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ISOMORPHIC GROUPS AND GROUP RINGS

D. S. PASSMAN

Let & be a finite group, S a commutative ring with one
and S[®] the group ring of & over S, If  is a group with
& = $ then clearly S[®] = S[H] where the latter is an S-iso-
morphism, We study here the converse question: For which
groups & and rings S does S[®] = S[$] imply that & is iso-
morphic to H?

We consider first the case where S = K is a field. It is
known that if ® is abelian then Q[®] = Q[9] implies that & =
where Q is the field of rational numbers. We show here that
this result does not extend to all groups &. In fact by a
simple counting argument we exhibit a large set of noniso-
morphic p-groups with isomorphic group algebras ecver all
noncharacteristic p fields. Thus for groups in general the only
fields if interest are those whose characteristic divides the
order of the group.

We now let S = R be the ring of integers in some finite
algebraic extension of the rationals. We show here that the
group ring R[®] determines the set of normal subgroups of
& along with many of the natural operations defined on this
set., For example, under the assumption that ® is nilpotent,
we show that given normal subgroups 9t and %, the group
ring determines the commutator subgroup (O, N). Finally we
consider several special cases, In particular we show that
if @ is nilpotent of class 2 then R[®] = R[H] implies & = 9.

1. Remarks on group algebras. Recently examples have been
given of pairs of groups {®, 9} for which K[®] is K-isomorphic to
K[9] for all flelds K whose characteristic does not divide the order
of the groups. We show here by a simple counting argument that
this is not particularly surprising. This approach was suggested by
Professor R. Brauer.

We prove

THEOREM A. Suppose Q[®] = Q[D] where Q 1is the field of
rational numbers. Then for all fields K whose characteristic does
not divide | S| = | D/, the order of the groups, we have K[®] ~ K[9D].

THEOREM B. There exists a set of p*™ nonisomorphic groups of
order p" where B(n) = 2/27 (n® — 17 n*) which have isomorphic group
algebras over all moncharacteristic p fields.
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Let y be the character of an absolutely irreducible representation
of group algebra K[®] in some extension field of K. We set K())
equal to the field obtained by adjoining to K all x(g) for g ®. If ¢
is a primitive |® [th root of unity then of course K()) & K(). If
K = @ then Z()) denotes the ring extension of the rational integers
Z by the x(g). Clearly

Z(y) < int Q(¥)

where the latter is the ring of algebraic integers in Q()). We need
a partial converse.

LeMMA 1. Z(x) 2 | ® " int Q(x) where |S | is a suitably high
power of the order of ®.

Proof. Q(x) < Q(¢) and the latter is a normal abelian extension
of Q. Hence Q(y) is also normal over Q. Let 57 be the Galois
group of order kA = dim Q()¥). Then the & characters ¥° with oe 57
are all distinet. Let us assume that the characters of & are so
numbered that these constitute the first 4. Let g;€ @ be a represent-
ative of the 4th class of ® and let n;, = | ®: €(g;) | be the number of
conjugates of g;,. Set X = [x.(g;)] and N=[mn;0;;]. These are k X k
matrices where k£ is the number of classes of &. They have row
index ¢, column index j and J,; is the Kronecker delta. Then by the
orthogonality relations for the characters we have XNX*=|@|T
where * denotes the conjugate transpose and I is the %k x k identity
matrix.

Let p be a prime not dividing |®| and let (p) denote the
principal ideal pZ(e) in Z(¢). By the above matrix equation we see
that det X # 0 mod (p). We expand this determinant by the Laplace
expansion with respect to the first 2 rows so that

det X = 3% det M, det N, # 0 mod (p),

where M, is an h X h minor in the first & rows and N, is its com-
plementary minor. Thus for some A, det M, # 0(p). We can of
course assume this is the principal minor.

Set m, = det [x:(9,)] %,5=1,2,-++,h. Then m, is a rational
integer not divisible by p since it is integral and invariant under 5#.
In particular m, = 0 so that %(g,), ---, X(g:) are linearly independent
over Q. Hence they span Q(X) over Q. Let ac int Q(¥). Then

a = Z;q;X9;) ;€Q.

We apply each element of 5#° in turn to this equation and obtain
~ upon multiplying the system of equations by [X:(¢;)] the matrix equation
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q, ,
[xg)| % | = [Xu(gal |
q.h ah

where «; = o,(a). Hence ¢, = B;/m, where 3, is an algebraic and
hence rational integer. Thus

Z(Y) 2 m,int Q(Y) .

Let J be the ideal in Z spanned by the m, for all primes » prime
to | G|. Since (p, m,) =1 we see that |G| belongs to J for some
suitable integer r. But clearly for any element m € J we have Z(}) 2
m int Q()) so the result follows.

We now consider some well known results on group algebras.
Let K be a perfect field with K[®] semi-simple. Then K[®] is a
direct sum of simple rings A; and each A; is a full matrix ring over
a division algebra D;. Let A = [D], be such a component and let
% be any absolutely irreducible representation of A over some
extension field. Suppose &% has degree f and character ¥. Then the
center of D is isomorphic to K(x) (see for example [8] whose proof
generalizes to the case of perfect fields.)

If K is a finite field then since all finite division rings are com-
mutative we see that D = K(¥). Moreover f=n and A has exactly
dim K(y) distinct absolutely irreducible representations. Thus in this
case K[®] is determined by the set of ordered pairs {f;, F;} where
fi=degy, and F; = K(y) for all absolutely irreducible characters
%:» This follows since the number of direct summands of K[®]
isomorphic to [F], is equal to the number of pairs {f;, F;} with F;, =
F, f; = n all divided by dim ¢F.

