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A THEOREM OF LITTLEWOOD AND LACUNARY SERIES
FOR COMPACT GROUPS

ALESSANDRO FIGA-TALAMANCA AND DANIEL RIDER

Let G be a compact group and f< L%G). We prove that
given p < co there exists a unitary transformation U of L¥G)
into L*G), which commutes with left translations and such
that Uf <€ L®. The proof is based on techniques developed by
S. Helgason for a similar question. The result stated above,
which is an extension of a theorem of Littlewood for the unit
circle is then applied to the study of lacunary Fourier series.

The following two results concerning Fourier series of functions
defined on the unit circle were proved by Littlewood [5]:

I. Suppose that for any choice of complex numbers «,, with
la, | =1, 3 a,a,e" is the Fourier series of an integrable function
(or a Fourier-Stieltjes series) then 3, |a,|* < co.

II. Let S.|a,®? < es. Then given p < <o there exist complex
numbers «,, with |«,| = 1, such that 3, «,a,e"™* is the Fourier series
of a function in L".

Helgason [3] has generalized I to Fourier series on compact groups.
Let G be a compact group with normalized Haar measure dx. If
fe LYG) then f is uniquely represented by a Fourier series

f@) ~ 3,4, Tr(4,D (@)

where Tr denotes the usual trace, I” is the set of equivalence classes
of irreducible unitary representations of G, D, is a representative of
the class v, d, is the degree of v, and A4, is the linear transformation

given by
4,= | @D,z .
Helgason has proved

I'. Suppose that, for any choice of unitary transformations U,
on the Hilbert space of dimension dy, >yerdyTr(U,A,Dy(x)) ts the
Fourier series of an integrable function (or a Fourter-Stieltjes sertes)

then
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>, 4, Tr(A,A7) < oo .
YEI
In view of the Schur-Peter-Wey! formula

|, /@) Fde = 5, Tr(4,49),

Helgason’s result is an extension of I.
In this paper, using Helgason’s techniques, we propose to extend
II to compact groups in the same sense. That is we prove

II'. Let 3\ d,Tr(A,A;) < . Given p < co there exist unitary
transformations U, such that > d,Tr(U,A,D,(x)) ©s the Fourier series
of a function in L°.

This is accomplished as in [3] by proving and exploiting the
‘“‘lacunarity’’ of a certain subset of the space of irreducible unitary
representations of the product group [l;es Uld;) where U(d;) is the
group of unitary transformations of the Hilbert space of dimension d;
and S is an arbitrary index set. In the last section we discuss in general
lacunary properties of subsets of the space of irreducible representations
of a compact group.

2. The main result. For a positive integer n let U(n) be the
group of unitary transformations of the Hilbert space of dimension .

The normalized Haar measure on U(n) will be denote by dV.

LEMMA 1. Let A be an n X n matrix. Then for s=1,2,3, .-

(1) SM | Tr(AV) [#dV < %fl [Tr(AA*))*

where B(s) ts a constant depending only on s.

Proof. Since dV is left and right invariant it is sufficient to prove
the lemma when A is diagonal. Letting e, e, --+, e, be a basis for
the Hilbert space on which A and V act and a; = {Ae;, e,>, v; = Ve, >
we have
a.

igs—1" %28

(2) | 1Trav) ey = Saa,aa, - a
U(n)
2 izs

. S VU, o0 Vg 0, AV
Uln)

where the sum extends over all ¢, 4%, --+, %, such that 1 =<1; < n.
Each integral in the sum is of the form
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(3) |, viidts e opgd v

U.n)
Now each such integral is zero unless j, =%k, -+-,7, = k,. Forlet W
be a diagonal unitary matrix with elements «; of modulus one on the
main diagonal. Then by the invariance of dV, (3) becomes

S 1{ Ve, e>ie;, VeS<dV
Uln) 1=1

= §U' s ﬂ < WVe“" ei>ji<ei’ WVei>kid vV

= 1T ariss S 1 Ve,, e>ie;, VerdV .
=1 Uin) i=1

Thus if the integral is not zero, [[%,afi % =1, for all choices of the

«;. Clearly this is possible only if j, = k,, -+, j, = k,. Thus the sum

(2) is equal to

(4) Sla Fagl .- |a,~skfgw)!vilt2 e o AV
We shall see that for each integer s

(5) [ vpay =2 (6=1,2-)

where B(s) depends only ons. It then fdllows from Holder’s inequality

that the integrals in (4) are bounded by B(s)/n* so that (4) is majorized
by

§(_~j‘)_ Sla e e = B;(.'?. [Tr(AA®)],
n n

and the lemma will be proved.

