOSITION 5.8. Let xe A(p) be such that xR(n,) = p», then
J(z;,2;,2) =0 for 2,5 =1, -+, m.

Proof. It suffices to show J(z;,2;,2) =0 for all ¢+ =7 and



SIMPLE EXTENDED LIE ALGEBRAS OVER FIELDS 637

j=m,+-+,1. The case 5 = m is trivial and for j = m — 1 we have

Sy 2y ) = J (2o 20(R(m;) + pI), )
= J (2,4, 2 Mp, X)
= J(M2,, 2y X)
= — J(xz,, 2,, m,), using (3.3)
= 0, using Lemma 5.5.

Assume we have shown for j=m,m —1,---, m — k
J(zhzjyx) =0 for ’l':jrj'*- 1y cee, M
We shall show for j = m — (k + 1) that
J(zi,zj’x) =0 for ,L:j,j_}_ 1’ s, M
As above, the cases ¢t = j and ¢ = j + 1 are clear. So assume
J@;,z,2) =0for e =75, +1,---,5+¢—1
where j < j+t—1<m. Then for 1 +1 =7+ t we have
J@j1y 23y ®) = J@j1r, 250:1(B(0) + PI), ®)
= J(Z.H—t’ 254+1Mp, x) + PJ(sz; Zjt1s x)
= J(zj+ty Zj+1Mp, x) )
using the first induction hypothesis
= — [J(Zj11Mpy Zite, @) + S48, i1, NR)]
using Lemma 5.5
= — [J@isZisr, &, Me) + J@0, 241, 2540)]
= — J(@n,, 2;+1, 2;+.) , using Proposition 5.7
= PJ(Zj14, Zir1, T)
= 0, using induction hypothesis.
This proves the result.
To use the preceding results we need the following remark: Let

V be an R(n,)-invariant subspace of the weight space A(o), then
trace,R(n,) = o(n,)¢t where g is the dimension of V.

PRroPOSITION 5.9. Let x € A(0) ke such that ®R(n,) = px and sup-
pose 2U # 0, where we use the notation U = {2, -+, 2,} preceding
Lemma 5.5. Then the dimension of U is one.

COROLLARY 5.10. If x 1is given as above and 2U(j, — p) # 0,
then the dimension of U(j, — p) is one.

Proof. Let U, =U={z, -+, 2,} denote the set of elements of
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A(— p) we have been considering. Set U, = UUc A(— 2p), using
Proposition 5.7; and set U, = U,_,UC A(— kp). Then since there are
finitely many weights, there exists an integer M so that U, ## 0 but
Uy =0. Let P=xFPnFP >, U, then we shall show: (1) P
is R,-, R(n,)- and R(z,)-invariant; (2) J(z,#,2,) =0 for all zeP.
Then from Lemma 5.5 and the hypothesis we see xz,, = An, where
A # 0 and using the standard Lie algebra trace argument we shall
show that the dimension of U is one.

Suppose (1) and (2) have been proved and consider the trace argu-
ment. From (2) we see

0 = Jz, , 2,) = 2(|RB(x), R(z,)] — B(xz,)) .
Thus as linear transformations on P we have

R(n,) = 1/\nR(xz,,), since » = 0
= 1\ R(x), R(z,)]

and so trace,R(n,) = 0. But from the matrix of R(n,) on P we see
trace, R(n,) = (0 + 0 — p,0 — 2,0 — <+« — Mp,0) where p, is the
dimension of U;,. Thus since p = p(n,) # 0, pt, =1, pty = +++ = pt,, = 0.

We now prove (2). If 2= or 2z =mn, the result follows. If
z2€ U, then use Proposition 5.8. Finally if ze U; for 4 >1, then
z2€ A(— ip) and so J(z, 2, z,) € J(A(— ©0), A(0), A(— p)) = 0. Now for
an arbitrary element ze€ P use the above and linearity.