Proof of Theorem A. Clearly it suffices to assume that K is a
prime field. Since K = Q is given we assume that K = GF'(p) with
p prime to |®|=|9|. Since Q is perfect we see that Q[S] de-
termines the ordered pairs {f;, Q(¥:;)} where f; = deg),. Let € be a
primitive | ® |th root of unity over Q. Then Q(X) & Q(¢). Moreover
since Q(Y) is normal over @ as we mentioned above this inclusion is
essentially unique.

Now %: & — Z(¢). Let p be a prime divisor of p in Z(¢). Then
as is well known (see for example [1], 6E) the maps X: & — K(¢)
defined by composing )y with the quotient map Z(¢) — Z(e)/p = K(¢)
are the absolutely irreducible characters of K[®].

Thus K(¥) = Z(x)/p» and degX = deg). Now Q) & Q(¢) and
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Z(E)NQ(x) = int Q(x) the latter being determined by Q[®]. Since p
is prime to |&| we see by Lemma 1 that Z(¥)p/b = int Q(¥) b/p and
the latter is determined by Q[®]. Thus Q[®] yields the pairs {f;, F}}
and hence by our previous remarks K[®] is determined up to isomor-
phism,

Proof of Theorem B. Let & be a p-group and let A = [D], be
a direct summand of Q[®]. Let &% Dbe an absolutely irreducible
representation of A of degree f and character ¥. If p > 2 then ([9]
Satz 1 and pg. 249) D = Q) and f=m. If p =2 then either D =
Q) and f= m or Q) is a real field, D is the quaternion division
algebra over Q(¥) and f = 2m.

We note by Theorem A that it suffices to show that such a set of
groups exists with isomorphic group algebras over Q.

Let us assume that & has period p*. Then if ¥ is any nonprincipal
character of G we have

Qe) S Q(Y) & Qe

where ¢, is a primitive pth root of unity and e, is a primitive p’th
root. The second inclusion is clear. The first follows by considering
the restriction of ¥ to an element of order p in the center of the
representation. Now there are no intermediate fields so either

Q) = Q) dim=p—1
or QY = Q) dim=pp—-1).

For p-groups in general f= p'.

Suppose p > 2. Let Q[®] have a; direct summands isomorphic to
[Q(¢)]»: and b; direct summands isomorphic to [Q(s))],i. Then by
computing dimensions we have assuming that the order of ® is p”

p" =dim Q[®] =1 + =, (p — 1) (a; + pb;) p™ .

Moreover the values of a; and b, completely determine the group
algebra.
We have clearly

0= 4= @ — D — Dp*) < p — 1
0=<b =@ — DA — D < p — 1.

Hence the number of possible group algebras is less than or equal to
n—2% pyn—20—1 & J — n(n-+1)/2
Ip™*p [p’=»p .

Now let p = 2. The direct summands of Q[®] are then [Q].: with



ISOMORPHIC GROUPS AND GROUP RINGS 565

multiplicity a;, [Q(V — 1)]; with multiplicity b, and [D],; with multi-
plicity ¢; where D is the usual quaternion division ring over the
rationals. Thus taking dimensions as before we have

2" = a2 + SbgET 4 e 2%,
Since a, > 0 this yields

1§a0§2n Oéaiézn—%_l ?,>0
0§b,-§2"—“—1 —1 Oéciézn—%—z_l.

Hence there are at most

{I;[ 27»—211}{1;[ 2%—2«5——1}{];[ 2n~zi—-2} é 23n2/4

possible group algebras. Since 3n°/4 = n(n + 1)/2 we see that for all
primes p there are at most p*™ group algebras over @ for groups of
order p™ and period p* where e(n) = 3n’/4.

Finally ([5] Theorem 2.3) there are at least p”™ groups of order
p™ and period p* where f(n) = 2(n® — 61*)/27. Thus there is a set of
at least

f(n)—e(n) 2(n3—17n2) 27
v = pimil

nonisomorphic groups of order p” with isomorphic group algebras over
Q and hence over all noncharacteristic p fields. This completes the
proof.

Of course the above result is trivial for n < 18. However for
small n we can compute specific examples.

For p > 2, the two non-abelian groups of order p* have p*—1
nonprincipal linear characters and p — 1 characters of degree p. More-
over in all of these cases Q()) = Q(¢). Hence their group algebras
are isomorphic over all K with p prime to the characteristic of K.

For p = 2, the group algebras over @ for all groups of order less
than or equal to 8 are not isomorphic. On the other hand, as can be
easily checked, the following groups of order 16 ([2] pg. 146) have
isomorphic @ group algebras.

1. at=1, £=1 a'Ba=p"
and

2. at=1, BA=1, *=1, f'af=ay, ava="v, BWE =n1.

As a consequence of the above theorems we see that the only
pertinent fields to study are the prime fields GF(p) with p dividing
| & |. An example of the techniques used there can be found in [7]
where the following result is proved: Let & be a p-group of order



566 D. S. PASSMAN

< p'. Then ® = 9 if and only if F[®] = F[9] where F' is the field
GF(p).

In the remainder of this paper we discuss group rings R[®] where
R is the ring of integers in some algebraic number field.

2. Class sums and normal subgroups. Let F be a finite
algebraic extension of @ and let B be a subring of the ring of
algebraic integers in F. We assume 1€ B. Whenever we write R[®]
we assume that its structure as an R-module as well as a ring is
known. In particular R[®] = R[©] means that the two group rings
are R-isomorphiec.

Elements of particular interest in R[®] are the class sums. These
are the sum of all the group elements in any given class of ®&. We
will generally denote these by K,, corresponding to the class contain-
ing € ®, or by K;, corresponding to the 4th conjugacy class of &.
It is well known that these K, form an R-basis for 2 the center of
R[®]. We need the following result of G. Glauberman which states
that these are essentially characteristic elements of the group ring.

THEOREM C. The class sums in R[] can be obtained canonically
from the group ring up to factors of roots of unity in R. Moreover
a consistent set of such class sums can be chosen.

