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LIE AND JORDAN STRUCTURES IN
BANACH ALGEBRAS

PauL CIVIN AND BERTRAM YO0OD

We first consider the theory of Jordan homomorphisms
and Jordan ideals in Banach algebras, If B is a B*-algebra
or a semi-simple annihilator algebra, any closed Jordan ideal
in B is a two-sided ideal. Any Jordan homomorphism of a
Banach algebra onto B is automatically continuous. That Jor-
dan homomorphisms are continuous and Jordan ideals are ideals
is shown to hold in a number of other situations, We also
study the Lie ideals in a semi-simple Banach algebra A. If
the center of A is zero and proper closed Lie ideals do not
contain their Lie annihilators, then A is direct topological sum
of its minimal closed ideals. An H*-algebra with zero center
is an example of such an algebra.

The utility of the study of Jordan isomorphisms in Banach algebra
was noted by Kadison [8] in the study of isometrics of B*-algebras.
The Jordan and Lie structures of simple associative rings has been
investigated by Herstein in a series of paper (see [3], [4], [6]). Essential
use is made of these results in the present work.

2. Pure algebra. Let R be an associative ring. As is well-known
[3] we can make R into a Jordan (Lie) ring by introducing the Jordan
(Lie) multiplication z-y = zy + yx([z, y] = *y — yx). For a subset S
of R we consider the sets

S’ ={reR|x-uw=0 for all ue S},

St={xeR|[x,u] =0 for all u e S},
RS)={re R|uxr =0 for all w e S} and
gS)={xreR|2zu=0 for all we S}.

By an tdeal in R we mean, unless otherwise specified, a two-sided
ideal.

2.1. LeMMA. Let U be a Lie ideal in R. Then U’ and U* are
Lie ideals. '

Let x € U/, we U and b € E. Since xu = — uw, an easy computa-
tion shows that [z, b]-u = [b, u]-2 = 0. Let y € U*. Since yu = uy,
we obtain by straightforward calculation that [[y, 0], w]|=[y, [, ©#]] = 0.
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2.2. LEMMA. Let I be an ideal in R. Then
|15, RlcI) NRI)c I*-.

Let yel,xceI* and ze€ B. We get successively the relations
(x2)y = x2(2y) = (2y)x = 2(yx) = 2(xy) = (2x)y or [I*, R] < &(I). Likewise
[I*, Rl C R(I).

For the remainder of this section, A shall denote a semi-prime
alegbra over a field of characteristic # 2. (A semi-prime algebra is
one without nilpotent right or left ideals #(0)). It follows from the
hypothesis that A is semi-prime, that 2(I) = R(I) for any ideal Iin A
[10] p. 99].

2.3. LEMMA. Let U be a Lie ideal in A. Then U’ ={(U) =
RU) is an tdeal tn A and UN U’ = (0).

Takexe U N U’. Clearly x* = 0. Also, by Lemma 2.1, [z, b]e U N U’
for each b€ A. Then

0 =[x, b = xbxb — xb’x + babx .

Multiplying on the left by = and on the right by b, we obtain (xb)* =
0. Thus A is a nilpotent right ideal so that x4 = (0) and hence x =
0. Therefore UN U’ = 0.

Next let w € U and € U’. The above shows that [u, ] = 0 and
u+x =0. Thus ux = 2u = 0. Hence

@) U’c&U)NRWU) .
Next we show that
(2) LU) =RWU) .

For take 2z e &(U), we U and be A. We have 0 = z[b, u] = xbu.
Hence (uab)* = 0. It follows that ux =0 or ¥(U)C R(U). Likewise
RU)c¥U). A combination of (1) and (2) gives the desired result.
The corresponding proposition for Jordan ideals in harder to prove
(see Theorem 2.5).

Let U be a Jordan ideal in A. Let K denote the algebraic sum
of the ideals in A contained in U. Clearly K is maximal in the set
of ideals in A contained in U.

2.4. LEMMA. The ideal K contains a-b and aAa for each a, b
of the Jordan ideal U in A. If U = (0) then K + (0).

By a lemma of Herstein [3, Lemma 1], (a-b)x — x(a-b) € U for
each ©x ¢ A. Since (a-b)-x € U we see that (a-b)x and xz(a-b) liein U.
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If also y € A then (a-b)ay + y(a-b)x € U. From this we see that the
ideal generated by a-b is contained in U. Therefore a-bec K. Also
(a-x)-a € K. Using a*€ K we obtain aza € K. If K= (0), then
(@A) = (0) and a =0 for all a € U.

2.5. THEOREM. Let U be a Jordan ideal in A. Then U’ =
U) = RU) is an ideal in A and U N U’ = (0).

Let ueU,xe A and z€ &U). We have 0 =z(u-x) = (z)u.
Therefore &(U) is an ideal in A. Since [u&(U)]* = (0) we can conclude
that u(U) =(0) or ¥U)CR(U). Likewise R(U)cC U). Thus
YU)c U’

Suppose that either a or b lies in U. Then

(@-b):b =a-(b*) + 2bab e U .

In either case it follows that babe U. Next let we U, x € A. Then
(w-z)-(2u) = ur’n + xu’x + 2(xu)’ € U. By the preceeding remark we
see that (zu)* € U. Likewise (ux)’ € U. Consider now an ideal I in
Asuchthat IN U =(0). If ze I then (uz)®>e IN U = (0). Therefore
ul = (0). We then have (0) = UI = IU.

Let K be the ideal in A maximal in the set of ideals in A con-
tained in U (see Lemma 2.4). In particular a*e¢ K for a € U. Now
¥(K) is an ideal in A. We show that ¥(K)N U = (0). For let
be Y K)NU,xe U. Then (bx)’ec UNKK). This makes (bx)* an
element of KN &(K) = (0). Therefore (bA)* = (0) and b = 0.

It follows from the above that U(K) = ¥(K)U = (0). Consequent-
ly & K)c (U). But, inasmuch as K U, we have also that ¥(K)=
gU). From Lemma 2.3 we get K" = ¥(K)=&U)c U’. But as
Kc U we see that K’ = U’. Whereas U N %K) = (0), we obtain
unu’ = (0).

2.6. LeMMA. If A satisfies the descending chain condition on
right ideals, every Jordan ideal in A is an tdeal.

By the proof of Theorem 2.5, bab lies in the Jordan ideal U if a
or b lies in U. It follows from [9, Lemma 5] that U is an ideal.

As we shall see below, Jordan ideals are automatically ideals under
favorable conditions. If an algebra B (even a Banach algebra) is not
semi-simple, this situation does not prevail and even Lemma 2.6 can
fail there, as easy examples show.

For S, T subsets of 4, by S-T we mean the collection of all finite
sums of elements z-y,xec S,y e T.

2.7. LEMMA. Let I be an ideal ©n A. Then I-A is an ideal.
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Also A-A contains A°.

The relation a-(b-¢) — (a+b)-c = [[a-c], b] is readily verified. Sup-
pose at least one of a,b and ¢ is in I. Then [[a, c],b] € I-A. Since
I is an ideal, [a,c]-be I-A. Hence [a,c]be I-A and b[a,c] € I- A.

