
PACIFIC JOURNAL OF MATHEMATICS

Vol. 16, No. 1, 1966

SOME CHARACTERIZATIONS
OF EXPONENTIAL-TYPE DISTRIBUTIONS

E. M. BOLGER1 and W. L. HARKNESS

Let / = {fix; δ) = exp [xδ + q(δ)], δ e (α, b)} be a family of
exponential-type probability density-functions (exp. p.d.f.'s)
with respect to a σ-finite measure μ. Let M(t; δ), a — δ < t <
b — δ9 denote the moment generating function (m.g.f.) cor-
responding to fix; δ) 6 /, and let c(t; δ) = In M(t; δ) =
2Γ=i h(δ)tk/kl be the cumulative generating function. The
main results pertain to characterizations of certain exp.
p.d.f.'s in terms of the cumulants 2k(δ). First, it is shown
that if M(t; δQ) is the m.g.f., respectively, of a degenerate,
Poisson, or normal law for some δQ £ (α, 6), then Mit; δ) is the
m.g.f. of the given law for all δ e (a, 6), and that infinite
divisibility (inf. div) of M(t; δQ) for some δ0 implies inf. div.
for all δ. Further, it is shown that if φ(t) is a nondegenerate,
inf. div. characteristic function (ch. f.) with finite fourth
cumulant λi, then λ± — 0 if and only if ψit) is the ch.f. of a
normal law, while if 4̂ = CΛJ = a2λ2 Φ 0, then φ(t) is the ch.f.
of a Poisson law. Combining these results, it follows that if
M(t; δ0) is inf. div., and nondegenerate, with Λ4(d0) = 0, then
M(t; δ) is the m.g.f. of a normal law for all δ e (α, 6). A
similar result characterizes the Poisson law. Finally, it is
proved that the normal law is the unique exp. p.d.f. which
is symmetric.

An exponential-type family of distributions is defined by probability
densities of the form

(1) f(y; δ) = exp [yδ + q(δ)] , a < δ < b

with respect to a σ-ίinite measure μ over a Euclidean sample space
(X, SI). It is known ([1], p. 51) that the set of parameter points d
such that \exp [δy]dμ(y) < 00, is an interval (finite or not). The

binomial, Poisson, normal, gamma, and negative binomial disiributions
provide familiar examples of exponential-type distributions.

A few structural properties for this family are considered. Sec-
tion 2 contains some useful lemmas which are applied in § 3 to obtain
some characterizations of the Poisson and normal distributions.

2* Some lemmas. Patil [3] has shown that a collection of
d.f.'s {F(x; δ): δe (a, b)} is of exponential-type if and only if the
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cumulants, λfc(δ), exist for all k and satisfy

( 2 ) χk(δ) = ^=M for ft = 2 , 8 , 4 , . -

dδ

Further, he has shown [3, equation (12)] that M(t; δ) is the moment
generating function of an exponential d.f. if and only if M(t; δ) =
exp {q(δ) — q(δ + t)}. Lehmann ([1], p. 52) has shown that e~9{8) is
an analytic function of δ for a < Re δ < b. It follows that q(δ) is
analytic for a < Reδ <b. Then Xk(δ) is analytic for a<Reδ<b
and k ^ 1. Hence, if δoe (α, 6), there is a neighborhood Δ of δ0 such
that

λ ( β ) = £ λ i+fe(g0)(g - go) ΐov δeΔ,
k=o kl

LEMMA 1. If M(t; δQ) is degenerate for some δ0 e (α, δ), then M(t; δ)
is degenerate for all δe (α, b).

Proof. M(t; δ0) degenerate implies λj(δ0) = 0 for j ^ 2. Write

US) - Σ λ 2 + i ( g o ) ( g "" g o ) i for δe Δ .

Thus, λ2(δ) = 0 for δe Δ. Since λ2(δ) is analytic for a < Reδ < 6, we
have λ2(<5) = 0 for δ e (a, b) and the conclusion follows.

COROLLARY. If λ2(<?0) is different from zero for at least one
δQe (α, 6), then λ2(δ) is different from zero for all δe (α, 6).

LEMMA 2. If M(t; δ0) is the m.g.f. of a Poisson type distribu-
tion for some δQe {a, b), then M(t; δ) is the m.g.f. of a Poisson type
distribution for all δe (α, b).

Proof. By assumption.

M(t; «o) = exp

and

λy(δ0) - c^-2λ2(δ0) for j ^ 2 .

