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A TRANSPLANTATION THEOREM FOR
ULTRASPHERICAL COEFFICIENTS

RICHARD ASKEY AND STEPHEN WAINGER

Let f(θ) be integrable on (0, π) and define

an = [' f(β) cos nθ dθ , K = «1/2 ί* /(<?)P»(cos 0)(sin θγ'HΘ
Jo Jo

where Pn(x) is the Legendre polynomial of degree n. Then

(1) c ^ ±\an\Kn +

for 1 < p < oo, —1 < a < p — 1, where C and c depend on p
and a but not on / . From this we obtain a form of the
Marcinkiewicz multiplier theorem for Legendre coefficients.
Also an analogue of the Hardy-Littlewood theorem on Fourier
coefficients of monotone coefficients is obtained. In fact, any
norm theorem for Fourier functions can be transplanted by
(1) to a corresponding theorem for Legendre coefficients.

Actually, the main theorem of this paper deals with ultra-
spherical coefficients and (1) is just a typical special case,
which is stated as above for simplicity.

Let Pn

λ (x) be defined by (1 - 2rx + r2)~λ = 2,Γ=o P£(%)rn for λ > 0.
The functions P^(cos θ) are orthogonal on (0, π) with respect to the
measure (sin0)2λeί0 and

Observe that t« = Anl~K + O(n~κ) where A will denote a constant whose
numerical value is of no interest to us. For simplicity we set ψn{θ) =
ί£P^(cos 0)(sin θ)κ. The functions {ψn{β)}ζ^ form a complete orthonormal
sequence of functions on (0, π) which for λ = l reduce to {A sin (n+l)θ}ϊ.
Also limλ̂ o <Pn(θ) = A cos nθ so the functions φ^(θ) are generalizations
of the trigonometric functions which are used in classical Fourier
series. For uniformity we define φl[θ) = (2/π)m cos nθ. Later we shall
state an asymptotic formula for φ^{θ) which shows another close con-
nection with trigonometric functions. In essence it says that ψn{θ)
looks like cos[(w + λ)0 — ττ(λ/2)]. All of the facts about φ\ that are
quoted without reference are in [15]. Since φ\(β) are a bounded
orthonormal sequence we may consider their Fourier coefficients. Let
fe L\0, π) and define
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Let || α j | p = [ΣΓ=o I <*>n Γ]1/P T h e n using M. Riesz's inequality [12] for
K = Σik+* a>kl{n - k), i.e. || bn \\P ̂  Ap \\ an ||p, 1 < p < oo, and Hubert's
inequality, i.e. if cn = JSαJίn + fc) then || cn \\p ̂  Ap || an ||p, 1 < p < oo,
it is easy to show that 11 a\ \\9 ̂  Ap \\a°n || and conversely 11 a°n \\9 ^ Ap 11 a\ \|Pf

1 < ί> < °°. It is this inequality that we generalize to all λ > 0. For
some of the applications we actually want a slight generalization of
the above. Instead of considering the V norm we work in a weighted
V norm,

( 2 ) H α . | | , i β

These applications will be given in the last section.
Our main theorem is as follows.

THEOREM 1. Let fe L^O, TΓ) and define α£ as above. Then if
| |a Λ | | p , a is defined by (2) we have

(3) A ^ | | a i | | p . β / | | a ϊ | | , f β ^ A

for all λ, μ ^ 0 and l < j > < o o , — 1 < # < j> — i#

It will be sufficient to prove the inequalities (3) when μ < λ < μ + 1.
We first give in detail the proof when μ = 0 and 0 < λ < 1. The
formulas that we use in this case are all in the literature and are
reasonably well known. Also this proof is easier to follow than the
proof of the general case. Then we will sketch the proof for general
λ, μ, μ < λ < μ + 1. For simplicity we set a°n = an and use cos nθ
instead of φl(θ).