Proof. Define an inner product on 2 by
(@, B = 3 2%(@) T:®)

where the ¥; are the characters of all irreducible representatious of
C[®] = CQ: R[G] and C is the field of complex numbers. This is
clearly definable in the ring.

Write ¢ = 3}, ¢, K; and b = >);b,K; where the K, are the class
sums and let %; be the number of conjugate elements in the 4th class.
Then

(a, b), = ”Zk a;b, X(K;) 1:(Ko) .
But by the orthognality relations for the group characters we have
20 XK X(Ky) = 1305, | S | s0 (a,b), = | S| X35 a;b6,m;.

Embed F' in a normal extension of @ with Galois group 5. Set

(a,0) =1/|&| 3 (a,b)7 = 3 aZbin; .
cEXH jo

Let B=1{G8, -+, B8,} be an R-basis of 2. We define the weight of
B to be
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w(®B) = 3, (B, By) .

In particular if B, is the basis {K,, -+, K,} then

.

w®) = |2 | X m=[2] [
On the other hand if ®B is any other basis set with
B = ; bi; K;
then
w®B) = 3 [ b5 ['n; .

ijo
We can assume the subscripts so chosen that b;; # 0. Then

w®B) = > b5 Fn; = 27| 3 n; = w(By)

with strict inequality unless b,; =0 for ¢+ J and |by;| =1 for all
j, 0.

Now if an element and all its conjugates has absolute value one
then it must be a root of unity. Hence the basis sets B of minimal
weight are those of the form {¢;K;} where ¢; is a root of unity in R.
This proves the first part of the result.

Choosing a consistent set of class sums is equivalent to choosing
a principal character. Let A: R[®] — R be any R-linear homomorphism
of R[®] onto R. There is at least one such, namely the principal
character of @. Then there is a unique basis set B of minimal weight
with N(B;) e Z* the positive integers. In fact if g, is a representative
of the 7th class then

MeK) = eMgs) n e Z7,

if and only if &, = X\(g;) since A(g;) is a root of unity. Moreover these
classes form a consistent system since the R-automorphism of R[®]
defined by g — NMg)g maps K, —¢,K;. This completes the proof.

We assume for the remainder of this paper that a fixed consistent
system of class sums has been chosen.

We will see below that R[®] determines the set _4~ of normal
subgroups of @. On this set we of course have certain operations
defined, for example the lattice operations and the function | | which
associates to each normal subgroup M its order |9t|. In this and the
following section we will discuss these operations. In the case of
nilpotent groups we will be able to give the complete result.

To each normal subgroup N of & we have associated the set of
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class sums of elements in RN. If we add these class sums in R[S] we
obtain

N = S ge R[G] .
IEN

Clearly (ift)” =|N| RN. Conversely let 4e R[®] be a sum with positive
integer coefficients of class sums such that A* = nA for some integer
n. Let {K,} be the set of class sums which add to A. If say
K, K, = > a,K; and a; # 0 then clearly K; occurs in A’ and so K; ¢
{K,}. Now if we assume that all the coefficients are equal to one we
see that there is a normal subgroup Mt of & with 4 = M since the
set of all elements of & belonging to the classes corresponding to the
K, form a normal multiplicatively closed subset of &. Thus the set
" of all normal subgroups of & is determined by R[®].

Given 9t and I we see that ETE/DBR is the sum of those class sums
which occur in both § and Ft and M = 1/|NNM| Rk The order
of any normal subgroup is of course obtainable. For example NG =
| R ®. More generally given any v = Za, g € R[®] then

16 = Sa,0) 6 = Sa,) & .

Thus Za, is determined. This is of course the value of v under the
principal character of ©.

Think of R[®] as being embedded in F[®]. For any normal
subgroup N of ® define an R-linear map 6y, by

Og(v) = YR/ R |,

for every 7€ R[®]. If g,hc ® we have

Op(9) O (k) = (GR/| N ) (AR R |) = ghFY| R | = Oy(gh) .

Thus 6 is a homomorphism. In fact it is not hard to see that Oy is
the natural homomorphism R[®] — R[®&/%].

Since we can pick out the central subgroups of & we can
determine the terms of the upper central series 1 =3, &8, & ---
where 8;../8; is the center of &/3;. Moreover for any normal
subgroup N of G the group (N ,8) is the smallest normal subgroup
M = N such that N/WM is central in /M. In particular the terms of
the lower central series are determined. This is the series & = /" 2
I 2«.. where I''** = (I"*, ®). The last term of the upper central
series which we might call B, will be of importance later. & is
nilpotent if and only if & = 3.
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Finally we point out that for each M we can determine @(N) the
Frattini subgroup of . Since @(N) is characteristic in N it is normal
in . Then O(N) is the largest normal subgroup M of & contained
in N such that if MY and any set {K,} of class sums generate N then
the {K,} alone generates . Note a set of classes generates a normal

subgroup N if N is the smallest normal subgroup with N containing
the class sums K,.

This completes some of the more elementary remarks about _# .
In the next section we discuss some additional results.

3. Powers and commutators. In R[®] let 4 denote the R-linear
subspace spanned by all Lie products ab — ba with a, be R[®]. For
any prime p let 4, = 4 + pR[®]. We have the following well known
results (see [1] pg 411). For g, he® let g ~h mean that g and A
are conjugate then

1. Za,g€ 4 if and only if for all ge ® we have

>iva,=0.

h~g

2. Za,9€ 4, if and only if for all ge ®
> a,epR .

h~g

3. If v, =1, mod 4, then ¥’ = v} mod 4,.
As a consequence of (1) we have if r # 0 is an element of R and
ry€ A then ve 4.

ProprosiTION 2. With every class sum K, in R[®] and every
integer » we can find the class sum K,. corresponding to the class
of the nth powers of the elements of K.