Suppose that be I. Then (ac)-b — ale, b] = (a-b)c € I-A. Thus
(a-b)c € I-A and [b,a]c € I-A. Taking the sum and difference of these
items, we see that abc and bace I-A for all a,cc A. Therefore
(a-b)c and likewise c¢(a-b) € I-A and I-A is an ideal. The proof shows
that A.-4 D A3,

2.8. LEMMA. A maximal ideal M in A s a maximal Jordan
rdeal.

Let m be the natural homomorphism of A onto A/M. If A/M is
not a zero algebra, then, by [3, Theorem 1], A/M has only itself and
(0) as Jordan ideals. Therefore M is a maximal Jordan ideal. Suppose
that A/M is a zero algebra. Since its only ideals are trivial, A/M is
one-dimensional. This makes M a maximal linear subspace in A and
hence a maximal Jordan ideal.

2.9. THEOREM. If A-A = A, then every maximal Jordan ideal
Min A is an ideal.

Let K be the largest ideal in A contained in M. If K is a maxi-
mal ideal in A, then K= M by Lemma 2.8. We show that K is
always a maximal ideal. For suppose otherswise. There exists an ideal
ITin AJ A= I, KcI, K+1. If I>M we are through and IC M is
impossible. Therefore A =1+ M. Then A-M=1-M -+ M-M. Lemma
2.4 gives M-Mc KC I so that A-Mc 1. Also A-A=A-I+ A-McCI.
By hypothesis, this is impossible. In particular, by Lemma 2.7, the
conclusion holds if A°= A4

2.10. THEOREM. Suppose that A-A = A and each tdeal tn A 1s
the imtersection of the maximal ideals contaiming tt. Then every
Jordan tdeal in A is an ideal.

These conditions are satisfied, for example, if A is biregular in the
sense of Arens and Kaplansky [1]. Let U be a Jordan ideal and let K
be the largest ideal in A contained in U. If K is a maximal ideal,
K=U by Lemma 2.8. Suppose that K is not a maximal ideal and
let M be any maximal ideal containing K. We show that Uc M. For
suppose otherwise. Clearly Mz U and A = M + U. Reasoning as in
the proof of Theorem 2.9, we get A-A C M, which is impossible. Hence
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U is contained in every maximal ideal M, M o K. Therefore U = K.

3. On topological rings. Now let A be a semi-prime topological
algebra over a field of characteristic # 2.

3.1. THEOREM. Suppose that L(I) +# (0) for every closed ideal
I+ A in A. Then any closed Jordan ideal U wn A is an ideal in
A.

As in the preceding section we consider the ideal K in A maximal
in the set of ideals contained in U. Clearly Kis closed. Let W =
K@ YK). Clearly 2* =0 for each x e (W)= R(W). Therefore
W)=(0) and W is dense in A. Let ae U, we U. There exists a net a,
in W such that a,— a. For each a,, a, = b, + ¢,, Where b, € K and
¢y € ¥(K). From the proof of Theorem 2.5, ¥(K) = ¥(U). Then we
see that a,u = b,u € K for each «. Consequently au € K. Likewise
ua € K, and U is an ideal in A.

The condition ¥(I) = (0) for proper closed ideals in A gives the
natural two-sided analogue of the annihilator algebras of Bonsall and
Goldie [2].

3.2. THEOREM. Let B be a semi-stmple topological ring. Sup-
pose that

(a) the primitive ideals of B are closed,

(b) &(I) #= (0) for each closed ideal I+ A.
Then B 1s the direct topological sum of its minimal closed ideals.

Note that (a) is automatically satisfied if B is a Banach algebra.
Suppose first that (0) is a primitive ideal, i.e., B is primitive. Then
(b) and £(I)I = (0) for a closed ideal I show that all ideals in B other
than (0) must be dense. The desired conclusion is then readily seen.
We assume then that (0) is not a primitive ideal.

We call an ideal K in B dual if 8RK) = K. Our first step is to
show that each primitive ideal P is dual. There exists a modular
maximal right ideal M in B such that P = {a € B|xa € M for all x ¢ B}
and P is the largest ideal in B contained in M. Let 5 be a left
identity for B modulo M, let b € LR(P) and suppose that b ¢ P. Then
there exists an element z € B such that zb ¢ M. We can write j =
u + kzb + zbx where w € M, x € B and k is an integer. Multiplying on
the right by an element w e R(P) = {(P), we see that jw = uw ¢ M.
Since jw — w e M, we also get w e M. Therefore P R(P)c M.
This is impossible since R(P) = (0) by hypothesis and PP R(P) is a
larger ideal than P contained in M. Hence P is dual.

Next take any ideal [ in B, where I D P, I # P, for a primitive
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ideal P. We show that 2(I) = (0) so that I is dense. Since I P, we
have ¥(I) C &(P). Also (0) = L)I< P and IZ P. The theory of pri-
mitive ideals shows that (I)c P. Therefore ¥(I)c P N ¥(P) = (0).

Now let I be any dual ideal in B. We show that I is the inter-
section of the primitive ideals in B which contain I. Let = be the
natural homomorphism of B onto B/I. Since I N R(I) = (0), 7 is one-
to-one on R(I) and w(R(I)) is semi-simple. Let W denote the radical
of B/I. Then W Nzw(R()) = (0) = Wrn(R()) by [6, p. 10]. Therefore
Y WYR(I)c I from which we see that 7 (W)R() = (0). Thus
T W) Q@R(I) =TI and W = (0). Inasmuch as B/I is now seen to be
semi-simple, I is the intersection of the primitive ideals which contain
it.

Next consider a primitive ideals P, and let P be any primitive ideal,
P~ P,. By the above and our hypothesis, PZ P, and P,&Z P and
(P + P,)) = (0). Therefore &(P)Q(P,) = (0) = ¥(P,)’(P) so that {(P)C
RY(P) = P. Also RIR(P,) = R(P,) = ¥(P,) so that ¥(P,) is dual and
&P, & P,. Therefore, as ¥(P,) is the intersection of the primitive
ideals containing it, ¥(P,) = N P, for P # P,, P primitive. It is now
clear that the ideals ¥(P), P primitive, are the minimal dual ideals of B.

View &(P,) as a ring. By [6, p. 206], every primitive ideal of
L(P,) is the intersection of ¥(P,) with a primitive ideal of B. Thus
¥(P,) is a primitive ring. Let I = (0) be any closed ideal in B, IC
&P, and let J be the algebraic sum of the ideals &(P), P+ P, P
primitive. We claim that I + J is dense in B. For let x € R + J).
Then x € RE(P) = P for all P+ P,. Thus z € ¥(P,) N¥(I) = K, say.
Since IK = (0) and &(P,) is a primitive ring, we get K = (0). By (b),
I+ J is dense in B.

We continue with this notation and show next that ¥(P)2(P,) C I.
Let w e &P),u = lim (v, + q,), vs € I,q, € J and let z € ¥(P,). Now
each q, € P, so that q,&x = 0. Therefore ux = lim v,x € I. This enables
us to see that ¥P )P, + &(P))C I. Inasmuch as P, + &(F,) is dense
in B, we get ¥(P)BC 1. Likewise B¥(P,)C 1. From semi-simplicity
we see that BR(P,) # (0), (P,)B # (0). It follows that BY(P,) = (P,)B
is a minimal closed ideal in B.

