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LAPLACE'S METHOD FOR TWO PARAMETERS

R. N. PBDERSON

The behavior for large h and k of the integral

I(h, k) = [af(t) exp [- hφit) + kφ(t)] dt
Jo

is considered under hypotheses which are fulfilled, for example,
if /> φ9 ψ are real analytic, φ is strictly increasing, and φ(0) =
<f>(0) = 0. In most cases it is assumed that k = o(h) as h, k —> oo.
If v and μ are the respective orders of the first nonvanishing
derivatives of φ and ψ at the origin, it is found that the be-
havior of I(h, k) depends on whether:

(1) 0 < lim inf kvh-M- and lim sup kvh~^< oo,
(2) k?hr* -> 0, (3) frh-v -> oo and ^>(0) < 0 , or
(4) fcvft-M- -> oo and ^ ( 0 ) > 0.

In case (1) it is shown that I(h, k) is asymptotic to a power
series in (&A)1/(v~μ) with coefficients depending on kvh~^. In
case (2) it is shown that I(h, k) is asymptotic to a double power
series in hr1'" and kh~^v. In case (3) it is shown that I(h, k)
is asymptotic to a double power series in kr1^ and hky~^. In
case (4) it is shown that there exist two parameters σ, τ tending
to zero as h, k -> oo such that exp (<x~2) I(h, k) is asymptotic to
a double power series in σ and τ. If μ ^ y it is proved that
the coefficients of the above power series are unique.

It is the purpose of this paper to obtain asymptotic expansions
of the integral I(h,k), for α > 0 , as k, h—> oo. In most cases we
assume that h and k are bound by the relation k = o(h). We assume,
roughly speaking, that φ{t) ~ aQtv (αo>O), ψ(t)~bot<

1, and f{t) ~cot
λ

as £—>0. If & = 0 and y = 2 this is the classical Laplace's Method.
We will show that the problem divides naturally into four cases:
kvh~* -> 0, kvh~^ -> oo (60 < 0), kvh~>J' -> oo (δ0 > 0), and tehr* is bounded
away from both zero and infinity. Tricomi [4] and Fulks [3] have
obtained results along this line when v = 2, μ = 1, and λ = 0. Tricomi
considered a specific integral of this type (related by a change of variable
to the incomplete gamma function) and obtained complete expansions
in three of the four above cases. Fulks considered a general class of
integrals and obtained the first term in all four cases. The methods
of both authors depend quite strongly on the quadratic nature of the
exponent near the origin. In this paper we will consider aribtrary v,
μ, λ and obtain complete asymptotic expansions in all four cases. The

Received February 18, 1964. This work for this project was sponsored by the
National Science Foundation, Grant NSF-G25060.

585



586 R. N. PEDERSON

results of Fulks have been extended by Thomsen [2] in another direction.
The author would like to thank Professor W. Fulks for suggesting this
problem.

1* Statement of results* Let f(x) and g(x) Φ 0 be defined for
x = (xu x2, , xn) εS where S is a subset of Euclidean n space having
the origin as a limit point. For each j = 0,1, , N let p,(x) be a
homogeneous polynomial in x of degree j . We will use

3=0

to mean that

N

-1 = Σ
0

Σ
3=0

r *)
where | x \ — (x\ + x\ + + x\)112. If f(x) and g(x) depend on a para-
meter y we require that the big 0 constant and the coefficients of the
polynomials should be uniformly bounded in y.

While in one dimension the polynomials v3 (x) are of necessity unique,
in higher dimensions they need not be. In our application of the above
definition we will be able to prove a uniqueness result which covers
all cases where v and μ are integers with μ^v.

We will consider the integral I(h, k) under the following hypotheses.
Hx. Φ{t) is positive and nondecreasing in 0 < t < a, and

(1.1) Φ(t) - tv Σ a*iV * -* 0
3=0

where v > 0 and a0 > 0.
H2. ψ(t) is measurable and bounded from above in 0 ^ ί ^ α, and

(1.2) <f(ί) ~ 0* Σ &,-«> έ — 0
3=0

where μ > 0.
Hd. f(t) is Lebesgue integrable in 0 ^ t ^ α , and

(1.3) / ( ί ) - ί λ Σ ^ ' ί-0

where λ ^ 0.
We first consider the case where hvh~μ- is bounded away from both

zero and infinity when h and k are large. We obtain a one dimensional
expansion of I(h, k) with coefficients depending on a parameter.

