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A THEOREM ON THE ACTION OF ABELIAN
UNITARY GROUPS

WILLIAM B. ARVESON

Given an abelian unitary group G acting on the Hilbert
space 57, let .o be the C*-algebra generated by G and let
(.57 ) denote the maximal ideal space of this algebra. There
is a natural injection a of ¢( ) into the compact character
group I" of the discrete group G. What conditions on G will
ensure that a be a topological homeomorphism of ¢(_ %) on I'?

The action of G is said to be nondegenerate if, for every
finite subset F' of G, there exists a vector £+ 0 in S such
that Ut | V¢ for every pair U, V of distinct elements of F
Theorem 1 contains the following answer to our question; in
order that « map ¢(_ &) onto I, it is necessary and sufficient
that the action of G be nondegenerate.

To be more explicit, a is the mapping that merely restricts every
complex homomorphism w € ¢(.%7) to the group G. « is automatically
continuous by definition of the topologies involved, and it is one-to-
one because a bounded linear functional on .% is completely determined
by its values on G, the latter being a fundamental set in &, « will
be a homeomorphism, therefore, provided only that every character in
I" be the image of something in o(.%).

Our interest in this problem arose out of a desire to characterize,
in terms of action, when the spectrum of a unitary operator will fill
out the unit circle. An appropriately translated version of Theorem 1
gives the following criterion: the spectrum of a unitary U is the entire
circle if, and only if, for every integer n = 1 there exists a nonzero
vector & such that & U¢, ---, U*é are mutually orthogonal.

Versions of the sufficiency part of this problem have been considered
before. Some time ago, Kodaira and Kakutani (6) showed essentially
that « is onto I” when G is the discrete unitary group determined by
the left regular representation of a locally compact abelian group in
its own L, space. Their proof involves the Plancherel theorem and is
not available in this context. Recently, A. Ionescu-Tulcea (5) has
shown that if U is the unitary operator induced in L, of a o-finite
measure space by a nonperiodic invertible measure preserving trans-
formation, then the spectrum of U is the entire unit circle.

2. Examples, First, let us note that the definition of nondegener-
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acy applies equally to unitary groups which are not necessarily abelian.
Let G be a unitary group on 5. Using the facts that G is a group
and that unitary operators preserve orthogonality, it is easily seen that
nondegeneracy is equivalent to the following condition: for every
finite subset F of G such that I¢ F, there exists a nonzero vector &
in 27 such that & U¢ for every U in F,

The unitary group determined in L, by the left regular represent-
ation of a locally compact Hausdorff topological group is nondegenerate.
This situation is really a special case of the following more general
example from ergodic theory. As it is not our intention to enter a
lengthy discussion of measure theoretic details for this example, we
shall merely sketch results, all of which are known in one form or
another. Let X be a locally compact Hausdorff space and let m be a
regular Borel measure on the o-algebra <% of Borel sets in X (4). By
a measure preserving transformation (MPT) we mean a mapping
0 : X — X such that, for every Be <%, 07 (B) = {xr € X : o(x) € B} belongs
to &2 and m(c~(B)) = m(B). The set of all MPT’s of X form a
semigroup S with identity under the multiplication (o7)x = o(zx), 0,
7€ S, xe X. Let G be a subgroup of S whose identity is the identity
of S. For ¢ e @G, define the operator U, on L, (X, &, m) by (U,f)(x) =
floc™'x), feL,, Then o6— U, is a unitary representation of G on
L(X, <Z, m). The group G is said to be freely-acting if, for every
o € (G different from the identity and every Be <& such that m(B) > 0,
there exists a Borel subset A of B such that 0 < m(4) < - and
m(ANo*A) = 0. This definition is esssentially von Neumann’s and a
discussion of it can be found in (3). If G is a freely-acting group of
MPT’s, then by choosing nested subsets in the obvious way, we con-
clude that for every finite subset ¢, ---, 0, of G all different from
the identity, and every Borel set B such that m(B) > 0, there exists
a nonnull Borel subset A of B such that m(A) < « and m(ANo;'4) = 0
for k=1,2, ---,n. By considering the characteristic function of A4
as an element of L (X, &2, m), it follows, first, that the representation
¢ — U, is faithful (o # identity — U, # I) and, second, that the action
of the image group {U,: o€ G} is nondegenerate.

Applying this to the first example, we need note merely that, with
respect to left Haar measure on a locally compact group, the group of
left translations constitutes a freely-acting group of MPT’s.

As a second example, let (X,.%; m) be a o-finite measure space
and let o0 be an invertible MPT on X which is nonperiodic in the
sense that, for every integer » = 1, there exists a set A =A4,e &
such that m(Ago—"4) > 0, 4 denoting the symmetric difference. Non-
periodicity is equivalent to the requirement that the unitary operator
induced by o in Ly(X,.%, m) generate an infinite cyclic group. Now
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it is not difficult to show that for every n = 1, there exists a set
Ac & such that 0 < m(A) < o and m(ANo*A)=0fork =1,2,--+,n
(e.g., see [5]). Again, by considering the characteristic function of A
as an element of L,(X, & m), it follows that the infinite eyclic unitary
group induced by o in L, is nondegenerate.