For each primitive ideal P,, let Z, = B%(P,). It is clear that if
P, +# Pg, then Z,NZs= (0) = Z,Zg. Then the algebraic sum of the
Z, 1s a direct sum. Let @ be its closure, the direct topological sum
of the Z,. Note that R(Z,) = R(BL(P,)) = RYP,) = P,. Therefore
@ = B. If Iis any minimal closed ideal, I must be Z,, for some a«,
for otherwise I would annihilate every Z,.

3.3. COROLLARY. Under the conditions of Theorem 3.2. the
primitive tdeals of B are the maximal closed tdeals of B and every
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ideal im B which is mot demse is contained tn a primitive ideal.
Also B 1s the direct topological sum of its minimal dual tdeals.

Let I be closed ideal in B, I +# B. Then ¥(I) = (0) and £(I)I =
(0). If I were contained in no primitive ideal we would have £(I)
contained in every primitive ideal, which is imposible.

The proof of Theorem 3.2 shows that a primitive ideal is a maxi-
mal closed ideal. Let M be a maximal closed ideal. As just seen,
M c P for some primitive ideal P, so M = P. The proof of Theorem
3.2 also demonstrates that {(P)Q(P,) = (0) if P, P, are two distinect
primitive ideals and that B is the direct topological sum of the 2(P)
which are the minimal dual ideals.

4, Continuity of Jordan homomorphisms. -We consider a
Jordan homomorphism 7' defined on a Banach algebra A with range a
dense subset of a semi-simple Banach algebra B. We seek to show
that, under reasonable conditions, such a mapping T is automatically
continuous. For an element « in A or B we let o(x) denote its spe-
ctral radius [10, p. 30].

Two useful identities are noted by Kadison [8, p. 330] for the
behavior of Jordan homomorphisms relative to Lie products. These
are

T(l«, b], ¢]) = [[Ta, Tb], Te]
and
T(la, b)) = [Ta, TO)
for all a,b,ce A. Hence, as noted in [8], ab = ba makes [Ta, Tbh]

a central nilpotent element of B. Thus, as B is semi-simple, [Ta, Tb]
= 0. Then T(ab) = T(ab + ba)/2 = T(a)T(b) = Tb)T(a).

4.1. LEMMA. For each x <€ A, o(T(x)) = p(x).

From the above discussion we see that if aob = boa = 0 that
T(a)oT(b) = T(b)oT(a) = 0. From this the result is evident.

By the separating set for T we mean the set of s € B for which
there exists a sequence {x,} in A with ||z,||— 0 and ||s — T(x,) || — O.
By the closed graph theorem, T is continuous if only if S = (0).

Sraightforward arguments show that S is a closed Jordan ideal
in B.

4.2, LEMMA. If B has a left or right identity j, then j ¢ S.

Note that j need not lie in T'(4). Suppose that j € S where j is
a left identity for B. Then there exists a sequence {x,} in A with
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[|,||—0 and || — T(x,) || — 0. For each z € B, (2j)" = z"j. Thus
W Ca) [ = 2 (P [ g (1

From this we see that p(zj) < o(2). Clearly p(j) =1. Now j =
(5 — #z9) + 27 where the summands permute. Therefore

1= p(J) = (5 —29) + 0(z) = (5 — zj) + p(2) .
Now replace z by T(x,). We see that

o(f — T@)9) = |l — T 1F 1| —0

and that, by Lemma 4.1, o(T%,) < || 2, || — 0. This yields a contradie-
tion.

4.3. LEMMA. FEach element of S 1is a two-sided topological divisor
of zero in B.

This is a variation on a result of Rickart [10, p. 72]. Let seS.
Arguments used there show that, if 1 — \s is a two-sided topological
divisor of zero for arbitrarily large X\, then sis a two-sided topological
divisor of zero. We assume, then, that 1 — As is not a two-sided
topological divisor of zero for [N| = k. Then \s is quasi-regular, |\ | = k.
Suppose that s is not a left topological divisor of zero in B. Then
[10, p. 24], B has a left identity j and s is a regular elemement of
the algebra jBj; there exists u € jBj such that us = su = 5. Then
(u-8)/2 = 7 € S which is contrary to Lemma 4.2. Consequently s is a
left (and similarly right) topological divisor of zero.

4.4. LEMMA. Let e # 0 be any idempotent in T(A). Then e ¢ S.

Suppose that ¢ = T(x),e € S. There exists a sequence {z,} in A
with ||%,||—0 and ||e — T(x,) || — 0. Then also ||e — eT(z,)e|| — 0.
From the theory of Jordan homomorphisms (see, for examples [8,
p. 329), T(xx,x) = eT(x,)e. Now e — eT(x,)e and eT(x,)e permute so
that, by Lemma 4.1,

1= p(e) = ple — eT(w,)e) + p(eT(x,)e)
< |le — eT(@e || + o(T(x2,2))
< lle — eT(@e || + || az,e ]| —0.

Therefore ¢ ¢ S.
If it is not required that the idempotent ¢ be in 7T'(4A) the follow-
ing weaker conclusion holds.

4.5, LEMMA. No central idempotent ¢ + 0 of B lies in S.
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We use the notation of the proof of Lemma 4.4. If e e S, then
1= p(e) = ple — T(x,)) + o(T(x,) = [l e — T(x,) || + [l @, [|— 0.

As an application we take B = L,(G) where G is a compact
group and the multiplication in L.,(G) is convolution (see [10, p. 330]).
Suppose T(A) is dense in L,(G). Lemma 4.5 shows that S cannot
contain a central idempotent #0. But in L,(G), every nonzero ideal
contains a central idempotent. Therefore S = (0) and T 1is con-
tinuous.

4.6, THEOREM. A Jordan homomorphism T of a Banach algebra
A onto a dense subset of a strongly semi-simple Banach algebra B
18 continuous.

Let M be a modular maximal ideal of B, and let 7 denote the
natural homomorphism of A onto B/M. The mapping 77T is a Jordan
homomorphism of A onto a dense subset of the simple algebra B/M.
The separating set S, for the mapping n7 is a Jordan ideal of B/M
which cannot contain the identity of B/M by Lemma 4.2. But by
Herstein’s result [3, Theorem 1], S, is an ideal of B/M. Therefore
S, =(0) and xT is continuous. Simple arguments now show that Sc M.
Hence S = (0).

4,7. THEOREM. Let T be a Jordan homomorphism of a Banach
algebra A onto a semi-simple Banach algebra B where every nonzero
right (left) 1deal im B contains a minimal right (left) ideal tn B.
Then T 1is con-tinuous.

Examples of such B are the semi-simple annihilator Banach algebras
of Bonsall and Goldie ([10, p. 96] and [2]).

Fix a,be S. By Lemma 2.4, the ideal generated by a-b lies in
S. If the right ideal {(a-b)x | @ € A} = (0), it contains an idempotent
e # 0 contrary to Lemma 4.4. Consequently (a-b0)B = (0) and a-b =0
for all ¢,be S. For a € S,x € B we have (a-x)-a = 0. Using a*=0
we see that (aB)’ = (0). Hence a lies in the radical of B so that
S = (0).

4.8, THEOREM. Let T be a Jordan homomorphism of a Banach
algebra A onto a demse subset of a primitive Banach algebra B with
minimal one-sided ideals. Suppose that T(A) N I is dense I for some
minrmal right (left) ideal I. Then T is continuous.