It is sufficient to calculate (5) for 7= 1. Let U(n — 1) be the
subgroup {T € U(n): Te, = e}. The space Un)/U(n — 1) of left cosets
{(V=VU(n —1): Ve Un)} can be identified with the unit sphere I,

in a complex n-dimensional Hilbert space. Since v, is constant on these
cosets

[ npav={ i<ve,edrav=| 0,7
Ui In (wy(2+ oot lwy|2=1
where dV is the unique normalized measure on X, invariant with
respect to U(n) and
Ve, = we, + +++ + w,e, .

If we identify ¥, with the real (2n — 1) dimensional sphere S**~
in real 2n-dimensional space and dV with dw, the normalized invariant
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measure on S**~, then
(6 ) S I v, Iz’dv = S , . (xi- + x;)adw .
Un) x1+...+z§n=1
By Minkowski’s inequality and the invariance of dw (6) is bounded by

2n—2 1
28 gsgn—l redw = 2° ._:g_%%_ S a2l — )1 — xf)‘”zdxl

oim+1)2

m+1
r(™5)
m-dimensional unit sphere. Thus the integral in (6) is bounded by

otn—1)2 ) I’'(n) . [’(s + _;—) F(” - é‘) < B(s)
I’(n . _;_) 2 C'(n + s) = n

where 2(S™) = is the Euclidean surface area of the real

28

which proves (5).

COROLLARY 2. Let J be the canonical representation U— U of
U(n) and J, , be the tensor product of J, s times and J, the conjugate
representation, t times. J, , decomposes into at most B(s + t) irreé-
ducible components. If s+t then mone of the components is the
tdentity representation.

Proof, If 7%, is the character of the representatién T, then
Xag. (V) = (V) U(V)) = (Tr(V))(Tr(V))'. Thus by the lemma

[, 1% (V)FAV < B+ 1),

which proves the first statement,
The number of times the identity representation occurs in J,,, is

S s, (V)AV = S (Tr(VY)<TrVY)dV = 0
Uln) Uln)

if s # t by the statement following (3).

LeMMA 3. Let G = Jlies U(d;) be a product of unitary groups
Uld,). Let F(V) be a function on G of the form

FV)= % a;Tr(A;V;)

where A; is a d; X d; matrixz and V; is the projection of V on U(d,).
Then
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|, |1 F) av < Be)(| | F(V)Fav)
where dV is the normalized Haar measure on G,
Proof., It suffices to prove the lemma when
F(V) = S dTr(4V) .

Then
(1) | 1Fv)Fav

_ x|
where the sum extends over all 4, ---, %, such that 1 <4; < N. By

the corollary the only terms in the sum which do not vanish are those
of the form

dilTT(Ail Vil)dizTT(Aiz Vi2) e dizs(Aizx ViZs)d V

Udj) X xUldy)

(8) a3 | Tr(A, Vi) [P e di [ Tr(A, Vo) AV .

SU(di)x-uxU(dn)
By Holder’s inequality (8) is majorized by
d e d, [S | Tr(A, V) °d Vil]”’ [g | TAA, V) F"dVi,]m .
Utdy;)) Uldgy)

which by Lemma 1 is majorized by

dz -+~ B(s) TT(;L,AZ) oo Ir(AAY)

d

i is

Hence the left side of (7) is bounded by
Bs) [ S aTraan | = Bo | 1anrav],

where the equality follows from the Peter-Weyl formula.

Now let G be an arbitrary compact group and I be the set of
equivalence classes of irreducible representations of G. Let d, be the
degree of the class v. Then G = [l,er U(d,) is a compact group which
can be thought of as the group of unitary transformations of L*(G) into
L}G) which commute with left translations. That is, if V' is such a
transformation then V corresponds to the element {V,} € G such that

Vi@) ~ 3,4, Tr(V,4,D\(z)

whenever f(x) ~ Syer Tr(4,Dy(x)) € L}(G).
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THEOREM 4. Let fe L¥(G) and p < oo, them for almost every
Ve@, Vie L*(G).

Proof. Let Vf(x) = f(V,2) = > d,Tr(V,A,D(x)). Then AV,x)
can be considered as a function on G X G. For fixed x€ G we have
by Lemma 2 that

[ 17V, o rav = B[ 177V, 0)Fav | = Be| 3 drra4n|

= Bo)| |17 rds]

so that

G

[ [l a sy = | | 17V, ravis
= B | | @ ras] .

Therefore if fe L*G), then for almost every Ve G, LI Vi) |2de < .