THEOREM 1. Assume that k — o(h), 0 < lim inf kvh~μ and that
lim sup k">h-» < oo. Let x = (k/h)11^-^ and y = (fcvft-'Λ)1'(v--'A).
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exist unique functions An = An(y) such that

I(h, k) ~ xλ+1 Σ ASy)xn h, k — oo.
0

In particular

A0(y) = c0 Γ
 ί λ e χ P { -

Jo

In the remaining cases we obtain two dimensional expansions of
I(h, k). We next take up the case where k?h~μ —> 0.

THEOREM 2. Assume that k" — o(hμ) and that either k = o{h) or
Ψ(t) ^ 0. Let ξ — h~llv and η = kh~μlv. There exist constants Bmn

such that

Σ

In particular

Bm = v

If μ ^ 1 and either μ ^ v or ψ(t) ^ 0, the constants Bmn are unique.

If k^h~^ —» oo we must distinguish the cases 60 < 0 and 60 > 0.
We next take up the case where b0 < 0.

THEOREM 3. Assume that hμ = o{kv), b0<0, and that k = o(h).
Let p = k~llμ- and q = hk~ylμ. There exist constants Cmn such that

In particular

Coo - μ-\{- δo) ( λ + 1 ) / μΓ((λ + 1)1 μ).

If v ^ μ + 1 the constants Cmn are unique.

If b0 > 0 we must make stronger regularity assumptions about the
functions φ, ψ, and /. We expand I(h, k) in terms of parameters σ
and τ which depend less simply on the parameters h and k.

THEOREM 4. Assume that k = o(h), h* — o(kv), and that λ, μ, and
v are integers. Also assume that b0 > 0 and that in some neighborhood
of the origin t~λf(t) ε cN+1 and that t~vψ(t), t^ψit) ε c^+3 (N ^ 0). There
exist parameters σ, τ which tend to zero as h,k—+oo9 and unique
constants Όmrn such that
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I(h, k) ~ τκ+1σ exp (1/σ2) Σ D™»Pmτn

as h, k —> oo. /% particular

DQ0 = co[2π/(vμ)γι>.

In a neighborhood of the origin and for sufficiently large h and kτ
is the unique positive solution of

(1.4) hφ\τ) = kf\τ)

and σ is defined by the relation

(1.5) σ~2 = - A0(r) + λ?iKr)

ΐft terms of h and k, τ and σ are given by

(1.6) τ = [(^δoV^i αo)]1/^^! + 0(τ)]

(1.7) σ = [(hvaoy/(kμboyγι^[l + 0(τ)].

In (1.6) and (1.7) the big 0 term possesses an expansion to the
iVth power in τ.

2Φ Preliminary Lemmas* The key to our proof will be to
express I(h, k) in the form suggested by the following Lemma.

LEMMA 1. Let

J(x) = \Mx)a(x, t) exp [- β(t) + y(xf t)]dt
J

be defined for x — (xλ x2, , xn) in a deleted neighborhood of the
origin in En. Assume that:

(2.1) a(x, t), β(t) and y(x, t) are measurable functions of t for each
fixed x.

(2.2) exp[— /3(£)]5^ULexp[— btλ] for some positive 6, λ, K.

(2.3) There exists a μ, 0 < μ < 1, and an L such that

exp [T (x, t)] ^ L exp [μbtλ], 0 ^ ί ^ α(a?).

(2.4) For each fixed t
N

a(x, ί) ~ Σ αX^> *)» ίc —* 0 ,

jsrj

7(x, t) ~ Σ 7i(a?, ί ) , » —» 0
i
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where a3 (x91) and 7j(x, t) are homogeneous polynomials in x of degree
j . The coefficients of aά and y3- as well as the big 0 constants are
uniformly bounded by a polynomial M(t) (which may depend on N).

(2.5) a(x) ^ I x \~c for some c > 0 and all sufficiently small x.

Then there exist homogeneous polynomials PJ(X) (of degree j) such
that

J(x) ~ Σ PAx), Po = Γ^(0, t) exp [- β(t)]dt.
i=o Jo

If J(x) depends on a parameter y and if μ, λ, b, c, K, L, M(t) are
independent of y then the conclusion of Lemma 1 remains valid (in
the sense that the coefficients of Pj(x) and the big 0 constant are uni-
formly bounded).