For the case of an algebra homomorphism see {12, p. 378]. Sup-
pose that I is a right ideal. Let I, = T7%I). If T(x* = 0 for all
@ € I, then u* = 0 for each u in a dense subset of I. This would
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make I’ = (0) which is impossible. We can express / = jB where j* = j.
Set R={ye BljyecInT(A)}. Clearly R is a linear manifold where
JR is dense in jB. Thus jRj is dense in jBj. By the Gelfand-Mazur
theorem, jRj = jBj. Select x € I, where T(x) = jw # 0 and T(x?) =
Jwjw # 0. We have jwj # 0. Since jBj is a division ring there
exists ze€ R where jwjzj = jzjwj = j. Consequently (jw)-(jz) = 0.
There exists x, € I, such that T(z,) = j2. Simple computations give
T((x-2)/2) = (jw)-(j?)/2 = h, say, and T[(x-x,)*/4] = h. Hence h is an
idempotent, #= 0, in T(A) N I. By Lemma 4.4, h ¢ S where S is the
separating set for T. Consequently IZ S.

Denote the socle of B by 2 and let a,b € S. By the arguments of
Theorem 4.7, the two-sided ideal @ generated by a-b lies in S. As B
is primitive, ¥ C Q@ < S unless a-b = 0. Thus, if a¢-b # (0), » ¢ S which
is impossible. Consequently we can reason as in Theorem 4.7 to see
that S = (0).

5. Jordan ideals and homomorphisms in B*-algebras. Through-
out this section U will denote a closed Jordan ideal in a B*-algebra A.
For an element x € A which is quasi-regular [10, p. 16] we denote its
quagi-inverse by «’. Since z-2' = (x + «')/2, we see that a’ ¢ U if
x e U.

5.1. LEMMA. If h is self-adjoint and h*e U, then h e U.

For all &« > 0, (—ah?) exists and lies in U. Thus h-(—ah?) e U.
An argument of Rickart [10, Theorem 4.9.2] shows that for any x e 4,

(5.1) v = lim o(—ar*x) = lim (—azz*) 2 .
Applying this to our case, we obtain 2k = lim h-(—ah?) e U.
5.2. LeEmMMA. U* = U.

Let a ¢ U. By Lemma 2.4, the ideal generated by a* lies in U.
In particular, [ —a(a?)(e?)*] € U for all @ > 0. By the proof of Theorem
2.5, (@)*[—aa*(@®)*] (¢*)* € U. Formula (5.1) implies that (a")* e U.
Since at € U it follows that [a® + (@®)*]* = a* + a*-(a’)* + (a*)* € U, and
so, by Lemma 5.1, a® + (a*)* € U. Therefore (¢*)* € U, so that

(@ + a*) =a*+ a-a* + (a®)* e U.

Another application of Lemma 5.1 shows that ¢ + a*, and thus a*,
lies in U.

5.3. THEOREM. Any closed Jordan ideal in a B*-algebras A s
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an ideal of A.

Let U be a closed Jordan ideal of A and let a e U. Suppose a =
h + ik, where b and k are self-adjoint. Since a* € U, it follows from
Lemma 5.2 that o € U and k€ U. It thus suffices to see that if &
and w are self-adjoint and # € U, then hw and wh are in U. Now
(wh)*(wh) = hw'h € U, since he U. Also (wh)wh)* = wh'w e U,
since h € U. Consequently for a > 0,[— a(wh)*(wh)]’ € U, and so
lim,... (wh)[—a(wh)*(wh)]'(wh) € U. By formula (5.1), (wh)* e U, and
so by Lemma 5.2 (hw)*e U. Since U is a Jordan ideal, it contains
wh + hw. But also [¢(wh — hw)]? = — {(wh)* — wh*w — hw*h + (hw)*} ¢ U,
so again by Lemma 5.1 wh — hw € U, and thus wh and hw € U, so U
is an ideal.

Automatic continuity occurs for Jordan x-homomorphisms.

5.4. THEOREM. Let T be a Jordan =x-homomorphism of a B*-
algebra A onto a dense subset of a B*-algebra B. Then

(a) T s continuous and || T|| =1,

(b) the range of T is B, and

(¢) the adjoint mapping T’ is an tsometry.

Before proceeding with the proof we should remark that these are in-
stances of positive linear maps on operator algebras, which have been
extensively studied. See [15].

Let A, be the closed *x-subalgebra generated by a self-adjoint ele-
ment h € A. Then T is a x-homomorphism of the commutative B*-
algebra A, into B. Therefore || T(k)|| = o(T(h)) < o(h) = ||k ||. Con-
sequently if 2 and k are any two self-adjoint elements of A,

1Tk + ik) || < || T || + 1| T (| < LR+ [ K
S \h+ ikl +[|h— ik =2k + k]l .

Thus T is continuous.

Hence the kernel T-%0) of the mapping T is a closed Jordan ideal
in A. By Theorem 5.3, T*0) is an ideal and [10, p. 249] A/T%0)

is a B*-algebra in the quotient space norm. Let 7T, be the mapping
of A/T*0) onto B defined by T\(x + T7*0)) = T(x) and let 7 be the
natural homomorphism of A onto A/T-%0). The mapping T, restricted
to the closed x-subalgebra of A/7T-%0) generated by a normal element
is an isometry by [10, p. 241]. That T, is an isometry on normal
elements allows us to use the arguments of [8, Theorem 5] to assert
that T, is an isometry on A/7-%0). The range of T, and therefore
that of T is then all of B, and || T(x) || = || n(x) || for all x € A. Since
a natural homomorphism has norm one, || 7'||=1. Now T = T,x, so
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T =n'T;. As each of T} and «’ is an isometry by the theory of
normed linear spaces, so is 7".

5.5. THEOREM. Let A, B be B*-algebras with identities e, and
es, respectively. The Jordan x-homomorphisms of A onto B are
precisely the continuous linear mappings T of A onto B such that
(a) the adjoint T’ is isometric, (b) the kermel of T is an ideal of A,
and (¢) T(e,) = cz.

By Theorem 5.4, any Jordan x-homomorphism of A onto B has
properties (a), (b) and (e).

Suppose T has the properties (a), (b), and (¢). Let = be the na-
tural homomorphism of A onto A/T-%0). Let T, be as in the prior
theorem. Then T = Tyr, and 17" = 7'T,. Since T” is an isometry, so
is T,. As T, is a one-to-one mapping of A/T-*0) onto B, T}, is an
isometry of the conjugate space of B onto the conjugate space of
A/T7%0). Thus we conclude that T, is an isometry of A/7T-%0) onto
B. Since T e, + T7%0)) = e, a result of Kadison [8, p. 330] shows
that T, is a Jordan x-isomorphism and thus that 7' = T,x is a Jordan
x-homomorphism.,

In [8, p. 329] Kadison shows that if 7' is a Jordan #-isomorphism
of a B*-algebra A onto a B*-algebra B, then T is an isometry. The
conventions of that paper require a unit for the algebra. However, a
check of the argument involved in the proposition quoted above shows
that the identity plays no role whatsoever. The next proposition
is in the nature of a converse statement.

5.6. THEOREM. Let A be a B*-algebra, and B a Banach algebra
with an involution. Let T be a Jordan s-isomorphism of A onto B
which s an tsometry. Then B is a B*-algebra.

Let € A. Then |[(T2)" || = || Tz" || = || 2" ||, so o(Tx) = p(x) for
all x € A, where o designates the spectral radius in either algebra.