Letting s > p/2 we obtain the theorem.
We remark for later use that for some V

HVEl =1l VElle = 2B(s) || fll: -
Indeed the set of V for which

[,1 V7@ [z > 2B | | e rds |

cannot be of measure one.
We will also use the following

REMARK 5. Let fe C(G) be a continuous function such that for
all self adjoint Ve G, VfeC(G), then f(x)~ 3 d,Tr(A,D,(x)) with
>.d,Tr(l Ay]) < = (| 4,] is the absolute value of the matrix A4,). In-
deed letting f(x) = f(z") we can write f= (f + F)/2 + i (f — f)/2i =
Si+ife.  If fix) ~ 2 dyTr(Ay, :Dy(x)) (1=1,2) then Af .= A4,..
Therefore there exists a self adjoint V = {V,} e G such that A, ,V, =
| 4,,:]. Thus >.d,Tr(| A, ;| Dy(x)) is continuous so that applying a
method of summation as in [4, 8.3] we obtain that the partial sums of
>a,Tr(l4,,;) = > d,Tr(| Ay, ;| Dy(e)) are bounded. Thus >,d,Tr(|4,|) =
2.0, Tr(| Ay, () + 2 d,Tr([ Ay,2]) < oo

We shall call a series > d,Tr(A,D,(z)) satisfying >, d,Tr(| 4,]) < oo
an absolutely convergent series., The space of such functions will be
denoted by A(G). It is easy to see that A(G) consists of functions of
the type f*xg with f, g€ L(G). The space A(G) = L*(G)* L*(G) has been
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studied in [1].

3. Lacunary Fourier series. Given a compact group G we shall
say that a subset £ < I" of the set of irreducible unitary representation
of G is a Sidon set if it satisfles the following property:

A, A, Tr(l4,))) < == whenever >yerd,Tr(A,Dy(x)) is the Fourier
series of a continuous function (cf. [6, 5.7]).

A set Ec [’ will be called a set of type A(p) (or Eec A(p)) for
p > 1 if it satisfies

B. If 3hesd,Tr(A,Dy(x)) is the Fourier series of an integrable
Sunction then it is the Fourier series of a function in L (cf. [8]).

If B is a space of functions on G and £ < I we will denote by
B, those functions in B with a series of the form >},er d,Tr(A,D,()).
It is seen as in [8, 1.4] that Ee A(p) if, for some » < p, L, = Li.
Clearly A(p,) & A(p,) if p, = p..

If G = [lies Uld;) then S can be thought of as the set of irreducible
representations of G consisting of the projections of G onto the U(d,).
Lemma 2 shows that Se A(p) for every »p < «<. It is a simple matter
to prove that S is also a Sidon set. Indeed, if f(V) = %diTr(Ai V)

is a continuous function belonging to Cs(G) and if U = {1Ui}e G then

Ufv) = %diTr(Ai U.V,) = left translation of f by U,

is also continuous. It suffices to pick the U, so that A, U, =|A4;]
to obtain that Siesd,Tr(| 4;]) < .

We shall now establish a characterization of sets of type A(p) which
will imply that every Sidon set is a A(p) set for every p < «~. For a
group G denote by <2, = ZZ(G) the algebra of operators on L*(G)
generated in the weak operator topology by the operators {R,:yec G}
where R,f(x) = flzy). We shall use the fact [2, Th. 6] that <2, is
(isometric and isomorphic to) the dual space of a Banach space A” of
continuous functions on G. A* = A(G) the space of functions with ab-
solutely convergent Fourier series [1].

The isomorphism between .27, and the dual space of A’ is given
by T — ¢r where @i(f) = Tf(e). This correspondence is well defined
because every T € .52, maps each element of A” into a continuous
function, indeed an element of A°. We also have that &%, consists
exactly of those bounded operators on L? which commute with left
translations.

Now if Te€ &2, p > 2, then Te &2, and || T||%, < M|| T|| -, where
M is a constant depending only on p. For if fe L* then by Theorem
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3 there exists a unitary transformation U commuting with right trans-
lations (and therefore with elements of <2,) such that Ufe L?. We
can also choose U such that ||Uf||, < 2B(s) || fll. where B(s) is the
constant appearing in Lemma 1 and s > p/2 (ef. the remarks following
the proof of Theorem 4).

