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SOME CHARACTERIZATIONS
OF EXPONENTIAL-TYPE DISTRIBUTIONS

E. M. BoLGER' and W. L. HARKNESS

Let ~ = {f(x;0) = exp [¢5 + q(9)], 6 (a, b)} be a family of
exponential-type probability density-functions (exp. p.d.f.’s)
with respect to a o-finite measure ¢, Let M({;0),a —d <t <
b — 4§, denote the moment generating function (m.g.f.) cor-
responding to [f(x;0)e 7/, and let c(t;0)=InM(;0)=
=1 Ax0)tk[k! be the cumulative generating function., The
main results pertain to characterizations of certain exp.
p.d.f.’s in terms of the cumulants 2,(0). First, it is shown
that if M(¢; 0,) is the m.g.f., respectively, of a degenerate,
Poisson, or normal law for some J, €(a, b), then M(¢; 6) is the
m.g.f. of the given law for all dc(a,b), and that infinite
divisibility (inf. div) of M ({; §,) for some J, implies inf, div.
for all 6. Further, it is shown that if ¢(t) is a nondegenerate,
inf, div. characteristic function (ch. f.) with finite fourth
cumulant 2, then 1, = 0 if and only if ¢(¢) is the ch.f. of a
normal law, while if A, = al; = a?2; + 0, then ¢(t) is the ch.f.
of a Poisson law, Combining these results, it follows that if
M(t; 6) is inf. div., and nondegenerate, with 1.,(3,) = 0, then
M(t; 0) is the m.g.f. of a normal law for all de(a,b). A
similar result characterizes the Poisson law. Finally, it is
proved that the normal law is the unique exp., p.d.f. which
is symmetric.

An exponential-type family of distributions is defined by probability
densities of the form

(1) fy;0) =explyd + q(®], a<o<b

with respect to a o-finite measure g over a Euclidean sample space
(%, %). It is known ([1], p. 51) that the set of parameter points o

such that Sexp [oyldp(y) < -, is an interval (finite or not). The

binomial, Poisson, normal, gamma, and negative binomial disiributions
provide familiar examples of exponential-type distributions.

A few structural properties for this family are considered. Sec-
tion 2 contains some useful lemmas which are applied in § 3 to obtain
some characterizations of the Poisson and normal distributions.

2. Some lemmas. Patil [3] has shown that a collection of
d.f.’s {F(x;0):0€ (a,d)} is of exponential-type if and only if the
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cumulants, \,(0), exist for all & and satisfy

(2) N (0) = Phu=i(9) for kb =2,8,4, -+

do
Further, he has shown [3, equation (12)] that M(¢; 0) is the moment
generating function of an exponential d.f. if and only if M(¢;0) =
exp {q(0) — q(0 + t)}. Lehmann ([1], p. 52) has shown that ¢ *® is
an analytic function of ¢ for @« < Red < b. It follows that ¢(d) is
analytic for @ < Red < b. Then A\,(0) is analytic for a < Red < b
and k¥ = 1. Hence, if 6,€ (a, b), there is a neighborhood 4 of &, such
that

N(0) = g.o 2 +"(5°;c('6 — 8)"° for de 4.

LEmmA 1. If M(t; 0,) is degenerate for some d,€ (a, b), then M(t; 6)
is degenerate for all o€ (a, b).
Proof. M(t; d,) degenerate implies N\;(d)) = 0 for j = 2. Write

Aot 4(06)(0 — )’
J!

xxm::;; for ded.

Thus, \(6) = 0 for d€ 4. Since \,(0) is analytic for a < Red < b, we
have Ay (0) = 0 for de(a, b) and the conclusion follows.

COROLLARY. If N0, 1s different from zero for at least one
0.€ (@, b), then Ny (0) is different from zero for all de (a,b).

LEMMA 2. If M(t; 0,) is the m.g.f. of a Potsson type distribu-
tion for some 0,€ (a, b), then M(t; 0) is the m.g.f. of a Poisson type
distribution for all d€ (a, b).

Proof. By assumption.