Let fr(θ) = χ : = o α Λ r Λ cos nθ. Since fr{θ) -+f(θ) almost everywhere
and boundedly in L1 we have

αi = lim (" fr{θ)φκ

n{θ)dθ = limίi [" fr(θ)P£(cos θ)(sin θ)λdθ
r-»l JO r-*l Jo

= lim ahrH\ Γ P£(cos θ) cos kθ (sin
Jo

We break the sum up into three parts, 0 ^ k ^ [w/2], [̂ ι/2] < fc < 2n
and 2^ g k. What we need in each of these intervals is a good

estimate for ί£ Γ PΛ

λ(cos ̂ ) cos fc(9 (sin θ)xdθ = G(fc, n).
Jo

Consider first the case k ^ 2n. We use the following well-known
representation for P*(cos θ) in terms of cos jθ.

(4) PΛ

λ(cos Θ) = Σ *&«-icos (n -
io
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where aό = (j)Jjl = Aj^1 + O(jλ~2). Then

G(k, n) = ± aja^tϊ Γ (sin 0)λ

j=0 JO

x [cos (k - n + 2j)θ + cos (k + n — 2j)θ]dθ .

Since I (sin 0)λ cos rθdθ = CKr"1-*) and A; ̂  2w we see that
Jo

Σi

For the theorem that we want the last estimate CHλr1) is sufficient.
Observe however that we actually have a better estimate. Because
of this it is possible to change Theorem 1 to get similar theorems
where the Fourier coefficients are defined by 1 f(θ)P£(cos 0)(sin Θ)λna dθ

Jo

for various values of a. A possible transplantation then goes to
\'f(θ)Pϊ+β(cosθ)(sinθ)λ+βna-βdθ. Or the (sin0)λ can be omitted from
both of these integrals. We mention these facts only because in the
dual case different transplantation theorems have been considered by
Muckenhoupt and Stein [11] and by the authors [3]. The reason that
both types of theorems are true is best seen in the proof of the present
theorem, which is essentially easier than either of the theorems in [11]
or [3].

Next consider G(k, n) for k ^ [n/2]β This time we need a formula
of Szego. For 0 < λ < 1

(sin 0)2λ-\P.λ(cos Θ)

where fo\ = 1 and

/•x _ (1 - λ)(2 - λ)» - (3 - λ) (n+l)" (n + j)

See [15, p. 96], A simple estimate shows that

Then

G(k, n) = θΓ£ n^fλn*-1 Γ (sin θ)^
Lj=0 J 0

x [sin (n + 2j - k + 1)0 + sin (n + 2j + k + l)θ]dθ\

V=i /
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As usual in results of this nature the region where k and n
overlap is harder to handle. This is because a Hubert transform of
some sort always seems to arise. This time we not only have the
usual Hubert transform but we also get a strange variant of it. The
transformation we encounter is

n fc=[n/2] I n — k + λ + 11

In § 2 we prove the following lemma, which we will use in the follow-
ing argument.

LEMMA 1. If {αj e lp>°, Kp< ooy _ i < α < p _ i, and

& = Σ α l o g n

n *«[n/2j I n — k + λ + 11

then | |6JU,α S Ap\\an\\p,a.

For reference we state a form of the asymptotic formula for
PΛ

λ(cos0) which we will use, [15, p. 195].
For 0 < λ < 1, ljn ^ θ ^ π/2

A cos

Γ(n + X + 1) (sin

ΰcos + λ + 1)^ - (λ + 1)-|Λ

where A and B depend upon X but not on n.

From this we have

έ£PM

λ(cos 0)(sin θ)λ = A cos Un + X)θ - ^ Ξ -

Bcos{{n+ X + 1)Θ(X+ 1)2-
+ i t

n sin

where 1/n ^ θ ^ π/2 and the 0 terms are uniform in n and ^. Also
we shall use the fact that ££P£(cos0)(sin0)λ are uniformly bounded
functions, [15, 7. 33, 6]. Instead of considering

Γ
Jo

Pw

λ(cos Θ)(BUL θ)λ cos Ίeθdθ

S jr/2

since the integrand is either even or odd with
o

respect to θ = π/2. Using (7) we get
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*'* PΛ