Next we prove (1). Since z,€ U,, each U, = U,_,U, is such that
Uz,c UU, = U,.,. Furthermore since xz, = An, and #n,2,€ U, we
see P is R(z,)-invariant. Next we shall show P is R(n,)-invariant.
First ®R(n,), n,R(n,) and U,R(n,) are all contained in P. We have
U.R(n,) C U,; next assume U,R(n,)C U,. Then for U, R(n, we note
that any a € U,,, is of the form a = >};a,;2; where a,; € U,, 2, € U,. Since
U,c A(— ip) we have

0 = J(a;;, #;, n,), using (3.15) or Prosposition 5.6
= (@)1 + @) + (1,0:5)2; .

Therefore

aR(n,) = > (@;525)m,
= 205 @;i(2mp) + 2i(Ma;;) -

Now a;;(z;n,) € U;U,C U,,, and by induction hypothesis n.,a,;€ U; and
therefore z;(n.a;;)€ Uy, Thus U, R(n,)c U;,, and P is R(n,)-
invariant.

Finally we shall show P is R(x)-invariant. The elements xR(x),
n,R(x) and z,R(xr) = \;n, are all in P, Thus it suffices to show U,R(x) <
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P for ¢+ > 1. Now from Proposition 5.8 we have

0 - J(zw Zj, x)
= (2:25)x + (2,2)7; + (%2))2;
= (Ri2,)% + NjNoR; — NWeRj o

Thus (2,2;)R(®) = A2, — M2, € U, which yields U,R(x) c U,. Now
assume U,R(x)c U,_,, then since U,., = U,U, and U,C A(— ip) we
have for any a = > a,;2;€ U,;, that

0 - J(a’ij: 20 x)
= (a;z5)x + (;0)a; + (Xa;;)z;
= (@;2)% + Njnotts; + b 2;

where by the induction hypothesis b,; = za,; € U;,_;,. Thus we conclude
UinB(x) C U,.

ProposITION 5.11. Let A(—p) =UQ, —p)D ++-- B Uk, — p) be
the decomposition of A(— p) when R(n,) is put into Jordan canonical
form. Then the dimension of all the U(i, — p) is one.

Proof. Suppose there exists U(j, — o) = {y,, *++, ¥} of dimension
m > 1, Then putting R(n,) into its Jordon canonical form on A(p),
that is, writing A(o) = U@, 0) P --- P Ulq, p) we see y, Uk, 0) =0
for every k=1, ---,q. For otherwise by an argument similar to that
in Proposition 5.9 we have the situation y,R(n,) = — py, and y,U(k,0) # 0
for some %k and therefore the dimension of U(k, o) is one. But this
means U(k, p) = «F where zR(n,) = px and 0 # zy, € 2U(7, — p). So
again by Proposition 5.9, the dimension of U(j, — o) is one, a con-
tradiction. Thus we have y,U(k, p) = 0 for all k and therefore y,A(0)=
0. But using the nondegenerate invariant form (u, v) this yields for
every z € A(0), — 0(z,y) = (2, Ymp) = (2Y,, ) = 0. Thus (A(0), y) =0
and since y, € A(— o) we have y, = 0, a contradiction.

Proposition 5.11 means R(n,) can be diagonalized on A(— p) and
by a symmetrical argument R(n,) can be diagonalized on A(p). Simi-
larly R(n,) can be diagonalized on A(+ kp). But since n,, = kn,
we see R(m,) can be diagonalized on A(=+ ko) and therefore on the
weight space subalgebra B(o). We use these facts in the remainder
of this section to show that B(p) = A(— o) D n,F P A(p).

Let v be a fixed element in A(p) where p is any nonzero weight
and let

E@v) = {x e A(p): xzve A(20)} .
Since v* = 0€ A(20), ve E(v). We shall now show
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LEMMA 5.12, E(v) = vF.

Proof. Clearly E =E(v) is a subspace. Now let ye A(— o) be
such that n, = yv and let

Q=yFOnFOEDER®)D --- D ER(()

where ¢ is such that ER(v)® = 0 but ER(v)""* = 0. We shall show (1)
Q is R(n,)-, R(y)- and R(v)-invariant; (2) J(q,v,y) =0 for all qe@Q.
Then by the usual trace argument we shall show the dimension of E
is one which proves the result.