Proof. It clearly suffices to assume n = p is a prime. For every
class K, we have
K, =n,x mod 4,
where 7, is the number of terms in K, and « is one such term. This
follows from (1). Note Kz@ = n,@ so that %, is determined by the
class sum. Hence we can find v, ¢ R[®] with K, = n,7, mod4. Choose
one such v, for each class sum. We have n,(v, —2)€4 so by our

previous remarks v, = & mod 4.
Thus by (3)

72 = «* mod 4, and 7,» = " mod 4.

Hence there is a v, with
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Y2 =, mod 4, .

But for this ¥ we have 2” = y mod 4,. Since xz”, y€ @ we see by (2)
that y is conjugate to 2°. Hence K, = K,» and so the latter is
determined.

This has many obvious consequences in terms of normal subgroups.
For example the period of every normal subgroup is determined by
R[®]. Clearly this settles most of the problems related to the class
sum of powers of elements. More interesting is the problem of com-
mutators.

We state first several commutator identities which will be of use
([4] pg 150).

4. (z,y) =z y'vy

5. (y,%) =(x, 9"

6. (»y,2) = (,2) (z,2,9)(y, ?)

7. (x, yz) (2, 2) (2, ¥) (2, ¥, 2)

8. (x,y 2 (y, 7z, ) (2,27, y) =1
where (x, y, 2) = ((z, ¥), z) and a® = 27 'ax. The last identity (8) has
the following consequence known as the “Three Subgroups Lemma.”

9. If 8, M, N are three normal subgroups of & then

(&M, M = (W, N, 2 (X, L, W) .

Here (M, N) is the normal subgroup generated by all commutators
(z, ¥) with ze¢ I and ye N and (WM, N, &) = (WM, N), Q).

We will have need for the lemma given below. It is most likely
true more generally, that is without the 3. assumption. However
this is all that is needed.

For any normal subgroup N of & let (N) denote the ideal in R[®]
given by all v with vt = 0. This is of course the kernel of Op. Let
ve(R) with v = Zr,g. Let g denote a fixed coset representative of
g%, Since Ogy(v) = 0 we see that Zr,g = 0. Hence

Y =219 — 7) =Z2r,(1 —gg g .

But gg'e M. Thus we see that (R) is spanned as an R-linear space
by terms of the form (1 — a)d with aeM and be®. Note that
(1 — a)b = b(1 — a®) so this result is actually symmetric.

LEMMA 3. Let 2, I, N be three normal subgroups of & with
LEMEN and M S B.. Then

@ NER) @) < (B (®) .

Proof. TFirst suppose we know the result to be true if M/R is
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cyclic of prime order. Since MM & 3. we can find a principal series
of ® joining & to M with cyclic quotients of prime order. Say

=8 <8 <. <8 =MWMN.
Then
() () 2 ®R)N(EL:) (W)
and so
@2 E)NE)IN - NE_)NER) () .

But €, 2 ¢ implies that (€,) 2 (8) so () (N) 2 () N M) N).

Hence we need only consider the case where /2 is cyclic of
prime order p; Let M = {8, 2> with of course z”€ 8. Let {¢;} be a
fixed set of coset representatives of /M and let {3,} be a set for
&/M. Then {xie;d,} is a set of representatives of &/L.

Let ve (@) N (M) (). Since ve (M) (N) we have

Y =204, (1 —a) (1l — b
with ae M, beN and ce ®. Now a — ex’ with e £ and
l—a=Q—c¢x)=>1A—e)x'+ 1A — 2% .
But (1 — e)x* (1 — b)ce (¥) (N). Moreover
l—-—2)=Q—2)Q+2+--Fa*
so we see that
¥ = (1 — )7 mod () (N)
with 7€ (). We can clearly assume v = (1 — 2)7.
Write 7 = SA,;;, x¢; 6, with A;;, € R[8] naturally embedded in R[B].

Let 7;;, be the sum of the coefficients of A,; that is rijkﬁ = A Q.
Now 7€ (®) so €+ = 0 and hence m@n = 5377. Since

gv - ETWC %xi 5]~ 51:

we see from the above that r;;, is in fact independent of ¢ and we
Set r,;jk = sjk’ Thus

»@77 = ESjk le €; 51»' .

Since sfév = 0 we have ‘ft@?? = 0 and so for each k we have Z;5;, = 0,
Now

7= 37w 0,6, mod (©) = (L4 & ++ oo+ &),
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where ¢ = Js;,¢;0,. But Y,;s;, =0 so we see that £¢ (). Hence
since 1 — x &(N) we have

T=Q—-am=Q—-2)Q+2+-+ 2" mod (N) (¥)
=1 —2".

But 1 — 2?€(8) so v = 0 mod (N) (¥ and the result follows.

For any x€ ® and N normal in & we set (x, N) = (N, x) equal to
the normal subgroup generated by all commutators of the form (x, ¥)
with y e 9. This is easily seen to be the same as ({z)>,, ) where
{x>, is the smallest normal subgroup containing x. If K, is the class
sum containing x then (x, ®) is the smallest normal subgroup 9 such

that « is central in R[®&/M]. Hence (o{@) is determined in R[®)].

We identify 8 = 8, the center of & with the set of those class
sums K; in R[®] with »; = 1. This is of course consistent with the
natural embedding of & in R[®].

ProposiTION 4. Let K, and K, be two class sums in R[®].
Suppose that (x,®,y) = (y, S, x) = 1. Moreover we assume that
(x, &Ny, < 8.. Then we can find (x,y)e 8 in R[G].

Proof. By (9) we see that (y,x, &) = 1 so that (x, y) is central.
Now if x¢ is conjugate to « and y* to y then with £ = hg™ and u =
(k, y™") we have

@ y") = (x, ¥’ = (x, uy)° .