We then have that TUfe L* and U*TUf = TU*Uf = Tfe L*. Also
WTFll =1 U TUf . £ | TUfl = I TUFN S | Tllse, 1 Ul = 11 Tl 2,
M| f|l. where M = 2B(s). Therefore ||T||5z, < M|/ T|/=,. This im-
plies that 4* < A” and ||||,, = M]|||[,.. It is now a simple matter to
prove:

THEOREM 6. Let E S I' be a set of vrreducible unitary represen-
tations of G and p > 2. The following are equivalent:
(a) FE is a set of type A(p).
(b) If Te <z there exists S e <&, such that Tf = Sf for all fe L3,
(e) If fe Az then fe A* = A(G).
(d) Every closed subspace of L% which is invariant under left
translations is the range of a projection P belonging to %, which
18 self-adjoint in the sense that P, = P} for each velI'.

Proof. Let Ee A(p). Then L% = L% so that by the open
mapping theorem there exists B such that || f||, = B||f|l. for fe L}.
As L2 is invariant under right and left translations there exists a
projection P, of L* onto L% which commutes with right and left
translations, If Te ZZ, let S = TP, then ||Sfl, =||T|||| Pcfll, =
| T\ B||Pefll. = B||T|| || fll>» Thus Se %, and (a) implies (b).

Now assume (b) holds. If fe L% then by Theorem 3 there exists
Ue 2 such that Ufe L?; clearly Ufe L. Let Se &%, be such that
Sg = U*g for all ge L%; then SUf = U*Uf = fe L’. Hence L} = L}
so that (b) implies (a).

We now show that (a) and (b) imply (d). Indeed if (a) holds the
projection P; of L? onto L% is bounded in L”. Suppose the Y & L} is
invariant under left translations, let Py be the projection (belonging
to &) of L* onto the left invariant subspace of L’ generated by Y.
By (b) there exists Se <2, with S = P, on L. Then P,S = P; so
that Py e .

Suppose (d) holds and let U be a unitary self adjoint element of
.. Then U? = I so that P = (U + I)/2 is a projection which commutes
with left translations. Let Y be the subspace of L% generated by
PL:2 N L% Then Y is invariant under left translations so that by (d)
there is a self-adjoint projection of L* onto Y commuting with left
translations, Clearly this projection is PPy so that PP,c &2Z,. Hence
UP, = (2P —I)P; € &%,. Therefore UP.f is continuous for every fe A”.
In particular if f(x) ~ Sher d,Tr(A,Dy(x)) € A% then UP.f = Uf is



A THEOREM OF LITTLEWOOD AND LACUNARY SERIES 513

continuous. Therefore by Remark 4, A% = A(G).

Finally since A & A” with || f|| , = M||fll4, (c) implies that A, = A%,
so that, by the closed graph theorem, || f|l, = B[ fll,, for each fec A3.
Each T € & defines therefore a continuous linear functional on A% by
Tf(e). The Hahn-Banach extension of this functional determines, in
view of the duality between A” and .2z, an element S .&2 such that
Sf(x) = (SL,f)(e) = (TL,f)(e) = Tf(x) for fe A%; therefore S= T on
L%. Thus (c) implies (b) and the theorem is proved.

REMARK 7. It suffices for condition (d) to be true that every
closed left invariant subspace of L% is the range of a projection. In-
deed the argument used in [7, Th. 1] will show that such a projection
can be chosen to be left invariant (and therefore belonging to <Z,).

THEOREM 8. E = I is a Sidon set if and only if for each T e %,
there ewists a finite measure p on G such that Tf = fxp for each
fe L.

Proof. One applies the same duality argument used in the proof
of Theorem 6 (cf. also [6, 5.7.3]. Assume first that E is a Sidon set.
Then given T € &7, define a linear functional F' on C; by F(f) =
Tf(e). Then F' is well defined, since fe C; = fe A; by the closed graph
theorem F' is continuous and has a Hahn-Banach extension to all of,
C(G). That is, by the Riesz representation theorem there exists a bounded

measure g satisfying
F(f) = S fxdp@) for all feC,.
aq

Since T commutes with left translations Tf = fxpu for all feCj.
Conversely let E satisfy the hypothesis of the theorem, to prove that
E is a Sidon set, let f€C; and let T be an unitary element of <Z.
By hypothesis there exists a measure p¢ such that Tf = f+p. Hence
Tfe C(G) and by Remark 5, fe A.

COROLLARY 9. Ewvery Sidon set is a A(p) set for every p.

Proof. If p is a bounded measure and R,.f = fxp, then R, &z,
for every p. Therefore, by Theorem 8 if F is a Sidon set condition

(b) of Theorem 6 holds.

ReMARK 10. In [4, 9.2] a sufficient condition for a set ES I" to
be a Sidon set is given. This condition includes the requirements that
the degrees of the representations of E be bounded. The fact that for
II:es U(d;), S is a Sidon set shows that this requirement is not necessary.
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