1). @ is R(n,)-invariant. First yR(n,), n,R(n,) and ER(n,) are all
in Q. Now if x € E then z=xR/(v) € ER(v) C A((j + 1)p). Since R(n,)
acts diagonally in A((j +1)0) we have zR(n,) = (j + 1)oz € ER/(v).
Next Q@ is R(v)-invariant by the choice of y and since ve E. Finally
Q is R(y)-invariant. We know yR(y), n,R(y) and ER(y) are all in Q,
noting ER(y) C n,F. So let € E, then we shall show (xR(v))R(y)e E
and therefore (ER(v))R(y) c E. We have

— pJy, %, v) = J(yn,, @, v)
= J(yn,, x, v) + J(2v, y, n,), using xve A(20) and
(3.15)
= J(yzx, v, n,) + J(vn,, y, x)
= poJ(v, y, x), since yx € n,F
= pJ(y, z,v) .
Therefore J(y,x,v) =0 and from this, (zv)y = (xy)v + 2(vy) € vF +
xF c E. Now assume (ER(v))R(y) < ER(vY™*, then for w = zR(v)e

ER(v)"** where ze€ ER(v)y < A((j + 1)p) we have 0=J({Z,v,¥9)=
(zv)y + (vy)z + (yz)v. From this we obtain

wR(y) = (zv)y = — (vy)2z — (Y2)v = N2 + 2've ER(vY

where 2z’ = yze ER(v)"™! using the induction hypothesis. Thus by the
choice of w we have (ER(v)Y*)R(y) C ER(v).

Next we prove (2). First if ¢ =y or ¢ = n,, then J(q,v,y) = 0.
Now for g€ E we see from the above proof that J(g, v, y) = 0 (by the
change of notation of z to q). Now for g€ ER(v)' C A((F + 1)p) we
have by (3.15), J(q,v,y) = 0. Thus by linearity we have for all ¢ € Q,
J(g,v,y) = 0.

Next we apply the standard trace argument. On @ we have from
(2) that

9([R(v), B(y)] — R(vy)) =0
so that on @ we have R(n,) = [R(y), R(v)] and therefore trace, R(n,) = 0.
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But from the matrix of R(n,) on @, remembering R(n,) acts diagonally
on B(p), we see trace, R(n,) = — 0 + 0 + 0 + 20,0 + -+ + (¢ + D)0
where p; is the dimension of ER(v). Thus since p # 0, p¢, =1 and
#1: cse :#t::O.

THEOREM 5.13. Let o be a nonzero weight, then the only integral
multiples of o which are weights are 0, = p. Thus the weight space
subalgebra B(p) = A(— p) D n,F D A(p) and therefore A(p) < A(— p).

Proof. Let xe A(o) and y € A(— o) be such that 2y = n, and let

R=asF®nFOyF® kzi; A(— kp) .

Then R is R(n,)- and R(y)-invariant. Next we shall show R is R(x)
-invariant. Clearly the elements zR(x), n,R(x), yR(x) and A(— ko)R(x)
for k = 3 are all in B. So we must show A(— 20)R(x)c R. For any
ze€ A(— 20) we have

0=J@, z,9) = (e)y + (@y)z + (y2)xr = z2)y + 1,2 + (Y2)x

and from this (2x)y e A(— 20) + A(— 30)A(0) C A(— 2p). Thus the
element zx e A(— 20)A(0) C A(— p) is contained in the set E(y) discussed
in Lemma 5.12 and E(y) equals yF. Thus A(— 20)R(x)CyFCR so
that R is R(x)-invariant.

Now for any ¢qeR, J(g,z,y) = 0 and therefore R(n,) = R(xy) =
[R(x), R(y)] on R so that tracep R(n,) = 0. But from the matrix of
R(n,) on R we see

trace, R(n,) = 0 + 0 — 0 + 2p4,0 + 34,0 + -

where o, is the dimension of A(— ko), k = 2. Thus since p # 0 we
must have p, = 0 for k¥ = 2 which shows A(— kp) = 0 and by Theorem
4.8.3, A(kp) = 0 for k = 2. The fact that A(p)’ < A(— p) now follows
from Theorem 4.10.