λ(cos 0)(sin θ)λ cos &0d0
o

= ί i Γ/2 PΛ

λ(cos 0)(sin 0)λ cos fcfcW + of—^
Ji/n \n/

= A f */2 cos Un + λ)0 — — 1 cos kθdθ
JI/Λ I 2 J

cos {(n + λ + 1)0 - (λ + 1)—} cos kθdθ
+ B\ i — 2J

The last two terms are O(l/n) and the first is A'/(n — fc +.λ) + O(l/n).
We need to consider the second term. Using the addition theorem

S ff/2

[{cos (n — k+ l)0}/sin ^]d^ + three more terms
lln

which are similar but easier to handle. Since 1/sin θ — 1/0 is a
bounded function for 0 < θ ̂  τr/2 we may instead consider

=zJL Γ/2

n Ji/»

c o s

Assume first that fc < w + 1 + λ. Then changing variables by
(n — k + \ + l)θ = y, we find

j = J L

The second term is O(l/ri) by an integration by parts. The first term is

cos ydy + ΰ; Γ«-*+λ+i cos ydy

i o g r + of

n n — & + λ + 1 \n

get instead that

n k — n — λ — 1

Using all of the estimates, we have

a
*«[n/2] n — k + λ

+ A v αfciOg
w *»c»/a] I n — & + λ + 11

+ θ\— Σ I ak ll + Km Σ αfcr
fcA(fc, Λ)
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where A(k, n) = Oik"1).
To show the lp'a boundedness of these sums we need two forms

of Hardy's inequality and M. Riesz's inequality for the discrete
Hubert transform as well as Lemma 1. The relevant forms of Hardy's
inequality are in [6], p. 255, #346 (a), (b), part (a). The continuous
analogue of the lp** boundedness of the discrete Hubert transform is
in [5].

Using these inequalities we see that the first and fourth terms
are bounded by Hardy's inequality. By dominated convergence we
may let r ~* 1 in the fifth term and it is bounded in l*>" by Hardy's
inequality. The second term is just the discrete Hubert transform
plus two terms like the first and last terms. Thus it is bounded in
l* ". The third term is handled by Lemma 1.

In actual fact the second and third terms given above are not
exactly right since the terms in which k and n have opposite parity
are zero. The notation to include this is too cumbersome to be worth
including and this point causes no trouble.

To show that | |α»||p,β ^ 4̂ | |αi | | Λ , β observe that (formally)

ak = \'fφ) cos kθdθ = £ α£ί£ Γ P»(cos θ) cos kθ{sin θ)λdθ .
JO n=0 JO

We have the same G(k, n) that we analysed above and so no more
work need be done on it. However there is the problem of Abel sum-
mability of ultraspherical expansions. Estimates for the Poisson kernel
which allows us to prove the dominated U convergence of the Abel
means are in [11, § 4]. The argument that is needed to prove this is
well known.

We now consider the general case of Theorem 1 with μ < λ < μ + 1.
The proof proceeds along the same general lines but the formulas for
P£ that we need are considerably more complicated. To take the place
of (4) we need the following result of Gegenbauer [4].

If 0 < a < β then

[n/2]

( 8 ) Pf (cos θ) = Σ α;-P«°-2,(cos θ)

where

- 2j + a)Γ(j + β - a)Γ(n - j + β)
a -

Γ(β)Γ(β - a)jlΓ(n -j + a+1)

Instead of (5) we need a result that follows from (8) and is given in
[2]. If (β - l)/2 < a < β then

(9) (sin θy*PZ(cos θ) = Σ βsPL^fiM 0)(sin θ)^
j0
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where

β _. Γ(β)22β~2a(n + 2j)! (n + 2j + β)Γ(n + 2α)Γ(M + j + /3)Γ ( j + £ - α)
Γ(/S - a)Γ(a)j\n\Γ(n + j + a + l)Γ(n + 2j + 2/3)

Observe that βs is positive if α < β. This result also holds for a > β
but then the coefficients are no longer positive and changes must be
made for a = β + 1, β + 2, •••, since the right hand side is then a
finite sum. A simple computation shows that

(10) as ~(n- 2j

and

(11) βj ~ (n + 2j)2-2βn2a-ψ-a-1(n + j)^-1 ~ (n + j)i~β-°n*«-ijβ-*-* f

for a < β. For a > β and a Φ β + 1, β + 2, , we have

\βj\~ (n + jy-β-«n*«-ψ-«-i β

By dj ~ bj we mean 0 < c ^ α̂  /δy ^ C < oo β

If in (9) we let n — 0 and use (1) we have

(12) I Γ (sin 0)2*P£(cos θ)dθ - O(j2β-2a~2) .