Proof. We expand expγ(#, t) to N terms in order to obtain

= Σ 4 Γ Γ } e x p [ - β(t)] a(x, t)[y(x, t)Ydt + R
3=0 J I JO

where

R = ^ J^exp [- β(t)] a(x, t)[y(x, tψ+1 exp A dt

and A is between 0 and y(x, t). It follows from (2.2) and (2.3) that

exp [- β(t) + A] ^ exp [- (1 - μ)btλ]

and from (2.4) that

I a(x, t)[y(x, tψ+11 ^ M,(t) \ x \N+1

where Mλ(t) is a polynomial in t. It follows from (2.4) and the fact
that the asymptotic expansion of a product is the product of the
asymptotic expansions that

- ! - Σ <*(χ, t)[y(χ, t)γ = Σ Pi(», t) + Rx
J I 3=0 3=0

where each p3 (x, t) is a polynomial in x (homogeneous of degree j)
whose coefficients are bounded by a polynomial in t and

where M2(t) is a polynomial in t. After substituting the preceding
results into the expressions for J and R we see that
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J(v) = Σ Γ* exp [- β(t)]p3{x, t)dt + 0(| x \N+1).
3=0 JO

It follows from (2.2) and (2.5) that replacing a(x) by + °o introduces
an exponentially small error. Hence

3 = 0

where

Jo
exp [- βφipiix, t)dt.

In particular it is easily shown that

>, t)exp[-j8(t)]dt.

This completes the proof of Lemma 1.

The following lemma will help to facilitate the proof of Theorem 4.

LEMMA 2. If μ and v are positive integers such that μ <v, then

- μ{V - 1) + v{t» -l)^(μ~ v)(t - If

for all t ^ 0.

Proof. We assume that v Φ 2 in which case both sides of the
above inequality are identical. Let

g(t) = - μ(P - 1) + v(t» -l)-(μ- v)(t - I ) 2 .

It is easily verified that g"'{t) has at most one simple zero for positive
t and that hence g"{t) at most two simple zeros or one double zero.
On the other hand

^"(ί) = - μv(v - l)tv~2 + μv{μ - 1)^~2 + 2(v - μ)

is positive for small positive t and negative for large t from which it
follows that g"{t) has an odd number of zeros (including multiplicities).
Hence g"{t) has exactly one zero for positive t and g'{t) has at most
two zeros for positive ί. Since g{0) — g(l) = 0, g'{t) has one zero in
(0,1) and it is easily verified that g\l) — 0. It follows that g(t) does
not change sign in (0,1) or in (1, oo). Since

fif"(l) - (2 - μv){v -μ)<0

for v ^ 3 it follows that g(t) ^ 0 for all t ^ 0 which completes the
proof.
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3. Proof. Let I(h, k) = Iλ + I2 corresponding to the intervals [0,
δ] and [δ, a] respectively. Since Φ(t) is positive and nondecreasing and
ψ(t) is bounded from above, say by M, we have

exp [- hφ(t) + kψ(t)] S exp [-hφ(δ) + kM], tε[δ, a].

If k = o(h) we have

\I>\£ext>[-hφ(δ)/2][\M\dt
J δ

for all sufficiently large h and k. If ψ>(£) ̂  0 the same result holds
without the assumption k = o(/t). In all four of our theorems we
assume either k = o(h) or kv = o(foμ). It follows that I2 is small with
respect to any parameter which behaves like a product of powers of
h and k. It is therefore sufficient to consider

Ii = [f(t) exp [- Mi) + kf{t)]dt
Jo

for arbitrary but fixed δ > 0. We will assume from this point on that
δ is so small that the expansions (1.1), (1.2), and (1.3) are valid in
[0, S\.

We turn to the proof of Theorem 1.

Proof of Theorem 1. In addition to our general assumptions we
have k — o{h), 0 < lim inf kyh~μ', and lim sup &v/r^ < oo. In particular
x — (k/hyl{"~μ) —> 0 and there exist positive constants m, M such that
m<y = (fcv/^)1/(v-/A) < M for all large h, k. Let u(t) = t~λf(t), v(t) =
ί"v" ι[αotv - ^(ί)] and w(t) = t-*-\f{t) - b^]. Then after replacing t
by xs we have

exp {- y[aot
v - b^] + E}ds

Jo

where

E = xτ/[sv+1?;(xs) + sμ+1w(αs)].

The growth rates of h and & imply that μ < v and hence there exists

a i ί such that

exp {- y[aos" - 60s
μ]} ̂  i ίexp {— mα0s

v/2}

for large fe and fc which shows that (2.2) is satisfied. If L is a bound
for v and w we have

E ^ MLδ[sv + s i , 0 < s < δx-1.