6. More on weight space subalgebras. In this section we
continue the discussion of weight space subalgebras and prove the
theorem mentioned in the introduction. Let B(p) = A(o) @ nF P A(— p)
be a weight space subalgebra and {x,, -+, «,} a basis for A(p). Since
A(— p) is dual to A(p) relative to (x, y) = trace R, R, choose {y,, **+, ¥..}
to be a dual basis for A(— p) so that we have (x;,y;) =90,;. From
this we also have

(6.1) YiX; = O8;m,
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For by Proposition 5.1 we have y;2z;, = An, and therefore Mo = \(n,, 1,)
= (M, 1) = (Y%, Mp) = (Y4, TiMp) = P(Y5, T;) = P35

Next let €A be such that for all aec B(p), ax € B(o) and set
R.:a—ax (see Proposition 5.1) and let B(x, y) = (1/2mp) trace R.R,,
then we have

THEOREM 6.2. B(0) is a simple subalgebra of A and B(x,y) s
a nondegenerate invariant form on B(p).

Proof. Let C+# 0 be an ideal of B(p) containing an element
¢c=2Xcw, + e, + X cly;,. First assume ¢, = 0, then from the multipli-
cative relations in B(p) we have p’c — (¢n,)n, = p’con, € C and therefore
n,€ C which implies C = B, using A(z+ p)n, C A(* p). Next we shall
show that C always contains an element with a nonzero coefficient for
N,. Suppose ¢ = ¢, ®; + Yciy;€C and assume some ¢,+#0, then
Y =20 Y, + Y Y = Ch¥Yi + €= — €N, + ¢, is in C where ¢, € A(p)
and ¢, # 0. Similarly if some ¢’, = 0. Thus by the first of the proof
B(p) is simple.

To show B(x,y) is a nondegenerate invariant from on B(p), it
suffices by Lemma 5.2 to show B(z, %) is an invariant form; for in this
case {x € B(p) : B(x, B(p)) = 0} is an ideal of B(o) which must be zero.
From identities (3.4) we have

trace R(xy)R(z) — trace R(x)R(yz) = trace R(xy-z + x-yz) ,

since B(p) is a subalgebra and therefore satisfles the same indentities
as A. Thus it suffices to show trace R(z) = 0 for all ze B(p). We
have trace R(n,) = 0 since dimension A(p) = dimension A(— p) and by
the action of R(n,) on B(p). Similarly by the multiplicative relations
of any basis element %, of A(p) in B(p) we cee that R(x,) has a matrix
of trace zero; the same holds for R(x_,). Thus by linearity of the trace
function we have the results.
Next we investigate the identities for B(p) more closely.

B(xy, z)n,  if @,y,2¢€ A(0)

(6.3) (xy)z = { — B(xy, 2yn, if @, y,2€ A(— )

For, by the multiplicative relations in B(p), there exists A € F' with (zy)z=
An,. Since B(n,, m,) = p # 0 we have \o = B(\n,, n,) = B(zy, 2, n,)
= B(xy, zn,) and this implies the result. Using (6.3) we have

3 B(xy, 2)n,  if x,y,z¢€ A(p)

6.4) e, y, ) = { 3By, 2, if 24,2 A(—p)

Using (6.3) and (6.4) we have
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(6.5) J(x,y,2) = 3xy)z for x,y,z€ A(0),0 = + p
(6.6) (xy)z + a(yz) =0  for @,y,2z€ A(0),0 = £ 0
(6.7) (xy)e =0 for x,yec A(g),0 = = p
(6.8) 3(xy)z = 2J(x, y,2) for x,yec A(p),zc A(—o)ando=+0p.
For the proof of (6.8) we set ¢ = o(n,) and note that — oJ(x, v, 2)
= J(, ¥, zn,) = J(zn,,z,y) and J(xy -z, n,) = (xy, 2)n, + @En)(xY)+ (0, - 2Y)2
= oxy+2 — 022y + oxy-z = 3oxy-z. Therefore
3oxy-z — od(x, y, 2) = Jzn,, z,y) + J(xy, 2, n,)
= J@zx, y, n,) + J(yn, 2, @)
=o0d(y, 2, x)
which completes the proof.
Next let w, z, y, 2 € A(0), 0 = + p, then
wd(x, ¥, 2) — 2y, z, w) + yJ(z, w, x) — 2J(w, z, y)
= 3/2[2J(wz, y, z) + 2J(yz, w, x)], using (3.5)
= 3/2|2J(y, z, wx) + 2J(w, x, yz)|
= 3/2[3yz-wx + 3wx-yz], using (6.8)
=0.
This proves the important indentity

(6.9) wd(x, ¥, 2) = xJ(y, 2, w) — yJ(z, w, ) + zJ(w, x, y) for all
w,z,9,2€Al0),0 =+ p.