Next we need something to take the place of cos x cos y =
[cos (x + y) + cos (x — y)]/2 and sin xcosy = [sin (a? + y) + sin (a? — y)]/2.
For the first we use a formula of Dougall which is given in [9] and
reduces to it for λ —> 0. If λ > 0 then

PΪW P^) ψ c(k m n) P^x)

Pi® PUD

where cλ(fc, m, n) ^ 0 and 2 ^ £\(&, w, tι) = 1. We define cλ(k, m, n) — 0
if & < I n — m I or k > n + m and then we may sum on all non-
negative k. The numbers cλ are known [9], but we shall not need
them in our argument.

For the second formula above we use the following substitute
which again reduces to it for λ —• 0. If λ > 0 then

Pϊ+1(x) PX*) - ψ d ( k m n)

where dλ ^ 0 if n i> m — 1. This is found in [1]. From (14) it follows
that ΣΓ=o dλ(k, m, n) — 1 where dκ(k, m, n) = 0 if & < | n — m I — 2 or
k > n + m. Finally recall that

(15) Pϊ(l) ~ ^ 2 λ " 1 .
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These results are sufficient to allow us to estimate I φn(θ)φl(θ)dθ for
Jo

μ < λ < μ + 1 and k ^ n/2 or n ^ k/2. To estimate this integral
for k/2 < n < 2k we use the following asymptotic formulas due to
Szego.

LEMMA 2. Let μ > 0, μ not an integer. Then

x

π r Γ(μ)

- (m + μ)—
2 J

=o Γ(n + m + μ + ϊ)ml (2 sin θ)m+lλ

where

j J.\rp j v / | ^ D l l l \Jj IV J

and the 0 holds uniformly for 0 < θ < π.
For μ = 1, 2, 3, we have

LEMMA 3.

m + μ — l\/w- + 2// — 1

m /\/i — m + 1

cos (w + m + μ)θ — (m + //)-^
X

[(2sin#)(ra + μ)]

The same estimates hold for an error term in Lemma 3 as in
Lemma 2 if one stops before m = μ — 1. These two lemmas are in
[14, p. 49 and p. 59]. In fact we do not need the full force of either
of these Lemmas but they are relatively inaccessible and not as well
known as they should be.

Now to complete the proof of Theorem 1. Let μ < λ < μ + 1
and fr(θ) = Σ Γ = o < ^ W ) . Then by dominated convergence and the
boundedness of the Abel means of an ultraspherical expansion we
have

α£ = lim ^ frφ)φXΘ)dθ = lim Σ α£rfc (* φΐ(θ)φϊ(θ)dθ .
r~*l~~ Jo r-*l~ lc=0 Jo

As above we need to estimate I φ\(θ)φiφ)dθ = G(k, n) for three cases,
Jo

k 5g n/2, n/2 < k < 2n, and 2n ^ k. Consider the third case first.
Using (8) and (13) we have
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G(k, n) = ίiίg Γ P£(cos θ)P£(cos 0)(sin
J

= Σ

2 . y ί l ) Σ eμ(l, k, n -

Γ Pz

μ(cos 0)(sin
Jo

Then using (10), (12), (15), and recalling that cμ(l, k, n - 2j) == 0
unless k — n + 2j ^ I ^ k + n — 2j and so Z ~ k.

For simplification of printing we use n,k,j in the following argu-
ments instead of n + 1, k + 1, j + 1, etc. This leads to some infinite
terms which clearly aren't infinite and they are to be interpreted in
the obvious way.

[n/2]

I G(k, n)\£Σ* (ny-k(ky-»(n - 2j + μ){j)λ-*-ι{n)κ-»-\n - 2j)2^1(ky-χ-2

i=o

^ A(n/k)κ(k)-1 ^ A{k)-X .