Hence (2.3) is satified if δ is sufficiently small. It follows from (1.1)
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that

v(t) = Σ afl-1 + 0(t*)

and that hence xv(xs) has the type of expansion prescribed by (2.4).
A similar remark applied to u and w shows that (2.4) is satisfied
(with bounds which are independent of y). It is evident that (2.1),
and (2.5) are satisfied. Thus by taking d smaller, if necessary, we see
that Iλ has the desired expansion. In particular it follows that Ao —
A0(y) has the prescribed form. The proof of uniqueness is standard.

Proof of Theorem 2. In addition to our general hypotheses we
have fcv = o(h) and either k — o(h) or ψ(t) ^ 0. In particular ξ = h~llv

and η = khr^ -> 0 as h, k -> oo. Let u(t) = t~λf{t), v(t) = r ^ 1

[αoί
v — Φ(t)], and w(t) = t~^f{t). After replacing t by £s we have

exp [-αos v

Jo

where

E = ξsv+1v(ξs) + ψ^wiξs).

It is evident that (2.1), (2.2), and (2.5) are satisfied. In 0 ^ s ^
the estimates (with M a bound for v and w)

h-W , if μ ^ i;,

if μ < i;,

and s"w(ξs) ^ 0 , if ψ(t) ^ 0 ,

imply that existence of a constant K such that

for sufficiently small δ and all large h and iΓ. Hence (2.3) is satisfied.
It can be shown that (2.4) is satisfied in the same manner as in the
proof of the Theorem 1. This completes the proof that Ix has the
stated expansion.

There remains the question of uniqueness of the coefficients. In
terms of ξ and η the relations k = o(h), kv = o{hμ), h —> oo, and k —> oo
are ξ*~μη = o(l), η = o(l), f~v —• oo and ηξ-* —> oo respectively. Since
uniqueness is asserted only if μ ^ 1 and v ^ μ or ψr(ί) ^ 0 (in which
case we do not need k = o(fc)), we see that we need consider only the
restriction μ ^ 1 and ^~'* —> oo. By subtracting two supposed expan-
sions of ^"λ~1/(fe, k) we obtain for some N Ξ> 0
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N / 2V+1\

Σ Zgrr-i + 0 ((f + T ? 2 ) " ) = 0 .

If μ > 1 we may let η — θξ without violating Ύ]ξ~μ —* <χ> and prove
that the Z's are all zero. If μ = 1 we let η — ξι~2. The above identity
can then be written

1 - β ) Σ # i f i β + 0(f( +1)(1-β)) = 0.

If 0 < e < 1/(N+1) the first term is of lower order that the error term
and hence by letting ξ —• 0 we can again prove that the Z's are all
zero. This completes the proof of Theorem 2.

Proof of Theorem 3. The proof is very similar to the proof of
Theorem 2. It suffices to note that in the case ψ(t) ^ 0 we used only
the assumption kv — o(hμ) and the expansions of Φ and ψ to prove that
Ix had the stated expansion. It is therefore clear that if hμ = o(kv)
the same proof provides an expansion of iΊ in terms of the parameters
p — U~llμ- and q — hk~"jμ. The existence part of the proof of Theorem
2 is then completed by noting that δ0 < 0 implies that ψ(t) g 0 in [0,
3] for small d.

The uniqueness proof is also similar to that of Theorem 2. We
leave it to the reader to carry out the details.

Proof of Theorem 4. In addition to our general hypotheses we
assume that λ, v and μ are integers and that some neighborhood of
the origin t-λf(t)eCN+1 and that t~vΦ{t), r ^ ( i ) s C ^ + 3 . We also assume
that hμ — oik"), k = o(h), and that 60 > 0. In particular it follows that
μ < v and that the expansions of f,φ, and ψ can be differentiated a
suitable number of times.

We begin by proving the existence of a positive τ satisfying (1.4)
Let g(t) = Φ'(t)lf\t), t > 0, g(0) = 0. It follows from the expansions
of Φ and ψ that there exists a δ > 0 such that g(t)εC, 0 ^ t ^ δ, and
that g'(t) > 0, 0 < t < S. Hence if k/h is sufficiently small there exists
a unique τ, 0 < τ < δ, such that g(τ) = k/h which is equivalent to
(1.4). After substituting the expansions of φ and ψ into (1.4) and (1.5)
we see that τ and σ possess the expansions (1.6) and (1.7). The fol-
lowing convenient expressions for h and k are easily proved from (1.6)
and (1.7).

(3.1) ha0 = σ-*τ~\μl{v - μ)][l + 0(τ)].

(3.2) hb0 = σ-*τ~»[v/(v - μ)][l + 0(τ)].

The fact that φ(t), f(t)εCN+* implies that in (1.6), (1.7), (3.1) and
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(3.2) the term 0(τ) possesses an expansion to the JVth power of τ.