THEOREM 6.10. If 0 = =+ o, then the dimension of A(c) 1is omne
or three.

Proof. If the dimension of A(g) is > 1, then there exist linearly
independent elements x; and z; in A(s). Let y, denote an element
in the corresponding dual basis for A(— o), as in the first part of this
section. From (6.8), 3(x.x))y; = 2J(w;, x5, ¥5) = 2[(xx))y; + (xy,)x; +
(yj2,)x;] = 2[(x,2,)y; — n,2;] and therefore

(6.11) (2)y; = — 2n,;
= 20%2; .

This last equation shows that xx; + 0. Now 0 +# y = z,2;€ A(— 0)
and therefore there exists z,e€ A(6) so that yxz, # 0; for, otherwise
yA(o) =0 and from this we obtain (y, A(0)) =0 and so y = 0.
From (6.7) we see that z, # x, or z, # %, and so we have three
distinet elements z;, %;, ©, € A(s) such that, using (6.5) and (6.4),
0 = 3(w;x))x, = J(x;, 25, %) = (3/0)B(x,2;, xn)n,. Now for any w e A(o)
we have
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(30/0)B(x;, Tim)w = (3/0)B(x:x;, Tm,)wn,

= w[(3/0)B(x.x;, x,mo)n,]

= wd(®;, Tj, T)

= 2, (x5, 2p, w) — 2;J (@, W, L) + T S (W, @, ;)
using (6.9). Thus by (6.4) and the action of n,F' and A(s) we may
conclude that the dimension of A(c) is 3 provided u,, x; and x, are
linearly independent. This result is clear by the choice of =z, #; and
2, and the fact (x;x;)x, #= 0.

Now if the dimension of A(p) is 1, we see that the weight space
subalgebra B(o) equals «,F' P n,F P x_,F' and is the usual split three
dimensional Lie algebra. In the other case when the dimension of
A(p) is 3, rewrite {x;, x;, x;} as {x,, %, x;} and letting {y,, ¥., s} be the
corresponding dual basis for A(— p) we have B(p) = A(— p) D n.F' P
A(o) where

A(p) = {x,, ,, x5}, A(—p) = {y,, ¥, ¥:} and
xmp = ,037,' ’ Yn, =— pyz ’
Yi; = O;5U, for 1,5 =1,2,3;
A¥p)c A(—p) and A(—p)C A(o) .
Next let «;, «; be as above and write xx; = >}%_,a(7, 7, n)y,, then for
any other x, we have
(@@, ©) = 2,01, J, W)Y, %) = alt, 5, k) .
This formula implies a(7,7, k) is a skew-symmetric function for
%,7,k=1,2,3. Thus since a(t, , %) = a(%,5,7) = 0 we have
zx; —a(t,7,k)y, for k*4orjand,75,k=123.
Thus setting a = a(l, 2, 3) € F, we have
Xl = AYs , TX3 = aY, , L%, = AY, .
‘Similarly if we set y,y; = >3_.0(%, 7, n)x, and b(1,2,3) = be F we see
Y., = by, ¥y, = bx, and 9y, = bx,. This gives the following table for
multiplication in B(p)

Mo &y {2 s Yy Y. Y

e 0 —pz, —px, —px; Y, PY. PYs

x, 0 ay; —ay, m, 0 0
2, 0 ay, 0 m, 0
Xy 0 0 0 Mp
Y, 0 bx, —bzx,
Y, 0 bx,

Ys 0
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Now a and b are nonzero, otherwise B(p) would not be simple and
from (6.11) we see 2px, = (%,&,)y, = aysy, = —abx; and therefore
20 = —ab.