If it can be shown that

( 3 ) \j(δ) = c>'~2X2(δ) for j ^ 2

and all δe (α, 6), then the Lemma will follow. The proof of (3) is by



SOME CHARACTERIZATIONS OF EXPONENTIAL-TYPE DISTRIBUTION 7

induction on j . Let h(δ) = \(δ) — cX2(δ). Now h(δ) is analytic for
a < Reδ <b. Furthermore, h(δ0) — 0, and

h^(δ0) = Xs+k(δ0) - cX2+k(δ0)

= ck+1X2(δ0) - cckX2(δ0)

= 0 .

It follows that h(δ) = 0 for δe (α, δ). So XB(δ) = cλ2(δ). Now, assume
Xj(δ) = cy~2λ2(δ). Differentiation of both sides yields

This completes the proof of (3). It follows that

M(t; δ) = exp

LEMMA 3. If Λf(t; δ0) is normal for some δoe(a,b), then M(t;δ)
is normal for all δe (α, 6).

Proof. Since j|f(£; δ0) is normal, X2(δ0) Φ 0 and \j(δ0) = 0 for i ^ 3.
Write for δe A,

Then λ3(δ) Ξ 0 for δe (α, δ). Because of (2) it follows that λ, (<5) = 0
for j ^ 3. Finally, X2(δ0) Φ 0 implies X2(δ) φ 0 for any δe (α, b).

LEMMA 4. JΓf M(ί; δ0) is infinitely divisible for some δoe(a,b),
then M(t; δ) is infinitely divisible for all δe {a, b).

Proof. If λ2(<50) = 0, the result follows from Lemma 1. So as-
sume λ2(<?) Φ 0 for any δe{a,b). Now, (Lukacs [2]), there exists a
distribution G(x; δ0) such that

λ2(δ0 + t)/X2(δ0) = \extdG(x; δQ)

for te (a — δQ, b — δ0). Let δx be an arbitrary element of (α, δ). If
te(a-δl9b- δj, t h e n t + δ, e (α, δ) a n d t + δ, - δoe(a - δOfb - δ0).
H e n c e , f o r t e (a — δ19 b — δλ)

\(δi + t) _ λ2[δ0 + (£1 + δλ — δ0)]

r
xdG1(x] δQ)
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where dG^x; δ0) = (λ2(δ0)/λ2(δO)e(δl~So)*dG(α?; δ0). It is easy to see that
G^x; δ0) is a distribution function. Thus,

is a moment generating function for t e (a — δί9 b — δ±). Hence, M(t; δλ)
is infinitely divisible. Since δλ is an arbitrary element of (α, 6), M(t;δ)
is infinitely divisible for all δe(a, b).

In the following two lemmas, we assume that f(t) is a non-
degenerate, infinitely divisible characteristic function (ch. f.) and
φ(t) — \ogf(t) has four derivatives at ί = 0. Let

7 - 1 2 3 4
x

dt3

From the results of Shapiro [4], it is easily deduced that — (llX2)(d2φ(t)/dt2)
is the characteristic function of a d.f. with mean λ3/λ2 and variance
(λ2λ4 — λ^/λ j .

LEMMA 5. If λ4 = 0, then f(t) is the characteristic function of
a normal distribution.

Proof. —(l/X2)(d2φ(t)/dt2) is a characteristic function of a distri-
bution with mean λ3/λ2 and variance (λ2λ4 — λj)/λj. Thus λ4 = 0 implies
λ3 = 0 since the variance is nonnegative. Therefore, —(l/X2)(d2φ(t)/dt2)
is the ch. f. of a degenerate distribution with mean 0. Hence,

l

λ2 dt2

and, it follows that φ(t) = iXjb - (λ2t
2/2) for all t.

Note that the single assumption that λ4 = 0 does not suffice to
ensure normality since the binomial distribution, while not infinitely
divisible, with pq = 1/6 has λ4 = 0.

LEMMA 6. If λ4 = αλ3 = α2λ2 Φ 0, and f(t) is infinitely divisible,
then f(t) is the characteristic function of a Poisson type distribution.

Proof. ~(l/X2)(d2φ(t)/dt2) is the ch.f. of a distribution with
mean λ3/λ2 = a and variance (λ2λ4 - Xl)/X2

2 = {a2X\ - a2X\)IX\ = 0. So,
— (l/X2)(d2φ(t)/dt2) is a ch.f. of a degenerate distribution with mean
a. That is,

__ 1 d2φ(t) _ Qiat

λ2 dt2

It follows that
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9,(ί) = ^ ( β * . - l ) + i ί λ 1 - ^
a2 \ a

R E M A R K 1. I t is not sufficient to assume infinite divisibility and
λ3 = λ4 Φ 0.