Now (x, uy) = (x,y) (x,u) (x,w,y) and since ue(y,d) we have
(¢, wy) = (x,y). But this is central so we have finally (2%, ") =
(x, uy)* = (z, y)* = (, Y).

. Let = (x, & N(y, ®). As we mentioned above this is determined
by R[®] and K, and K,. Clearly (x,y)e%N38. Under the map
Oy: R[®]— R[G/N], K, maps onto a central element of the group ring.
Since all the group elements in the image are conjugate, K, must
map onto some multiple say m, of a class sum. Similarly for K,.
Hence if =, -+, z, and y,, - - -, ¥, are conjugates of x and y respectively
which are a full set of coset representatives for each of the classes
modulo N we have

KR =m, (@ ++2)N
KR=m, @y, +--+y)N

Note that 5&, m, and m, are determined in R[®]. Now choose
Y., 7, € R[®] and ze NN J with
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10. m, v, N = KM my’fyﬁ?:Kyiﬁ

11, v, v, =277, .

This system does have a solution. For example set z = (x, ),
Yo = (%, +----+x,) and v, = (y, +---+ y,). We show now that for
any solution we must have z = (¢, y). This will show that (x,y) is
determined in R[®].

Write

Vo= +ot+2, +A V=Y +---+y. + B

with A, Be R[®]. Then by (10) and the above we see that A% =
B% = 0.
By (11) we have
0="7.7—2%%=2{ry — 2yx}

+ Z {Ay; — 2y, A} + Z {x;B — 2Bw;}
+ {AB — zBA} .
We study each of theze four terms.
Clearly {AB —zBA} < () (N). Write A =23 A\ where the 4, € R[N]
and the A are coset representatives of ®&/N. Since NA=0 we see

that §EAA = 0. Now y,; and z commute with (x, ®) and hence with
N. Thus

Zi {Ay;, — 2y, A} = % {A\y; — 2y, AN}
= ; A S Dy — 2y

Now (Xy;) 9N is central and ze M so we have N >y - 2y} = 0.
Thus

Zi: {Ay; — zy; A} e (DO N) .

Similarly for the term > {x;B — zBx,}. Thus

12. 0= {zy; —zyw} + C
where Ce (%) (N).

Now y,x; = xy;(y;, ©;) = vy;(y, ®). Let w = 2(y, «) and let I be
the cyclic central subgroup generated by w. Since zeNN3G, (¥, x)e
NNB we have of course JF & NNAZ. Thus (12) becomes

B, A—w) Xzy; +C=0

and since (1 — w) é‘ = 0 we have Cfs = 0.

Hence Ce ()N M) (N) and since N = 8., we have by Lemma 3,
Ce () (M). Now () is clearly the principal ideal generated by (1 — w)
so C =1 — w)D with De (N). Set
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F = Z miyj -+ D .
ij

By (13) and the above (1 — w)E =0. Hence E = wE = w'E = ---.

Thus %E: S| E. Write %t = (2’14)% where the v, are coset re-
presentatives of M/JF. Then

NE = (3v) JE = | | (Sv)E .
On the other hand since "D = 0 we have
NE = > xiyﬁf% .
<

Hence

4, [ IE=SaeyR.

Let o be the coefﬁcient of x4, in Jv,E. Then the coefficient of
2y, on the left hand side of (14) is |J|0. Now if z,y; = z,y;, mod N
then x'x; = yy,'. But a7x,€ (2, ®), yyi'e(y,®) and N = (x,B)N
(y, ®) so both terms are in . By our choice of the sets {x,} and {y,}
this implies that + = 1, 7 = 1. Hence the coefficient of x5, on the
right hand side of (14) is 1. Thus p|J¥| =1. Then 1/|F|ecRNQ =
Z and so || = 1. This means that w = 1 and therefore z = (x, ¥).

By our previous remarks this completes the proof.

For convenience we introduce the following notation. We say
class sum K, “belongs to” subgroup 9 or “K,€ $” if all the elements
of the conjugacy class associated with K, belong to ©. In particular
if © is normal in ® then K, € © if and only if z€ . With this we
have the following numerous set of corollaries for the previous pro-
position.

COROLLARY 5. Let K,eI" and K,eI''. Then R[®] determines
(z, ¥) modulo I+,

Proof. It clearly suffices to assume [""*'=1. Then ® is
nilpotent s0o & = 8... Now (z,®,y) = I+ =1 and (y,®, x) = 1.
Hence by the above (x, y) is determined by K,, K, and R[®].

COROLLARY 6. Let K,c 3,. Then for any class sum K, the
commutator (z,y) € 3 is determined by R[S].

Proof. Since x€ 3,, (z,®) & 83 < 8.. Thus we have (x, S, y) =
1, (¥, 2, ®) = 1 and by the three subgroups lemma (y, ®, ) = 1. Hence
by Proposition 4 the result follows.

CoroLLARY 7. Let K.€ B,.,. Let K,,---, Ky, be any n class
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sums of & not mecessarily distinct. Then (x,y,, -+, Y,) €SB s de-
termined by R|®].

Proof. By induction on n, n = 0 being trivial. Under the map
R[®] — R[®/3], =* maps to Ze€ 3,(8/3). Hence @,%, **,¥ns) =
@, Y, ***, Yo) mod 3 is determined. Since (¥, ¥, ***, ¥,-1) € 3; we
see by Corollary 6 that ((z, 9y, ***, Yust), Yo) = (@, Yy, =+, Y,) 18
determined.

COROLLARY 8. Let K, and K, belong to B.. Then R|®] deter-
mines <(x,y)>, the mormal subgroup generated by all commutators

(x?, y").