Next we consider Malcev algebras [2]. This is an algebra which
satisfies the identities obtained by introducing commutation 2 oy = xy — yx
as a new multiplicative operation in an alternative algebra. In particular
if this is done in the split Cayley-Dickson algebra C, then we obtain
an eight dimensional anti-commutative Malcev algebra C-. In this
algebra the identity 1 of C is such that 1oz = 0 for all xe€C and so
we set C°=C7/1F. It can be shown that C° is a simple Malcev
algebra which satisfies the identities

2y = —yx and J(=, vy, 22) = J(,y, 2)x,

omitting “o” as the notation for multiplication. Furthermore C° has
a basis {u, e, e, e, e, ¢}, e;} which satisfies the relations

ue; = 2e, , ue;, = —2e; , ee; = 8;;u;
.6, = 26, 6.6, = —2¢ , €:65 = 2¢; ;
ee, = —2e, , ees = 2e, , ey = —2e, .

We now have

THEOREM 6.12. The root algebra B(po) s a seven dimensional
Malcev algebra as described above.

Proof. Since F' is algebraically closed, we can find \, g, v in F
such that \o = —2, — N = v, o = 2v and bv* =— 2¢. Then make
the following change of basis in B(p):

H=wm,, X, =px,, Y, =y, ©+=1,2,3

and use the multiplication table for the =, x;,, y; to see that the
H, X,, Y, satisfy the above relations for a Malcev algebra with the
identification u = H, ¢; = X;, ¢} = Y..

We next show that the Lie algebra of linear transformations R(N)
can be simultaneously diagonalized in A = SpA(—p) D NP TA(o),
where the Cartan subalgebra N equals X,A(—p)A(0). From the
preceding discussion we know the dimension of A(p) is one or three.
Now in either case A(0)A(—p) = n,F" and therefore N is spanned by
such elements 7, for o % 0. Thus to show R(N) diagonalizable it
suffices to show all the linear transformations R(n,) have this property
on each subalgebra B(p).

If the dimension of A(o) is one, then this is clear for each R(n,),
where ¢ is any nonzero weight. If the dimension of A(p) is 3, then
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A(p) = {#,, ®, x5} and A(—p) = {y,, ¥, ¥s} Where {y,, ¥», Y5} is a dual basis
of {x,, x,, x;} and {x,, x,, 2,} is a basis which simultaneously triangulates
every R(n,). We now show {y, ¥, y;} has the same property. For
some a,; € F,

(6.13) le(na) = {O(no')xl
(6.14) ©,R(n,) = @, + 0(1e)%,
(6~15) st(no-) = 0y®; + Ay + P(’"«r)xa .

We shall show that the a,; = 0. Using the properties of B(x, y) and
the fact that J(x,, n., ¥) = 0 we have

0 = B(J(x,, 1e, Y1), M)
= B((xm,)yl + ('nay1)x2 + (y1932)’ncn 'np)
= B((®:7.)¥1, %) + B((n,y)%,, n,) , since yx, = 0
= B((xne)y1, 7o) + pB(n.y,, x,) , since x;n, = 0%;
= B((xznc)yl’ np)

using

B(n,y,, ®,) = trace R(n,y,)R(x,) — trace R(n,)R(yx,)
= trace R(n,y, 2, + . y®,) = 0,

since MY %, + Mo YX, €, and trace R(n,) = 0. Therefore since
(xme)y, € n,F, we must have (2.n,)y, =0, since B(n,, n,) = 0. Now
multiply (6.14) by vy, to obtain 0 = (@)Y, = €2y + O(M)2Y,
= —ayn, and therefore a,, = 0. Similarly we can show (2,%,)y,= (®:%,)¥.
= 0 and conclude a; = a,, = 0 so that R(n,) acts diagonally on A(o).
Next suppose y,R(n,) = by, + by, + by, for ¢ = 1,2, 3, then as
before we can show (yn.)x, = (¥n,)x, =0 and conclude that b, =
b,; = 0. Similarly for ¢ = 2, 3 to obtain that E(n,) acts diagonally on
A(—p). Thus for any weights o, 0 # 0, R(n,) acts diagonally on B(p).
But since N=2Xn,F and A= 23,A(—p) P NP2, A(0) = 2,B(0) we have

THEOREM 6.16. For any ne N, R(n) acts diagonally in A.