Suppose Tz = y € Rad B, the radical of B. Then y* € RadB and
consequently o(y = y*) =0=p(x = 2*). But x4+ «* and  — 2* are self-
adjoint and skew elements in a B*-algebra, so x+2*=0. Consequently
2z =0 =y, and thus B is semi-simple.

It then follows (see § 4) that the spectrum of T(x) if the same as
that of x. Consequently, if w € B and u is self-adjoint, then its spec-
trum is real and o(w) =||w|. A result of Yood [13, p. 148] now
asserts that there is a bicontinuous *—isomorphism ¢ of B onto a B*-
algebra B,. The mapping ¢T of A onto B, is a Jordan x-isomorphism.
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By the quoted result of Kadison, o7 is an isometry. Since T is an
isometry, so is o and, therefore, B is a B*-algebra.

We use the terminology Jordan involution for a conjugate linear
mapping @ — x* of period two on a semi-simple complex Banach algebra
A where (z-y)* =z*-y*, 2,y A. We write H={zxec A|x = x*}.
Clearly A = H@ +H and po(x*) = p(x), « € A.

5.7. LEMMA. Suppose that there ts a real normed linear space
norm | x| on H such that |x| = po(x), x € H. Then the Jordan in-
volution x — x* is continuous.

Let H’ be the derived set of H. Note that y*e¢ H if y ¢ H.
The arguments of [11, Lemma 3.3] show y* =0if y ¢ ¢H) N H’'. Thus
oY) = p(iy) = 0 and y = 0 for such y. It follows [11, p. 157] that H
is closed. If x € Aand x =w+1v, u, v € H the norm ||z||, = ||u]| + ||v]|
is then a complete linear space norm for A topologically equivalent to
the given norm so that the Jordan involution is continuous.

We are now able to establish the continuity of a Jordan homo-
morphism of a complex Banach algebra A onto a B*-algebra. There
need be no involution on A.

5.8. THEOREM. Let T be a Jordan homomorphism of a complex
Banach algebra A onto a B*-algebra B. Then T is continuous.

Let P, be the set of primitive ideals of B, and let @, be the
canonical homomorphism of B onto B/P,. Then 7,T is a Jordan homo-
morphism of A onto a primitive algebra. By a result of Herstein [4,
p. 340], 7T is either a homomorphism or an anti-homomorphism. Since
B/P, is a B*-algebra, in either case we see that z,T is continuous [10,
Theorem 4.1.20]. This shows that (7,7)7%0) is a closed ideal in A. But

T-10) = Nu(w,T)70) .

Therefore 7-%(0) is a closed ideal in A. It is not difficult to show
that A/7T-%0) is semi-simple.

Let 7 denote the natural homomorphism of 4 onto A/T-*0) and
let T, be the Jordan isomorphism T (7(x)) = T(x) of A/T-0) onto B.
By §4 we see that o[ T(x)] = o] Ty(7(x))] = p[m(x)] since B is semi-simple.

The natural involution x — x* on B induces a Jordan involution on
A/T~%0) by the rule [T (w)]* = Ty (w*). Suppose that T, (k) is self-
adjoint under this Jordan involution. Then T;'(h) = [T, (h)]* = T5'(h*)
so that h =h* and £ is self-adjoint in B. Thus o(7;'(h)) = p(h)=||h||
for all h self-adjoint in B and | T7'(h)| = || k|| serves as the auxiliary
norm needed for Lemma 5.7. By that result, the Jordan involution
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is continuous on A/T-%0).

To show that T is continuous it is enough to show that T, is
continuous. For the continuity of T, it suffices to show that || z(x,)|]—0
and || Ty(m(z,)) — To(m(x,)) [| — 0 imply that Ty(z(xz,)) = T(x,) = 0. We
can write 7(x,) = w(u,) + t7(v,), n = 0,1, 2, ---, where each w(u,) and
w(v,) is self-adjoint in terms of the Jordan involution of A/T-Y0).
Since that involution is continuous, || 7(u,)||— 0 and || 7(v,)]||— 0.
Each Ty(n(u,)) = T(w,), and each T(v,), is self-adjoint in the B*-algebra
B. Thus || T(w,) — T(%) || — 0 and || T(v,) — T(vy) || — 0. Also

o(T(wo)) = || T(uo) [| = [| T(wn) — T(uo) || + || T(w,) ||
= || T(w,) — Tuo) | + 0(T'(w))
= |[ T(w,) — T(uo) || + p(z(%,)) — 0 .

Therefore T'(u,) = 0 so that =(u,) = 0. Likewise m(v,) =0 and thus
w(x,) = 0.

6. Lie ideals in Banach algebras. Throughout let B be a com-
plex Banach algebra with center 3. Suppose that B is semi-simple.
If ¢ =¢ and eB(Be) is a minimal right (left) ideal of B, we call ¢ a
minimal idempotent of B. By the Gelfand-Mazur Theorem, eBe = Ke,
where K is the set of complex numbers. If B is primitive, it is known
[10, p. 61] that either 3 = (0) or B has an identity » and 3 = Ku.

Consider the Lie multiplication [x,¥] =2y —yx in B. In this
topological algebraic setting we modify standard notation [7] as follows.
Let [S, T'] be the closed linear span of the elements [s, t] where s € S,
teT and S, T are subsets of B. If 8 is a Lie ideal of B we define
DR inductively by D°2 = & and D*+'€ = [D*®, D*8]. A Lie ideal 2 is
called solvable if for some positive integer k, D*R = (0). The Lie
radical of B is defined to be the closed linear span of all the solvable
Lie ideals of B.

As in [3] we define S(®) = {x € B|[x,y] € & for all y € B}.

6.1. THEOREM. Let B be a primitive Banach algebra with socle
S # (0). Let ¢ be a minimal tdempotent and & = (0) be o Lie ideal
of B. Then

(a) e%e = Ke.

(b) If [&, 8] = (0), then & = 3.

(¢) If ec R, then £DS.

@) If &+ 3B, then L contains [z, y] for all x€ S, y € B.

(a) Suppose that eRe¢ = Ke. Then e¥e = (0). Let ¢ € L and x € B.
We have e(ax — xa)e = 0 or eaxe = exae. Replacing © by wxe, we see
that eaxe = 0. This gives (eax)* =0 for all x € B, so that ea = 0.
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Then e(ax — xa) = 0 = exa. From this we get (BeB)(BaB) = (0). As
B is primitive it follows that @« = 0. This makes 8 = (0).

(b) For any x € &, ye B we have [z, 4] =[x, y]-y € & Since
[[x, ], y] € & it follows that (xy — yx)y and y(xy — yx) € &. As
[, 8] = (0), « permutes with these elements and with xy — yx. There-
fore (xy — yx)yx = (xy — yx)axy or (xy —yx)*=0. Since e(xe — ex)’e =0,
we obtain ex’e = (exe)’, x € . Replacing & by zy — yx we see that
[e(xy — yx)e]* = 0. Since eBe = Ke, we have ¢[&, Ble = (0). But [&, B]
is a Lie ideal so that, by (a), & ©.3. But 3 is one-dimensional or (0).
whence ¥ = 8.

(¢) Given e € &, we have [, [e,x]] € & for all 2 € B. Inasmuch
as exe is a scalar multiple of e, we see that e-x e 8. As [e, 2] € &,
we get ex € & and [y, ex] € & for all , y € B. But [y, ex] = yex — exy
so that BeBC 8. By [6, p. 75] we see that £ S.