3. Action and spectrum. We turn now to the main result of
this paper. The notation of § 1 remains in force.

THEOREM 1. Let G be an abelian unitary group on 57, generating
the C*-algebra .&7. In order that the image of o(.) under the
natural mapping « be all of I', it 1s mecessary and sufficient that
the action of G be mondegenerate.

In this event, of course, @ will be a homeomorphism. We begin
the proof of sufficiency with an elementary lemma.

LEMMA 1. Let G be any subset of the unitary group in an abelian
C*-algebra &7, and let v be any complex-valued function defined on
G. In order that there exist an w € o(.7) whose restriction to G is
v, it 18 mecessary and suffictent that

inf || Ug — w(UYE =0,

lléli=1 k=1

for every finite subset Uy, ---, U, of G.

Proof. (Necessity) Let weo(%), U, ++-, U,eG. Clearly it
suffices to show that

inf 3 (| U& — o(U)E|F=0.

l1éll=1 k=1

Let
A =3V = o(UIDUs - o(U)D)

Then A is a positive operator in .o If
inf (A¢,8) =¢>0,

Héll=1
then A — el = 0 which implies that A is regular. But by construction,
the image of A, under the Gelfand mapping, has a zero at w e o(.¥),
a contradiction. '
For sufficiency, note first that |v(U)| = 1 for every Ue G. Indeed,
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if |£]|=1 and UeG, then
U —v(O)l = || UEN — [v(O)[[€N ] = 11— [7(U)]];

and by taking the infimum over |[&]| =1, we get |1 — |v(U)|| = 0.
For every Ue G, define

K, ={wed():wo(U) =vU)}.

We have to show that N K, # ¢. Since each K, is a compact subset
of 0(.), it suffices to show that these sets have the finite intersection
property. Fix U, ---, U,e G and let

A= 37 (UYUie.,
the bar denoting complex conjugation. Then for every &e 57,
| As — ¢l = lln‘lkﬁ;(’Y(Uh)Uké - E)Il
= w7 BTN UE — &1l = w7 31 1| Ui — 1k

So, by hypothesis, inf|[(A — I)&é|| =0, ||é]| =1, implying that A — [
is not regular. There exists, therefore, an element ®e d( %) such
that

1= o(l) = o(4) = n kg F(U)o(U,) .

Since each summand has unit modulus and 1 is an extreme point of
the unit dise, we have ¥(U,)w(U) =1 for k =1,2, .-+, n. Therefore,
we Ky N --- N Ky, completing the proof of Lemma 1.

The author is indebted to Professor H. A. Dye for suggesting the
following line of argument, thereby simplifying considerably the proof
of sufficiency. The proof of Lemma 2 is based on an argument of
Dixmier [2]. We shall write | F'| for the number of elements in the
set E, and E\F for the set-theoretic difference consisting of those
elements of E not in F.

LEMMA 2. Let F be a finite subset of an abelian group H. Then
for every € > 0 there exists a finite subset S of H such that

|FS\S| =¢8],
Proof. Say F = {x,, @, -+, %,}. For every r = 1, let
F,={xnwpeccaxn: 1 =7, =71}

The sequence F, is increasing and FF,C F,.,.. We claim |F, | =
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1 +¢)|F,| for some ». Otherwise, |F,.,|> @+ ¢)|F,| for all
r=1 and hence |F,|> (1 +¢)'|F,| =1 + ¢ This means that
1+ &) < v for every r = 1 since by construction | F,| < »*, which
is absurd.

Choose such an 7, and let S = F,. Then

|FS\S| = [Fri\F, | = [ Fopi| — | F, |
=149 |F|—|F|=¢[S],

proving Lemma 2.

Now let F' be a finite subset of the given group G, and let ve I".
By Lemma 1, it suffices to show that for every & > 0 there exists
Ees#, ||&]] =1, such that

max || US — v(U)¢ | = max [[7(U)Us — &[] = 2¢.

Let F' = {7(U)U: U ¢ F} and let G’ be the group {7(U)U: U €G}.
It is clear that G’ is a nondegenerate subgroup of the unitary group
in % By Lemma 2, there exists a finite subset S C G’ such that
|F'S\S| =<¢|S|. By nondegeneracy, choose a nonzero { € 5# such that
V¢ 1 WE for all W=7V in SUF’S.