Proof. We say that class sums K, and K, “commute” if the
elements of & belonging to the class corresponding to K, commute
with all those elements corresponding to K,. Since {(x, %)), is the
smallest normal subgroup 9% such that K, and K, commute modulo I
it suffices to show that we can decide in R[®] whether two class
sums commute.

If K,€8; and K, € 3; we prove this by induction on ¢ + 5. For
1 + 7 < 2 the result is trivial. If K, and K, commute then every x?
commutes with y"y™. Hence K, commutes with every class sum in
(y, ®). Since (y,®) & B, ; we can check to see whether this occurs
by induction. The result is determined provided (y, ®, ) # 1. So we
assume (y, ®, ) = 1. Similarly we can assume (2, ®,y) = 1. Since
(z, ®) & 3. the result follows from Proposition 4.

This in turn yields the result that if 9N and M are normal
subgroups of & contained in 3. then (9, M) is determined. We now
group together our results on operations on the set of normal subgroups
of ®. Since the results are complete for nilpotent & we state this as
a separate theorem.

THEOREM D. Suppose R[®] = R[D]. Then there is a one-to-one
correspondence between the set, _1°(®), of mormal subgroups of &
and (D) which preserves the following:

1. the upper and lower central series and in particular the
group B.

2. the lattice operations MNM and NM

3. the order and period of every mormal subgroup. In fact the
number of elements of N having any given order is determined.

4. The groups (&, N), O(N), C*N) and C,(N) where the latter
two are the subgroups of N generated by all nth powers of elements
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of N and the subgroup generated by all elements of N whose order
divides n
5. the group (M, N) if both M, N S 3...

THEOREM E. Suppose R[®] = R|D] and & is nilpotent. Then
there is a omne-to-one correspondence between (&) and _+7(D)
preserving

1. the lattice operations MNM and NM

2. the order and period of every mormal subgroup. In fact the
number of elements of N having any given order is determined.

3. the group (M, N) and in particular N'. Thus the terms of
the derived series of & are determined.

4. the groups O@(N), C*(N) and C,(N).

In the next section we study some specific examples.

4. Two special cases. In terms of its structure and its
representations the abelian groups are of course the simplest. Perhaps
the next simplest in structure are the nilpotent groups of class 2. On
the other hand in terms of its representations the next simplest are
the p-groups of type (p), that is p-groups with irreducible representa-
tions of degree 1 and p only. We study both cases here.

As a consequence of Theorem C we see that we can find the
elements of 8(®) in R[®] and hence R[®] determines the center of ®.
We show now that the structure of the second center is also determined.

THEOREM F. Let R[®] = R|D]. Then 3(®) = 3«D). In par-
ticular of © is nilpotent of class 2 then R[®] = R[D] implies & = 9.

It is interesting to point out that the groups studied in Theorem
B are all class 2. This shows the marked difference between
considering the group algebra Q[®] and the group ring R[®)].

Proof. We identify R[®] and R[D]. Let 3 be the common center
of & and . Choose class sums K,,---, K, in B; so that their
images under the natural map R[®] — R[®/3] are multiples of a basis
for the abelian group 3(®/8) = 3(9/3).

Then 3,(®) and 3,(9) are generated by x, --+,2, and 3. By
Corollary 6, the commutators (x;, ;) € 3 are uniquely determined in
R[®]. Also by Proposition 2 we can find the order a; of x, mod 3
and in fact find %€ 8. Thus clearly 3,(®) = 3.(9).

We digress for a moment to mention a few obvious additional
results.
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PROPOSITION 9. Let ® be nilpotent. Suppose R[®] = R[9]. Then
there is a one-to-one correspondence between the set of normal abelian
subgroups 7 (®) of & and . (H) such that corresponding groups
are isomorphic and inclusions are preserved.

Proof. In the correspondence given in Theorem E, we see by (3)
that the abelian normal subgroups correspond. Moreover by (2) the
number of elements of any given order in the subgroup is determined
so in fact the isomorphism class of that subgroup is also determined.

ProposITION 10. Let R[®] = R[9]. Suppose that & = &, x &,.
Then = 9, x , with R[®,] = R[D,] and R|®,] = R[9D.].

Proof. Under the correspondence of Theorem D, let 9, correspond
to ;. Then £9, =9 and $NH, =1 clearly. Finally R[] =
R[9/9,] = R[®/®,] = R[®,] so the result follows.

As a consequence of the above we see that it suffices to assume
that @ is indecomposable. In particular in studying nilpotent groups
we can really restrict our attention to p-groups.

In the characterization of groups of type (p) one possibility which
can occur is | ®/3 | = p°. We consider this case first.

ProrosiTION 11. Let &/3 be a p-group with |®/3| = 3. If
R|®] = R|9] then & = . In particular if ® is a p-group of order
< p* then R[®] = R[9] implies & = 9.

Proof. We first note that all such groups are nilpotent. Also
R[®] = R[9] implies that R[®/3] = R[$/3]. But the latter groups
are abelian or class 2 so /3 = /8. We consider the possibilities for
G =®/3.

If |®| = p* then G is abelian and ® is class 2. So the result
follows in this case by Theorem F. We assume |&| = p®. Suppose &
is generated by cyclic subgroups &, with (| s > 1.  Then each 8%
is abelian and together they generate &. Hence (N 83 is central.
But N 8%, > 3 so this is a contradiction. Hence ® cannot have this
property.

For |®| = p* we see easily that the only possibilities are:

(i) elementary abelian

(ii) dihedral (p = 2)

(iii) non-abelian of period p (p > 2).

The first case is again class 2. We consider case (ii).
Choose class sums K, and K, such that K, corresponds to an
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element of order 4 in /3 and K, to an element not in the cyeclic
group generated by a. In & and $ we have

at =z, b =z, b~lab = a7z, ,

with z,, z,, and 2z, in 8. By Proposition 2, z; and 2, are determined.
Finally K, = a + a2, so we have

Ky =00+ a2 + 22, = K2 + 22, .