M5 0) = exp {280 e — 1) + (o) — 2O Jo} 5

and

Ni(05) = T 7EN(0y) for7=2.
If it can be shown that
(3) Ni(0) = ¢ Ay(0) for j=2

and all d¢(a, b), then the Lemma will follow. The proof of (3) is by
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induction on j. Let A(d) = N\y(0) — eNy(0). Now h(d) is analytic for
a < Red < b. Furthermore, h(é,) = 0, and

R¥(05) = Ngs(00) — ENg11(00)
= ¢*HNy(0) — €c*Ny(00)
=0.

It follows that h(d) = 0 for o€ (a, b). So X4(0) = c\y(9). Now, assume
Ni(0) = ¢\y(0). Differentiation of both sides yields

Nii(8) = 6I"0g(0) = I=eNy(9) = I\ (0) .

This completes the proof of (3). It follows that

M(t; 6) = exp {@(ect —1+ (xl(a) — @)t} .

LemMmA 3. If M(t; 0,) is normal for some d,¢€ (a, b), then M(t; o)
is normal for all d¢€ (a,d).

Proof. Since M(t; 0,) is normal, \,(d,) = 0 and N;(d,) = 0 for 5 = 3.
Write for de 4,

o) = § 0O 0

Then \,(0) = 0 for o€ (a, b). Because of (2) it follows that A;(0) =0
for 7 = 3. Finally, \,(d,) # 0 implies 1,(d) = 0 for any o€ (a, b).

LEMMA 4. If M(t; o,) is infinitely divisible for some d,¢€ (@, b),
then M(t; 0) is infinitely divisible for all 0€ (a, b).

Proof. If N(0,) =0, the result follows from Lemma 1. So as-
sume \,(0) # 0 for any d € (a,d). Now, (Lukacs [2]), there exists a
distribution G(z; d,) such that

Na(Bo + £)\e(0) = SeﬂdG(oo; 5)

for te(a — d,,b — 0,). Let 0, be an arbitrary element of (a,bd). If
te(@ — 09, b —0,), then t + d,€(a,d) and ¢t + 0, — d,€ (@ — o, b — 0y).
Hence, for te (@ — 6,0 — 9,)

)\'2(61 + t) — )"2[50 + (tl + 81 _ 50)]
Ae(01) Ao(01)

_ )\12(30)S (t+81-80) (2 §.) = S ta ] .5
7\;2(81) (2 0 (m’ 0) € Gl(xy 0)
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where dG.(x; 6;) = (\(05)/Ny(0)))e*r307dG(x; 0,). It is easy to see that
Gy(x; 0,) is a distribution function. Thus,

Na(0: + 1)/No(01)

is a moment generating function for t€ (@ — 0, b — d,). Hence, M(¢; d,)
is infinitely divisible. Since 6, is an arbitrary element of (a,b), M(t;0)
is infinitely divisible for all ¢ € (a, b).

In the following two lemmas, we assume that f(¢) is a non-
degenerate, infinitely divisible characteristic function (ch. f.) and
@(t) = log f(t) has four derivatives at ¢t = 0. Let

)\,j:M, j:1,2’3,4.
dti
From the results of Shapiro [4], it is easily deduced that — (1/\.)(d*p(t)/dt?)
is the characteristic function of a d.f. with mean \,/\, and variance
(Aohg — M)/AG

LEMMA 5. If N, =0, then f(t) is the characteristic function of
a normal distribution.

Proof. —(1/A)p(t)/dt?) is a characteristic function of a distri-
bution with mean M\,/A\, and variance (A,A, —A3)/AL.  Thus N, =0 implies
A, = 0 since the variance is nonnegative. Therefore, —(1/A.)(d’p(t)/dt)
is the ch. f. of a degenerate distribution with mean 0. Hence,

—1d'9(t)
A, dtf

1;

and, it follows that o(t) = ingt — (\.t%/2) for all ¢.

Note that the single assumption that A, = 0 does not suffice to
ensure normality since the binomial distribution, while not infinitely
divisible, with pq = 1/6 has », = 0.

LEMMA 6. If N, = ar, = o™\, = 0, and f(t) is infinitely divisible,
then f(t) is the characteristic function of a Poisson type distribution.

Proof. —QA/\)d*p(t)/dt?) is the ch.f. of a distribution with
mean A\,/A, = a and variance (AN, — M)A = (a®\2 — a®\d)/A: = 0. So,
— (A )(dp(t)/dt?) is a ch.f. of a degenerate distribution with mean
a. That is,

_ 1 &) _
A, dtF

It follows that
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@wzﬁywt—n+iQf—ﬁ).
a a

REMARK 1. It is not sufficient to assume infinite divisibility and
Ny = Ny # 0.