Let & :V% VL. Clearly [|€]P=1|S|-||C]F>0. If WeG’, then

Wé—&=VE-3V(
ws S
WS\S S\ws§
since the summands cancel over S N WS. Now

|S\WS|=[S|—|SnWS|=|WS|—|SnWS|
= |WS\S|;

so that, if W e F’, then by orthogonality

|WE =&l = (WS\S| + [S\WS]) [ £IF
=2|WS\S|ICIF =2 F'S\S||IC]!
=2 [ST[CIF =2 &P

The disired conclusion follows by normalizing é&.

It remains to prove that the condition is necessary. Let F' be a
finite subset of G such that I¢ F. Assume first that F' contains both
self-adjoint and non self-adjoint elements, the distinet self-adjoint
unitaries being U, -+-, U,. For each of the remaining elements V, V'
and V! are distinet: we discard one of them from F when (and only
when) both are present. Let the distinct elements remaining be
Vy +++, V.. Clearly the sets
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{Uu M) Um}y {Vly 0y Vn}y and {Vl_ly M) Vf—z.l}
are disjoint, and if
F0:{U1"°'y Um’ Vn"'y Vn}y

then & | Fé=¢ | Fi&, for every &€ 57,

Now suppose & | F\¢ fails for every £ = 0 in 5#. Let & be the
real vector space of bounded linear functionals o on .2 which are
self-adjoint in the sense that o(T*) = o(T) for all T, and let 2 be the
subset of 27 consisting of all canonical states w(T) = (T¢, &) || &|] = 1.
Observe that 2 is convex. For let & ne =2, ||&]|=||n|| =1, and
take ¢ in the unit interval. Consider the linear functional

Oo(T) = 00(T) + (1 — O)w,(T)

defined on the weak closure & of & As p is weakly continuous and
&7 is an abelian von Neumann algebra, p already has the form p = w;
for some {e 27 (see (1), p. 233). We have

ICIP=o)=0]EIF+ A —=0)I7lF=1

and hence the restriction of o to % is in 2.
Consider now the linear mapping

o€ g — (p(Ul), ccy p(Um)y (O(Vl)y ] p(Vn))
of ¢ into the m + 2n -dimensional real vector space
R*@DCr = {1, *++) Ty 21y 1 2,) i ;€ R, 2;€C},

where as usual R and C denote the real and complex number fields.
The image K of 2 is a convex subset of R™ P C*, and by our assumption
on F,, K does not contain the origin. By a standard separation theorem,
there exists a nontrivial real linear functional f on B™ & C* such that
AK) =z 0.

It is easily seen that f has the form

f(xly ety Ly Ryy * 0, zn) = kzz:llakxk + gb,-z,- -+ 2{ Ejij
where a,€ R, b;e€ C. Define the operator Te . by
TZZakUk’FijVj-I-EEjV{l.
For every e 27, ||§]| =1, we have

0(T) = 3 0,04 Uy) + 3 0,0(V) + X 5,0V )
= f(wé(Ul)’ t wf(Um)’ (')e(v1)y ct wG(V’IL)) =0.
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Therefore, T is positive. By hypothesis, we may identify o(.%7") with
I’ by virtue of the homeomorphism «, the Gelfand mapping Ae . —
Ae C(I') taking G isomorphically into the character group of I". The
continuous function

T == Zakﬁk + ijf}j + Z EjVj—l

is nonnegative everywhere and its Haar integral is zero because the
characters (7,,, 17,,, V,:‘ are all different from the function 1. Hence 7T
vanishes identically. But by construction the characters on the right
are distinct and therefore linearly independent, so that

a'1: oo o :am:bl’—_ oo e :bﬂ:o’
contradicting our choice of f.

A parallel argument applies if the original set F' consists entirely of
self-adjoint or non self-adjoint elements, One merely replaces B™ @ C*
with BR™ or C* depending on which case occurs. This completes the
proof of Theorem 1.

We conclude this discussion with a few remarks. If G is any
nondegenerate unitary group, .%7 is the generated C*-algebra, and
3(7) is the state space consisting of all positive linear functionals p
on & such that o(I) = 1, then there exists an element ¢ € ¥(.%) such
that @(U) = 0 for every U in G different from the identity. Indeed,
the sets

Ky = {pe 2(%) : o(U) = 0}

are weak*—compact subsets of X(.97), and by definition of nonde-
generacy, every finite intersection (for U = I) contains a canonical
state. Thus

NK,+ o .

U#I
Of course the state ¢ is uniquely determined by this condition. If G
is abelian, then ¢ may be identified with the Haar integral over
I' = 0(5), and it is, therefore, faithful in the sense that o(7T*T) =0
implies T = 0, for every Te€.%. In general, a simple continuity argu-
ment shows that ¢(ST) = @(T'S) for every S, Te .

We intend to publish elsewhere a more complete discussion of the

existence of a finite normal trace, with such properties, defined on the
von Neumann algebra generated by a given discrete unitary group.

1 C(r') denotes the algebra of all complex-valued continuous functions on I".
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