Hence z, is determined and clearly ®& = .

We need only consider case (iii). Choose class sums K, and K,
which modulo 3, form a basis for ®&/8,. Then & is generated by
a, b, ¢ and 8 with

a’ =z, b* =2, ¢’ =z,
(C, a’) = z4 (C, b) - z5 (a’y b) =¢C ’

and z,, 2, 2;, 2, and z; are elements of 3.
By Proposition 2, z, and 2, are determined. Since a, be 3, we
have by Corollary 7

2= (C, CL) = (a9 by a) %5 = (C, b) = (ay b’ a) ’

are determined. This leaves only z,. However we show below that
2z, must be 1. This will clearly yield the result.
We use the commutator identity

(u, vw) = (u, w) (w, v) (w, v, w)
to conclude
(a, b = (a, b%) (a, b) (a, b, b)) = (a, b*) c(c, bY).
Since (¢, b%) is central we obtain
(a, b") = c"(c, b) (¢, b)--+(c, b" ).

But €3 so (a, b)) =1. Now ce 3, so using again the above
identity we have

(¢, uv) = (¢, v) (¢, u) (¢, u, v) = (¢, u) (¢, V)
since (¢, %) and (¢, v) are central. Hence
(¢, b) (¢, b"):-+(c, b") = (c, b")

where n =1+ 24+--++ (p — 1) = p(p — 1)/2 is divisible by p since
p > 2. Then b"e 3 and (¢, ) = 1. Therefore ¢ =1 and the result
follows.
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We will have need for the following

LEMMA 12. Let U be ¢ normal abelian subgroup of & with &/A
cyclic. Suppose xe€® generates the quotient. Then the map a—
(a, ) s a homomorphism of A onto & with kernel ZNA.

Proof. First (a, ) = a‘¢” is the product of two endomorphisms
of abelian group UA. Hence a — (a, «) is also an endomorphism of 2.
Let B < A be its image.

Clearly B ®'. Now N(B) 2 U and (e, 2)° = (¢, x) and this is
eontained in B so NB) 2<, 2> = S. Hence B is normal in S.
Since &/B = QA/B, T> and Z commutes with A/B we see that &/B is
abelian. Thus B2 G ard so B =,

If ae3NA then (a, ) = 1. Conversely if (a, ) =1 then
Cla) 2 <A, 2> =G so a is central. This completes the proof.

Suppose |G/ | =p. If x¢A then 2" and C&") 2 <, =) =
S so 2?¢ 3. We make the simplifying assumption that &/8 has
period p.

PRrOPOSITION 13. Let & be a non-abelian p-group with an abelian
subgroup of index p. Suppose algo that &/8 has period p. Then
R[®] = R[9] implies & = 9.

Proof. By Proposition 2, /3 has period p. Also by Proposition
9,  has an abelian subgroup of index p. Hence it suffices to show
that under these assumptions R[®] determines ®&. By Lemma 12,
© = A/8 so & has period p.

Choose 9l in R[®] with 2 normal and abkelian of index p» and let
K, ke a class sum not in 2. Choose normal subgroups %, 9, ---, N,

such that (i) A 2 N; > 8, (i) the N, = N,/3 direct sum to A = A/J
and (iii) the N, are indecomposable, that is we cannot find normal I
and 9N both > 1 with 9%, = M x N. Of course such a choice can be
made in R[®].

We have A =N, x Ay x -+ xN,. A can be viewed additively as a
vector space over GF(p). If Z is z mod 3 then Z acts on U as a
linear transformation of order p. Moreover Z acts on each 90, a

b,-dimensional subspace. Since N, is indecomposable, by an appropriate
choice of basis, T on N, has the Jordan form



580 D. S. PASSMAN

11 0
11
E =
1
0 1

In fact let ve N, be any element such that N, is the smallest normal
subgroup containing v, then we can assume that the first vector in
the above basis is .

Now choose K,, in ; so that N; is the smallest normal subgroup
containing K, and 3. Such a class sum clearly exists in view of the
above form for Z. Then we see that & is generated by x, g;; and 3
with 7 =1, 2, -+-, b, subject to the relations

(Giiy ®) = Gija Tor =, — 1, (gin, %) = 2
gh=w,;, g% =1 for j =2 x°=w,
and (gij; gst) =1

with the w; and 2; in 3.

Here we have set

9a=¢; and g;;=(g; 2, %, -+, %).
NI R et
j—1
That g% =1 for j = 2 follows from the fact that & has period p.

By Proposition 2, the w; are determined. Also we have clearly g;€
Bs;+1 50 by Corollary 7

2, = (g; @, @, -+, ),
Tl
b;

is determined by K,, and K,. Hence the result follows.

THEOREM G. Let & be a p-group of type (p). Suppose that
®/8 has period p. Then R[S] = R[D] tmplies & = D.

Proof. In the characterization of p-groups of type (») ([6] Theorem
2.3) the following possibilities can occur. Either & has a center 3
with | ®/8| = p® or © has a normal abelian subgroup of index p. The
first case has been handled in Proposition 11 and the second in Pro-
position 13. Thus the result follows.

COROLLARY 14. Let ® be a p-group of type (p). Suppose that
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®&/8 ts regular. Then R[] = R[D] implies & = . In particular
if & has class at most p then the result follows.

Proof. The assumption of &/8 is only used in the case where ®
has an abelian subgroup of index p. In this case clearly ®/38 is
generated by all elements not in /3. But these all have period p.
Hence by ([4] Theorem 12.4.3) &/3 has period p. The second result
follows from the well known sufficient condition for regularity ([4]
pg 183).

We should mention here a simple result ([3] Theorem 2.1) on group
algebras of p-groups of type (p).