(d) By [3, p. 282], S(¥) is both a Lie ideal and a subalgebra of
B. Consequently, by [3, p. 281], either 8 C S(¥) < B (so that L= 3)
or S(¥) contains a nonzero ideal of B. In the latter case, S(¥) > S
since B is primitive. This yields (d).

6.2. THEOREM. Let B be a primitive Banach algebra with
minimal one-sided ideals. Then the Lie radical of B cotncides with

3.

It is sufficient to show that any solvable Lie ideal £ of B is con-
tained in 3. Suppose D°C = & and D@ = [D'®, D'?],p = 0,1, -+,
where k is the smallest integer such that D' = (0). We may suppose
k=1 and then [D*'¢, D*€] = (0). By Theorem 6.1, we see that
D8 3. If k=1 we are through. Otherwise [D*—8, D* Q] 8.
If 3+ (0) then 3 = Ku where u is the identity of B. But for
x,y € D8, vy — yx = au, a #+ 0 is impossible. For if this relation
persists then sp(zy) = a + sp(yx) whereas sp(xy) and sp(yx) agree up
to the single value {0} and are compact sets. Therefore [D*28, D8] =
D¥'® = (0) and D*2% < 8. This argument, repeated a finite number
of times, leads to & 3.

6.3. COROLLARY. Let B be a semi-simple Banach algebra with
socle S # (0) where S is contatned in no primitive ideal of B. Then
the Lie radical of B is contained in 3.

Let ¥ be a solvable Lie ideal of B, P be a primitive ideal and =«
be the natural homomorphism of B onto B/P. By hypothesis there
exists a minimal idempotent ¢ of B, ¢ ¢ P. Now e¢Be = Ke so that
n(e)r(B)n(e) = Kn(e) from which it follows that m(e) lies in the socle
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of B/P. Now 7(2) is a solvable Lie ideal of B/P so that, by Theorem
6.2, either 7(8) = (0) or 7(¥) = Km(u) where m(u) is an identity for
B/P. Hence, for x € &, either x ¢ P or we can write ¢ = au + y,
aec K,ye P. In either case we get [z, w] € P for all w e B. There-
fore [¥, B] is in every primitive ideal or  C 3 by semi-simplicity.

There is an additional fact relating to primitive ideals which will
be useful in the sequel.

6.4. LEMMA. Let P be a primitive ideal of a Banach algebra

B. Then either S(P) = P or S(P) = Ku + P where u is an identity
for B modulo P. .

Let 7 be the natural homomorphism of B onto B/P. Let x € S(P)
and y € B. Then clearly n(2)7(y) = n(y)m(x) or m(x) lies in the center
8, of B/P. Now B/P is primitive so either 3, = (0) or B/P has an
identity w(u) and 3, = Kn(u). If 8, = (0) clearly S(P)=P. If 8,=
Kn(uw) then Pc S(P)c Ku + P so that either P = S(P) or Ku + P =
S(P).

7. Annihilation and Lie annihilation. In Theorem 3.2 and
Corollary 3.3 we obtained structure theorems for a class of algebras
where, for each proper closed ideal I, ¥(I) # (0). In this section we
consider the consequences of a weaker hypothesis on the proper closed
ideals for Banach algebras.

Before we investigate the weakened hypothesis, let us note the
implication of the statement ¥(I) = (0). In Lemma 2.2, we saw that
if I is an ideal in a ring A, then [I%, A]C &) N R(I)c I*. Thus if
{(I) = (0), I* = 3, the center of A. Suppose that A is semi-prime
(so that () = R(J)) and that 3 contains no nonzero ideal of A. Then
if I* = 3, ¥(I) = (0). Hence for many of the algebras under considera-
tion in this paper, I* = 8 if and only if 2(I) = (0).

Throughout this section, B denotes a semi-simple Banach algebra,
with center 3, satisfying the condition:

(7.1) If &I) = (0), for an tdeal I, then I+ 3 is dense in B.
Since ¥(I + R(I)) = (0), an immediate consequence of (7.1) is that

for every ideal I, I + R(I) + 3 is dense in B. Also, since I + 83 S(I),
it is immediate that R(I) + S(I) is dense in B.

7.1. LEMMA. Let I be a closed ideal of B. Then ¥R(I) < S(I).

Let © € ¥R(),y € B. We can write y = lim (u, + v, + 2,) where
u, € Il,v,eRI) and z2,€ 3. Then xy — yxr = lim (xu, — u,x) € .
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Therefore x € S(I).

7.2. LEMMA. A primitive ideal P for which 2(P) = (0) 7s a
ideal. Also ¥(P) is a minimal dual ideal.

The first statement is shown by the proof of Theorem 3.2. Let
I+ (0), Ic&P), where I is dual. Since I# P and P is a primitive
ideal we see that &(I)c P. Thus [ = R¥() > ¥(P) which forces I =
{(P).

7.3. LEMMA. Let P be a primitive ideal of B for which ¥(P) =
(0). Then P is a modular maximal ideal of B of deficiency one,
and there is an tdentity for B modulo P which ts central.

Proof. By (7.1), P+ 8 is dense. Let 7 be the natural homo-
morphism of B onto B/P. Then n(P + 3) = n(3) is dense in B/P.
Therefore B/P is a commutative primitive Banach algebra, i.e., a field.
Thus there exists € 8 such that B = P -+ Ku. Clearly w can be
selected to be an identity for B modulo P.

7.4. THEOREM. Let B be a semi-simple Banach algebra satisfy-
ing (7.1). Let I be the smallest dual tdeal of B which contains all
the minimal dual tdeals of B, then B/I s commutative.

Let J be the algebraic sum of all the ideals R(P) # (0) for P
primitive. By Lemma 7.2, ID>J. Also clearly R(J) =N P, for the
primitive ideals with R(P) = (0).

Let W= N M, where M is a maximal ideal of deficiency one with
a relative identity in 8. For any maximal modular ideal of the stated
form B = M + Ku, with w € 8, so [B, Bjc M. Thus [B, Bljc W. By
(7.1), Lemma 7.3, and semi-simplicity, W N R(J)=(0), so W 8R(J)C L.
Thus [B, B]C I, and consequently B/I is commutative.

We next consider a hypothesis on the Lie ideals which will enable
us to obtain results on the Lie structure of certain Banach algebras.

(7.2) If & ts a closed Lie tdeal of B and %> %, then L = B.

7.5. THEOREM. Let B be a semi-simple Banach algebra which
satisfies (7.2). Then B satisfies the conclusion of Theorem 7.4,

We show that if (7.2) is satisfied so is (7.1). In view of Lemma
2.2, if &I)=0 for an ideal I then [I% B] = (0) or I*c 8. Thus if
=1+ 3, is a Lie ideal and I B3> I* = F*. Consequently (7.2)
shows that (7.1) is satisfied.



792 PAUL CIVIN AND BERTRAM YOOD
If the semi-simple Banach algebra B satisfies (7.2) and also
(7.3) B has zero center

then (7.1) is satisfied with 3 = (0), so we are with in the framework
of §3, and in particular Corollary 3.3 holds. Thus a structure holds
in terms of minimal associative objects. We next turn our attention
to obtaining a structure theorem under these hypotheses in terms of
certain Lie ideals.