E X A M P L E . Let φ(t) = X(eu - 1 ) + i λ ί - (f/2). Then λ3 = λ4 = λ Φ 0.
<p(f) is the ch.f. of the composition of normal and Poisson distributions.

R E M A R K 2. I t is not sufficient to assume infinite divisibility and
λ2 = λ3 Φ 0.

E X A M P L E . Let φ(t) = e2ίt - 1 - 2ί2. Then λ2 = λ3 = 8.

R E M A R K 3. I t is not sufficient to assume λ2 = λ3 = λ4 Φ 0.

E X A M P L E . Let x0 = (1 + i/Ϊ3)/2 and ^ = 1 — sc0. Let p 0 =
(α?o — l)/(2a?0 — 1) and ̂  = 1 — p 0 . I t is easy to see t h a t 0<p09p1<l.
Let flfi(t) = eίx^p0 + ei^tp1 and g2(t) = 1. Then, if

it follows by direct computation t h a t λ2 = λ3 = λ4 = 1. Here, git) is
obviously not an infinitely divisible ch.f . .

3* Characterization of the normal aud Poisson distributions*

THEOREM 1. If M(t; δ0) is infinitely divisible and nondegenerate,
and if λ4(δ0) = 0, then M(t; δ) is the m.g.f. of a normal distribution,
for all δe (a, b).

Proof. By Lemma 5, M(t; δ0) is the m.g.f. of a normal distribu-
tion. Then by Lemma 3, the conclusion holds for all δ e (a, 6).

The family of normal distributions has the property that all its
members are symmetric distributions. This means that all central
moments of odd order vanish; in particular, the third central moment
μ9 = λ3, must vanish. The next theorem, which follows easily from
equation (2) and Lemma 3, implies that the normal law is the unique
exponential-type distribution which is symmetric.

THEOREM 2. Let / = IF(X; δ) = Γ eyS+q{8) dμ(y); δe(a, b)\ be a

family of exponential-type distributions, and assume that λ3(δ) = 0
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for all δe(a,b) and λ2(δ0) > 0 for some δoe(a, b). Then y is a
family of normal distributions.

The following question now arises: If, for some δ0 e (α, δ), M(t; δ0)
is infinitely divisible and λ3(<50) = 0, must M(t; δ) be normal? The
answer is no.

EXAMPLE. Let N(t) = e-t+t"12 for — <χ> < t < oo,

Pit) =

and JVΊ(ί) = eP(<). Then, (Lukacs [2]), iVΊίί) is an infinitely divisible
moment generating function. Clearly,

is an exponential-type moment generating function. It is easy to see
that M(t; μ) is infinitely divisible. Now

= d*logM(t;μ)

dt* ί = 0

__ dΨ(t + μ) _ dN(t + μ) __ dN(μ)
dμdt" t=o dt ί = 0

= ( — 1 + μ)i

so that λ3(l) = 0. However, \z(μ) is not identically zero so that M(t; μ)
is not the m.g.f. of a normal distribution for any value of μ. [For
M(t; μ0) normal would imply M(t; μ) normal for all μ which, in turn,
would imply λ8(/ι) = 0.]

THEOREM 3. If M(t; δ0) is infinitely divisible for some δoe (α, δ),
and if λ4(δ0) = cλ3(δ0) = c2λ2(<50) Φ 0, then M(t; δ) is the m.g.f. of a
Poisson type distribution for all δe {a, b).

Proof. This follows directly from Lemmas 2 and 6.

THEOREM 4. If λ3(<5) = cλ2(<5) for all δ e (α, δ) where \2(δ) and
λ3(<5) are cumulants of an exponential-type distribution, then M(t; δ)
is the m.g.f. of a Poisson type distribution.

Proof. First we show by induction that

λ i+2(δ) - c%(δ) .

By assumption, this is true for j = 1. Assume now that λi+2(S) =
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cjλ2(d). Differentiating both sides, we get

λ i+3(δ) = c%(δ) =

Then,

log M(t; δ) = *#>(*« - 1) +
c2

REMARK. Let δ0, δλ e (α, 6). Many of the preceding results would
be trivial if there existed constants c, d with c Φ 0 such that

M(t; d0) = e d ίi

However, that this is not always the case is shown by taking

M(t; δ) - eeS(ei-1} , ί, § e ( - c o , oo) .
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