The integral defining 7X may be written

I, = exp (σ-2) JV(ί) ext [ - j - (t - τf

where

(3.3) ζ = hφ"(τ) - kψ"(τ)

and

(3.4) Δ = - h[φ(t) - φ(τ)] + k[ψ(t) - f (τ)] + i (ί - τ) 2 .

We next prove the existence of an ΎJ, 0 < 27 < 1, such that

(3.5) A^ίζ(t-τ)\
Li

for 0 ^ t S δ if δ is sufficiently small. We first note from (3.1), (3.2)
(3.3) and the expansion of φ and ψ that

(3.6) ζ = vμσ-*τ~\l + 0(τ)],

where 0(τ) has an expansion to the Nth power of τ. We separate the
proof of (3.5) into three cases : v — 2, v ^ 3 and t > τ, v ^ 3 and
t ^ τ.

It follows from Taylor's formula with the Lagrange form of the
remainder that

A=-
Ό

where tx is between t and τ. If v = 2 (and hence μ = 1) we have

Δ ^ ΛΓ(Λ + k) I ί - τ i3

where ilί is an upper bound for 6 | Φ"\t) \ and 6 | ψ'"(t) \ . By substitut-
ing 3.1 and 3.2 into the above estimate we see that for 0 ^ t S, and
some constant Mf

A ^ M'δζ{t - τf

for h and k large. By choosing δ small we see that (3.5) follows.

If v ^ 3 and t > τ we obtain from the expansion of '̂"(£1), ψ"'{t^
that
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+ [0(8) + 0(τ)][(W + (ti/Γ)"]}

For δ and τ small and t > τ (hence tx > τ) the above expression is
negative. Since ζ is positive (3.5) follows trivially.

Finally if v ^ 3 and ί < r w e use Taylor's formula with the inte-
gral form of the remainder to obtain

- h[φ(t) - φ(τ)] + k[f(t) - f(τ)]

(ί - x)[hφ"(%) - kψ"(x)]dx

= - v μ σ-V"2 \\t - x)[(v - l)(x/τy-* - (μ - l)(x/τ)^ + 0(τ)]dx
(v — μ) Jτ

where since x < τ we have on occasion, replaced 0(x) by 0(τ). After
evaluating the integral, the above expression becomes

+ σ-2τ-20(τ)(t - τ) 2 .

After applying Lemma 2 to the above expression we obtain

Δ ^ ^f- [vμ-2 + 0(r)](ί - Tf

from which (3.5) easily follows.

We next make the change of variable

t - τ = ζ-1/2s

in order to obtain

exp + ζ-1'V)exp[-|- +

which after breaking the integral at zero separates into two integrals
to which Lemma 1 can be applied. It is evident that (2.1) and (2.2)
are satisfied. (2.3) easily follows from (3.5) by expressing t in terms
of s. (2.5) similarly follows from (3.5). It remains to show that (2.4)
is satisfied. To this end we expand Δ to N + 2 terms and obtain

4r
3!

We wish to show that for each fixed s

= Σ
/ N+l\

" + 0 ((σ2 + τ 2 ) — ) .
\ /
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It follows from (1.1) and (1.6) and (3.1) that

hφ>'(τ)ζ-jl2 = const. σj~2[l + 0(r)]

the 0(τ) term possessing an expansion to the (N + 2 — j)th power of
r. In the same fashion it is easily shown that kψ[j)(τ)ζ~j12 has a similar
expression. Hence there remains only to handle the remainder term.
N + 3 Ξ> v we use the Lagrange form of the remainder to obtain

R = [- κφ"'(tύ + H'"(td]ζ

If M is a common bound for φ{N+3) and τ/τ(ΛΓ+3) we have for h and k so
large that k/h < 1

|JB| ^
(N + 3)!

from which it follows that

I R I < KdN+1sN+3

where K is constant. If N + 3 ^ v the remainder requires a more
delicate estimate. We write Φ(t) = V [t~vΦ(t)]f expand V about t — τ,
and expand t~vφ(t) to N + 2 terms about £ = τ. If we then solve for
R we will find that it is in a form for which it is easily shown that

IRI ^ \p2 + τ2] 2 p(s)

where p(s) is a polynomial in s. This shows that z/ has the required

expansion. In a similar fashion it is shown that

also satisfies the requirements of (2.4). Uniqueness presents no problem
since (3.1) and (3.2) show that σ and τ can tend to zero through
essentially all positive values. This completes the proof of Theorem 4.
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