Any H *-algebra [10, pp. 272-276] B with zero center satisfies (7.2)
and (7.3). Let ¥ be a closed Lie ideal of B, and suppose that £ D &,
Let I be any minimal closed ideal of B. Direct calculation with the
““matrix ’’ representation of I, shows that the only closed Lie ideals
in I are (0) and I. Hence [8, I] =(0) or [8, I] = 1. In the first in-
stance 1 C 2 C &, and in the second I C ¥ directly. Thus for all minimal
closed ideals of B,2> 1, so & = B and (7.2) is satisfied.

Until otherwise is stated we assume B is a semi-simple Banach
algebra satisfying (7.2) and (7.3).

7.6. LEMMA. B is Lie semi-simple.

It is sufficient to show that [€, €] = (0) for a Lie ideal € of B
implies € = (0). Now [&, &] = 0 implies £ C &%, and thus that £~ c &%,
Condition (7.2) then shows that ¥*=B, whence £ C 3 = (0) by (7.3).

The Lie semi-simplicity will frequently be used in the form that
LN L = (0) for any Lie ideal ¥ of B.

7.7. COROLLARY. B contains no modular two-sided tdeals.

If M were a maximal modular ideal of B, then (7.1) implies B =
M YM). Let ¢ be an identity for B modulo M, with e e {(M).
Clearly e € (%(M))* N ¥ M) = (0) by the prior lemma. Thus we have
a contradiction and there can be no modular ideals in B.

7.8. LEMMA. If & is a Lie ideal of B, them S(¥F) = L& and
S(L~) = &2,

Clearly L*CS(%*). Let xe S(¥) and ye @. Then [z,y]c ¥ NT=
(0), so S(¥*) c &=,

Since & ¥ and the latter is closed, S(2-)c S(€) = ¢ by the
above. Now (7.2) implies that € + %% is dense in B. Let « € ¥%. Then
if ye B,y =lim(y, + 2,) with y, ¢ € and 2, ¢ 5. Consequently, [xz,y]=
lim[z, ¥; + 2;] = lim [z, ¥;] € £, and so ¥ cC S(¥).
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7.9. COROLLARY. If P ts a primitive ideal of B, then p = p't.

It follows from Lemma 6.4 that S(P) = P unless P is a modular
ideal. However, by Corollary 7.7 there are no modular ideals, so
Lemma 7.8 yields the desired result.

7.10. LeMMA. If I is a closed ideal im B, then (R(I))* = S(I).

Since R(I) < I%, it follows from Lemma 7.8 that S(I)=I* c(R())*.
Let € (R(I))* and y € B. Since the ideal I + R(I) is dense in B, y =
lim (p, + ¢,), with p, € I and ¢, € R(I). Then

[z, y] = lim[x, p, + 4]lim[x, p,]e I,
and consequently (R(I))* < S(I).

7.11. LEMMA. Let P be a primitive ideal of B. Then [R(P),
R(P)] is contained in every monzero closed Lie ideal in R(P).

Let & = (0) be a closed Lie ideal of B with JCR(P). By the
use of two results of Herstein, we see that S(X) is a ring as well as
a Lie ideal [3, p. 282] and therefore [3, p. 281] that either S(J)
is in the center of B or contains a nonzero ideal I of B. The first
possibility cannot pertain here since (7.3) holds. Thus we have a
nonzero ideal IC S(Y) = J < (R(P))*™ = P* by use of Lemmas 7.8,
7.10 and Corollary 7.9. This implies that {(R())-R(P) = 0, for other-
wise IC ¥R(I)) c P = LR(P)), and thus I PN P = (0), which is a
contradiction. Consequently £(R(I)) N NR(P) is a dual ideal == (0) contained
in the minimal dual ideal R(P). Therefore R(P)c LR(I) and R([) < P.
Also S(I) = I J#: = J* = S(J) < P, Another application of
Lemma 7.10 yields P*c (R(I))* = S(I). However, from I> P* we
deduce S(I) = I**cC P, so P* = S(I) = S(¥). Let D be the largest
ideal contained in P*. The Theorem 1 in [14, p. 156] together with
its proof shows that F>D[D, B]. Since D D R(P), I D [R(P), R(P)].

7.12. LEMMA. For any primitive ideal P of B, [R(P), R(P)|*=P.

The inclusion PC[R(P), R(P)J* is immediate. Let x e P*=(R(P))*
by Lemmas 7.9 and 7.10. For y € B, ¥ = lim (p,, + #,) with p, ¢ P and
r, € R(P), and ¢ =lim(s, + ¢,) with s, e P and ¢, € R(P). Thus

[#, y] = lim [®, p, + 7,] = lim [z, ,] = lim lim [s,, + %, 7]

= lim lim [t,,, r,] € [R(P), R(P)] .



794 PAUL CIVIN AND BERTRAM YOOD

Consequently P:C S([P), R(P)])=[R(P), R(P)]*, and so [R(P), R(P)]*C
Ptz = P, We thus have the asserted equality.

7.13. LEMMA. FEach primitive ideal P of B is a maximal pro-
per closed Lie ideal of B.

Let & be a proper closed Lie ideal of B such that > P. The
hypothesis (7.2) implies that % # (0). Corollary 3.3 and its proof
imply that each minimal dual ideal of B is of the form R(Q) for @ a
primitive ideal of B. If 3N R(Q) = (0) for all primitive ideals @,
then [J% RQ)]IIF NR(Q) = (0), so by Corollary 3.3, [S%, B] = (0)
and J* C Z = (0) which is a contradiction. Thus there exists a primi-
tive ideal @, such that J* N R(Q,) # (0). Lemma 7.11 then yields
[R(Qy), R(Q)] C J*. Lemma 7.12 then implies that I I [R(Q,),
R(Q))* = Q,. As noted in the proof of Theorem 3.2, the resulting
inequality @,C P with @, and P primitive ideals implies that Q, = P
and consequently & = P.

7.14. LeEMMA. FEach minimal closed Lie tdeal of B ts of the
form [R(Q), R(Q)] for some primitive ideal Q of B.

Let ® be a minimal closed Lie ideal of B. As noted in the proof
of Lemma 7.13, ® N R(Q) = (0) for some primitive ideal @ of B; and
so DCR(Q). Thus by Lemma 7.11, [R(Q), R(Q)] = D by the minimal
nature of .

7.15. THEOREM. If B is a semi-simple Banach algebra which
satisfies (1.2) and (7.3), then B is the direct topological sum of its
minitmal closed Lie ideals.

In view of Lemma 7.14, and the fact that any two ideals R(Q),
with @ primitive, have only zero in common, a sum of minimal closed
Lie ideals is a direct sum. Let & be the direct topological sum of the
minimal closed Lie ideal in B. If & # B, then (7.2) implies  +# (0).
The argument used in the proof of Lemmas 7.13 and 7.14 shows that
there is a primitive ideal @ such that & NR(Q) = (0). Lemma 7.11
then implies that [R(Q), R(Q)] < J*. But then [R(@Q), R@)]CIFE NJ=
(0), which is a contradiction.

In the final portion of this section, B will denote a simple Banach
algebra with an identity «, which satisfied (7.2) and

(7.4) The center B of B consists of the complex multiples of the
identity u of B.
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In view of the proof of Theorem 7.5, we note that (7.1) is auto-
matically satisfied by B. Thus if ¥(I) = (0), for an ideal I, either I
is dense in B or I is a maximal ideal of deficiency one in B.