ExAMPLE. Let o(t) =Me" — 1) 4+ int — (¢7/2). Then ny=x, =1 #0.
@(t) is the ch.f. of the composition of normal and Poisson distributions.

REMARK 2. It is not sufficient to assume infinite divisibility and
Ny = Ny # 0.

ExAMPLE. Let ¢(t) = ¢ —1 — 2t>. Then N\, =\, = 8.
REMARK 3. It is not sufficient to assume A, = X, = A\, = 0.

ExAMPLE. Let %, =1+ 1713)/2 and «,=1—x,. Let p, =
(%, — 1)/(2x, — 1) and p, =1 — p,. It is easy to see that 0 < p, p,<1.
Let g.(t) = e®*ip, + e*'p, and g,(t) = 1. Then, if

1 2
wwgﬁm+gwm

it follows by direct computation that A, = »; =1, = 1. Here, g(¢) is
obviously not an infinitely divisible ch.f. .

3, Characterization of the normal aud Poisson distributions.

THEOREM 1. If M(t; d,) is infinitely divisible and nondegenerate,
and if N(0,) = 0, then M(t; d) is the m.g.f. of a normal distribution,
for all o€ (a,d).

Proof. By Lemma 5, M(t; d,) is the m.g.f. of a normal distribu-
tion. Then by Lemma 3, the conclusion holds for all é € (a, b).

The family of normal distributions has the property that all its
members are symmetric distributions. This means that all central
moments of odd order vanish; in particular, the third central moment
Us = N\;, must vanish. The next theorem, which follows easily from
equation (2) and Lemma 3, implies that the normal law is the unique
exponential-type distribution which is symmetric.

THEOREM 2. Let = {F(x; 0) = Sx eV O du(y); o€ (a, b)} be a
family of exponential-type distributions, and assume that A,(0) =0
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Sfor all o€ (a,b) and A(0) > 0 for some o,€(a,b). Then / is a
family of normal distributions.

The following question now arises: If, for some 0, € (a, b), M(t; 6,)
is infinitely divisible and X\4(0,) = 0, must M(¢; 0) be normal? The
answer is no.

ExXAMPLE. Let N(t) = et for —oco <t < oo,

Pty = || Nwayds ,
0J0
and N,(t) = e"®. Then, (Lukacs [2]), N(¢) is an infinitely divisible
moment generating function. Clearly,

M(t; p) = Nll(\; (";)#) = @—logN1(w)+HlogN1(+t)

is an exponential-type moment generating funection. It is easy to see
that M(t; p) is infinitely divisible. Now

d’log M(¢; 1)

7“3(#) = ar o
_dPE+p| _ANGE+p| _ dNp)
daied =0 dat t=0 dy

=(—1-+ #)e—M-HL?/Z

so that (1) = 0. However, A (x) is not identically zero so that M(¢; )
is not the m.g.f. of a normal distribution for any value of g. [For
M(t; po) normal would imply M(t; ) normal for all g which, in turn,
would imply A(z) = 0.]

THEOREM 3. If M(t; d,) 1s infinitely divisible for some d,¢ (a,b),
and tf N(0,) = EN(0y) = ¢N\y(0y) # 0, them M(t; ) is the m.g.f. of a
Poisson type distribution for all de (a,b).

Proof. This follows directly from Lemmas 2 and 6.

THEOREM 4. If N\(0) = c\y(0) for all o€ (a,b) where N\(0) and
N:(0) are cumulants of an exponential-type distribution, then M(t; o)
is the m.g.f. of a Poisson type distribution.

Proof. First we show by induction that
Ni(0) = ¢"N(0) .

By assumption, this is true for 5 = 1. Assume now that A;,(6) =
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¢y (0). Differentiating both sides, we get
Nipa(0) = €0y(0) = €7TN(0)
Then,

log M(t;9) = %f)(e“ —1) + (xl(a) — @)t .

REMARK. Let 0,,6,¢(a,b). Many of the preceding results would
be trivial if there existed constants ¢, d with ¢ # 0 such that

M(t; 0,) = e**M(et, o)) .
However, that this is not always the case is shown by taking

Mt 8) = gt ’ t,0€ ('—OO’ ).
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