PRroOPOSITION 15. Let & and $ be p-groups of type (p) with p > 2.
Then for any field K whose characteristic is prime to p we have
K[®] = K[9] if any only if /& = H/9" and the centers of K[®] and
K[9] are isomorphic.

This again shows the great difference between group rings and
algebras.

We can now discuss the groups of order p°. For simplicity we
assume p = 5 so that all groups considered will be regular.

ProPOSITION 16. Let ® be a group of order p° with p =5. If
R[®] = R[$] then & = .

Proof. If |®/8]| = p® then the result follows by Proposition 11.

So we assume |®/3| = p*. As in the proof of that proposition, & =
®&/8 cannot be generated by cyclic groups &, with N, > 1. With
this we conclude from the table of groups of order »* ([2] pg. 145)
that the only possibilities are:

(i) abelian of type (p? p%

(ii) abelian of type (p, p, », D)

(iii) the group generated by a and b subject to a* = b** =1 and
(a, b) = a”

(iv) direct product of a cyclic group of order p with the non-
abelian group of order »*® and period p

(v) the group generated by a, b, ¢, d subject to a® = b® = ¢® =
=1, b= (c,d), a = (b,d) and (a, d) = (b, ¢) = (a,¢) = (a, b) = 1.

Using regularity the computation to conclude the above is quite
easy. For example consider the group & generated by a, b, ¢ subject
to

a?=b=c¢"=1, (a,b) =a’, (¢,¢)=>b and (b,c) =1.
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Its commutator subgroup is clearly generated by a” and b both of

order p. Hence by regularity & has period p. Thus for any =, ye ®
we have (xy)” = «"y*. In particular (ab)” = a” and (ac)” = a¢”. Hence
® is generated by a, ab and ac all having the same pth power.

If R[G] = R[9] then R[G/3] = R[H/3]. But |®/8| = p* so by
Proposition 11, &/8 =~ /3. Hence we can consider each of the above
cases separately.

Now cases (i) and (ii) yield groups & of class 2. Hence by
Theorem F the result follows here. We consider case (iii) and in fact
show that there is only one such group. This will of course yield the
result.

In @ we have elements a and b with @ = <{a, b, 8> and

a” =2, b =12, blab= a't’z
where z,, 2z, and 2z, are elements of 3. Then
b~'a’b = (b7'ab)” = a" " 28 = a'z, .

Since a’ is not central we see that 2z, = 1. Hence a generates a cyclic
normal subgroup of order p®. Now b” is not central so b acts as an
element of order p* on <a). Since for p odd the automorphism group
of a cyclic p-group is cyclic, by replacing b by a suitable power if
necessary, we can assume that b7'ab = a¢**. Finally if " = a*™
then (ba=9)” = 1 since ® is regular and & has period p?. Moreover
ba~7 acts in the same manner as b on {a». Hence we see that there
is only one such group.

In the last two cases ®/8 has period p. Hence by regularity &'
has period p. Case (iv) follows in a manner similar to (iii) of Pro-
position 11. ® is a direct product so we can find & and ¢ in R[®)]
with || =p, |N| =2 and INN = 1. Choose class sum K, in R[®]
which maps to a generator of & in R[®]— R[®/3] and choose class
sums K, and K, which yield generators of 9t modulo its center. Then
® is generated by 3, @, b, ¢ and d subject to

a* =2z b =2 ¢"=2 d" =2 (a,b)=c
(ar C):Z5 (b7 c)=ze (d, a):Z7 (d,b):zs (dy C):z97

with z;€ 8. By Proposition 2, 2, 2, and 2z, are determined. Since
ce® we have ¢ =1. By Corollaries 6 and 7, z;, 2,2, and 2, are
determined. Finally d€ 3, and c€®' implies that (¢, d) = 1. Hence
the result follows here.

We need only consider case (v). Let a, b, ¢, d be elements of &
corresponding to the terms with the same name in &. Then @ is
generated by these and 3 subject to



ISOMORPHIC GROUPS AND GROUP RINGS 583

a* =2 b =2, ¢"=2 d" =2, (c,d)=0»
(b’ d):a’ (a’ d):Z5 (by C):zﬁ ((Z, 0)227 ((1,, b)ZZB

with 2, € 8.

Now be @ implies that b commutes with 3,, Hence b centralizes
<b,a, 8=, and so (¢, ®, b) =1. Since (b, ¢) and (a, ¢) are central
we see that (b, ¢, ) = 1. Therefore by the three subgroups lemma
(®, b, ¢) = 1. Hence ¢ centralizes 3,.

Now choose class sums K, and K; in R[®] which generate &/3,
such that ¢ centralizes 3,. We can of course do this by Corollary 8
and the above. Set b =(c,d) and a = (b,d). Again (¢,®, b) =1
since we know that ®' is abelian. By assumption (®, b, ¢) = 1 since
(®,0) = 8;. So by the three subgroups lemma (b, ¢, ) =1 and so
(b, ¢) is central. With this it is easy to see that & is generated by
a, b, ¢, d and 8 with the above relations.

By Proposition 2, 2z, and 2, are determined by K, and K;. Also
a,be® so a®> =b* =1. Now ¢, de 3, so by Corollary 7

% = (ay d) = (C, d! d’ d)

is determined. Of course (a,c¢) = 1. Also be® and aec B, implies
that (a, b) = 1. This leaves only (b, ¢) = 2, to be determined.

Now by Corollary 5, b is determined modulo 7™ & 8,. So we can
find a K; where b = ub with ue 8,. Since ¢ centralizes 8, we have

(¢, b) = (¢, ub) = (¢, b) (¢, w) (¢, u, b) = (¢, b) .

Hence it suffices to find (¢, b). But again (¢, ®, b) =1 and (b, ®, ¢) =
1 so by Proposition 4, (¢, b) is determined in R[®]. This completes
the proof.
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