7.16. LEMMA. If R(M) = (0) for each maximal ideal M of B,
then each primitive tdeal of B is a maximal ideal. Furthermore,
B 1s the direct topological sum of its minimal dual ideals.

Since B has an identity, each primitive ideal P is contained in a
maximal ideal M. If M -+ P, then by the argument used in the proof
of Theorem 3.2, R(M) = (0), which is a contradiction. Thus each
primitive ideal is a maximal ideal. If B is a primitive algebra, then B
is a simple algebra and thus is the only minimal dual ideal. Otherwise
let J be the direct topological sum of the minimal dual ideals R(P),
where P is a primitive ideal. If J were proper, there would exist a
maximal ideal N such that NDOJDR(N) = (0), which would contradict
the semi-simplicity of B. Thus J = B.

7.17. LEMMA. If M ts a maximal ideal of B with R(M) = (0),
then B = M & Ku, where K 1s the complex field. Moreover, M as an
algebra satisfies condition (7.2) and (7.3).

By Lemma 7.3 M has deficiency one and thus B= M@ Ku. Since
M is a maximal ideal of B, M is a semi-simple Banach algebra and the
center of M is contained in the center of B, so is zero. If U is a
proper closed Lie ideal of M, and 1 contains V={xe M:[x,y]| =0,
vy € N1}, then u+ Ku is a proper closed Lie ideal of B and (1 + Ku)* =
W =V+ Ku, so 1 + Ku)D U+ Ku):. The hypothesis (7.2) yields
N + Ku = B, which is a contradiction. Thus M as an algebra satisfies
(7.2).

7.18. THEOREM. Let B be a simple Banach algebra with satis-
fies (1.2) and (7.4). The only monzero closed Lie ideals of B are
either B and Ku or are B, Ku and [B, B], in which case B=|[B, B]®
Ku, and B is the direct sum of the minimal closed Lie ideals of B.

Since B is simple, by a theorem of Herstein [3, p. 282], any closed
Lie ideal is either contained in Ku or else contains [B, B] = 2.

Suppose first that Ku < 2. From Herstein’s theorem applied to
E, either (a) EC Ku 8 or (b) @ €. In case (a), the relation (7.2)
yields [B, B] = B, so that the only closed Lie ideals are Ku and B.
In case (b) Q2D L% so that, by (7.2), = B. Thus 2 C 8. In view of the
reasoning for Theorem 6.2, [B, B] = (0). Thus B is commutative and
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80 B = Ku. Hence the case Ku C ¥ leads to the first possibility stated
in the theorem.

If Kuz|[B, B], let £ =|B, Bl Ku. Suppose £ #* B. Another
application of Herstein’s theorem yields *>[B, B] or $*C KucZ.
The latter is in contradiction to (7.2), while the former implies $EOZ
so TEC FE, Thus $* = B, which as above shows that B is the com-
plex field. Hence B = [B, B] + Ku, in which case B is the direct sum
of the minimal closed Lie ideals of B.

7.19. THEOREM. Let B be a semi-simple Banach algebra which
satisfies (71.2) and (7.4). Suppose that B is mot simple, and is not
commutative. Then B 1s the direct topological sum of its minimal
closed Lie ideals and is either the direct topological sum of its mini-
mal dual ideals, or the mintmal dual ideals and the center.

Suppose that R(M) #= (0) for each maximal ideal M of B. Then
by Lemma 7.16 each primitive ideal of B is a maximal ideal and B is
the direct topological sum of its minimal dual ideals. Also, as noted
in the proof of Lemma 7.16, each minimal dual ideal has the form
R(M) for a maximal ideal.

Let M be any maximal ideal of B, and let ¥ # (0) be a closed Lie
ideal, < R(M). Then, by a result of Herstein [3, p. 281], either
S(Y) is in the center of B or there is a nonzero ideal I in S(J¥), in which
case we may assume [ is the largest such ideal. The first possibility
cannot oceur since it would imply ¥ < Ku, while & # (0), and & < R(M).
Thus the second possibility holds. If ae€ I'N M, then for all x € B,
[a, x] € F< R(M), while [a, x] € M, so [a,x] =0 for all x € B. Thus
a is central and since u ¢ M, we conclude a = 0. Consequently I N M=(0)
and B= M@ I so that I = R(M). By a result of Zuev [14],

S DI B o [R(M), R(M)] .

Consequently each Lie ideal [R(M), R(M)] is a minimal closed Lie ideal
of B. Let U be the direet topological sum of its minimal closed Lie
ideals of B. Since B is the direct topological sum of the minimal dual
ideals and these have the form R(M), we see that UD[B, B] + Ku.
Another application of the result of Herstein used above shows that
either S(U%) C Ku or these exists a nonzero ideal N such that N < S(1%).
The first possibility implies that 1! = Ku, whence WD U* so by (7.2)
1 = B. In the second instance, let @ = 0,a € N. Then for all x € B,
[a, ] e W* N U = W, from which it is immediate that T WE, Thus
by (7.2) T = B, so W< Ku, and by the argument used in Theorem
6.2 we deduce that a ¢ Ku, which implies that N = S(1¥) = B. We
therefore conclude that [B, Bl 1 N U*C Ku, so as argued earlier B
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is commutative, which is a contradiction.

In the event that R(M) = (0) for some maximal ideal M of B, it
follows from Lemma 7.17 that B = M @ Ku where K is the complex
field, and M as an algebra satisfies (7.2) and (7.3). Then by Theorem
7.15 M is the direct topological sum of its minimal closed Lie ideals
and by Corollary 3.3 is the direct topological sum of the minimal dual
ideals of M,. Any minimal closed Lie ideal of M is one of B, and any
minimal dual ideal is one of B. Since Ku is a minimal closed Lie
ideal of B, the theorem follows.

REFERENCES

1. R. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer.
Math. Soc. 63 (1948), 457-481.

2. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. (3)
4 (1954), 154-167.

3. I. N. Herstein, On the Lie and Jordan rings of a simple, associative ring, Amer.
J. Math. 77 (1955), 279-285.

4, —————, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341.

5. —— -, Lie and Jordan structures in simple, associative rings, Bull. Amer.
Math. Soc. 67 (1961), 517-531.

6. N. Jacobson, Structure of rings, Amer. Math. Soc. Collog. Publ. vol. 37, 1956.
7. ——— —, Lie algebras, New York (1962).

8. R. V. Kadison, Isometries of operator algebras, Ann, of Math. 56 (1952, 494-503.
9. 1. Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521-527.
10. C. E. Rickart, General theory of Banach algebras, Princeton (1960).

11. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer,
J. Math. 76 (1954), 155-167.

12. — -, Homomorphisms on normed algebras, Pacific J. Math. 8 (1958), 373-381.
13. ———, Faithful *-representations of mormed algebras, Pacific J. Math. 10 (1960),
345-363.

14. 1. 1. Zuev, Lie ideals of associative rings, (Russian) Uspehi Mat. Nauk 18 (1963),
no. 1 (109), 115-158.

15. E. Stermer, Positive linear maps on operator algebras, Acta. Math. 110 (1963),
233-278.

UNIVERSITY OF OREGON