We shall now prove the theorem stated in the introduction. Let
o0 #0and p#0, + 0 and let x € A(o), y € A(o) and suppose 0 # 2y e
A(0)A(o) C A(p + o) so that p + o is a weight. Let ze€ A(0 + o), then
for any ne N we have

J(xy, z, n) = J(xy, z, n) + J(zn, ©, y)
= J(xz, n, y) + J(ny, z, 2)
=0
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using (3.15) for the first and third equalities. Since z, 2y < A(o + 0)
and J(xy, 2z, n) = 0 we can conclude xy-z € A(2(0 + ¢)) = 0, using Theorem
5.13. This proves

6.17) A(0)A(0)-A(p + 0) =0 if 00 and p#0, +0.

Next we show

LEMMA 6.18. The dimension of A(o + o) is one if 0 # 0 and
0 # 0, £0 and A(o)A(o) # 0.

Proof. Suppose dimension A(o + ¢) =3, then form B(o + o)
= A(—(0 + 0)) B 1. F' P A(o + 0). From the hypothesis we can find
an element 2z = xye A(0)A(0) C A(p + o) which is not zero and such
that zA(o + o) # 0; this last statement follows from the multipli-
cative relations for the Malcev algebra B(p + o0); (briefly: otherwise,
B(z, A(— (0 + 0))) = B(z, A(o + 0)*) = B(zA(p + 0), A(o + 0)) =0). But
the fact zA(0 + o) # 0 contradicts (6.17).

Now let G(o) denote a weight space of dimension one and S(o)
denote a weight space of dimension three and set

G = 2.,(G(—0) ® n.F O G(o))
S = 5,(8(—0) ® 0 F ® S(p)) -

Then A =G + S and we shall show G is an ideal in A. For any
weight o with weight space G(o) we have GG(p)C G, since the
product of two weight spaces of dimension one is at most of dimension
one. Next if \ is a weight with weight space S(\) of dimension
3, then G(0)S(\) CG(o + \) by Lemma 6.18. Now if n,€G, then
write n, = yx where y € G(—0), x€ G(o). If ze S(\) (where we know
A #= =+ 0), we have 0 = J(y, x, 2) = yx-2 + x2-y + 2y-x and therefore

NgZ = YT 2 = — XTZ+Y
—zy-x € GO)SN)-G(—0) + G(—0)SN)-G(o) C G .

Thus GS(\) CG. Since GN C G, we combine the above results to see
that G is an ideal of A. But since A is simple G =0 or G = 4; in
the latter case A is a Lie algebra.

So next suppose G = 0 and let p = 0 be a fixed weight and o +# 0,
+p any other weight and form B(p) = A(—p) @ n.F @ A(p).

Case 1. A(p)A(0) =0. Then B(p)A(0) = A(—p)A(0) + n,A(0). Now
if A(—p)A(c) =0 also, then n,A(0) = 0. For let x€ A(o), yc A(—p)
be such that xy = n, and let z€ A(o), then
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0=J@,y,2) =xY:2 + Yz+x + 20y = xY+*2 = N2

and we would haveB (0)A(¢) =0. Thus we want to show A(—p)A(g) =0,
so suppose this is not true. Then 0 # A(—p)A(c) CA(oc — p) and
from Lemma 6.18 the dimension of A(c — p) is one and therefore
A(c — p)C G = 0. Thus we may actually conclude A(—p)A(c) =0 and
this proves

B(o)A(g) =0 if A(0)A(0)=0.

Case 2. A(p)A(o) # 0. Then 0 = A(p)A(o) C A(p + o) and again
by Lemma 6.18 the dimension of A(po + o) is one. Thus, as above,
this yields A(0)4(o) = 0, a contradiction. Thus we may conclude from
these cases that B(0)A(o) =0if p # 0,0 # 0, £p. This yields B(p)A C
B(p) which means B(p) is a nonzero ideal of A and so A = B(p).
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