Next we consider G(k, n) for A; g tι/2. Using (9) and (14) we have

G{k, n) = Σ <i<*iδi Γ -Pί (cos θ)P:+2)(cos ff)(sin θ)3fί~λ+2dθ
i=o Jo

Pμ + 1(cos (9)(sin <9)μ-λ(si

This time dλ(lf kyn + 2j) = 0 unless n/2 + j ^ Z ̂  2n + ±j (actually
it is zero for many values in this range also but that doesn't matter)
and so I ^ n + 2j and thus using (11), (12), and (15) we obtain

I G(k, n) I g Σ M1-W"'Wμ~1/2 i Γ P£fi(cos ί)(s
.7=0 Jo

^ Σ
j=o

Σ
.7=0

For the terms with k/2 ^ n ^ 2k we use Lemmas 2 and 3. As
in the case μ — 0, 0 < λ < l we first reduce the integral to

P φλ

n(0)φΐ(θ)dθ + Oin-1)
l/n
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and then terms of the same type as previously appear. The proof is
then finished by the same appeal to Hardy's inequality, M. Riesz's
inequality, and Lemma 1.

Theorem 1 then follows by a repeated application of the inequalities
just proven.

2* A lemma* We now give a proof of Lemma 1. Recall that

n *-[«/a] I n + X + 1 — k \

We define Ak = Σί-i /*] α ; T h e n

= - Σ
n fcL/2

n , 1 1 Λ Λ , n

— ?
n

n

+ λ + 1 —• k\
— log- W

71 + λ —

_ _ _ I

n

n + λ —

λ + 1 —

where Rn is a bounded sequence in lp>" if {αj G lp*°. But

log
λ — k

n+X+l —
= -log 1 +

k — n —
+ 0

So we have

1 2n
£_ v̂ »
^ fc«[«/2 + λ

I 2w

—τ + - Σ

(k — w — λ) 3

Ak

•m (k — n —

The second term is a bounded sequence in lp>° by [6, p. 198, #274].
We write the first term as

1 2Λ /I 2w

^ fc = [n/2] ft, + λ — k fc = l>/2 λ —

Ak

7l(& — λ)

But A4/(fc — λ) is in lp>a and so we have that {bn} is an lPt" sequence
by Hardy's inequality and M. Riesz's inequality for the discrete Hubert
transform.

A similar proof also shows that
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e . =
k \n'—k

is a bounded operator for a not an integer. If a is an integer the
transformations are bounded if the term when the logarithm is un-
defined is dropped.

A similar theorem is also true in the continuous case where an
integration by parts takes the place of our summation by parts.

3. Applications. Our first application is an analogue of a theorem
of Hardy and Littlewood concerning the Fourier coefficients of even
functions, monotonically decreasing in (0, π), [16, p. 130], Their
theorem is

THEOREM A. ' If f(θ) is a decreasing integrable function on (0, π)

and if an are the Fourier cosine coefficients of /, then

Σ I « . Γ(» + D β

is finite if and only if

O
iz "11/P

Q\f(0)\p0p-2+adθj

is finite, 1 < p < °o, —I < a < p — 1.

From this and Theorem 1 we obtain

THEOREM 2. Let f(θ) be decreasing and integrable on (0, π) and

f(θ)P£(cos 0)(sin θ)xdθ, 0 < λ. Then I Σ I α» \p(n + l)αJ is

^ n i ί β if and only if \[* \f(θ)\pθp-2-°dθΎP is'finite, l<p<c*>,

- 1 < α: < p - 1.
Another application is the analogue of the Marcinkiewicz Multiplier

theorem. In the case of Fourier coefficients it is due to Sunouchi [13]
for {an}eΓ and to Igari [10] for {αn}eϊp α.

THEOREM B. Let f(θ) e L\0, TΓ), an = \* f(θ) cos nθdθ, \ t(θ) \ ̂  C,
Jo

Γ Λ I dί(ί) I ̂  C , w = 0,1, .
Jjr2-»-l

Thenifbn=[πt(θ)f(θ) cos nθdθ and {an}elp>a, l<p<co, -l<a<p-l,
Jo

ft { 6 } Ϊ p d | | 6 | | A | | !!

From this we get a form of the Marcinkiewicz theorem for ultra-
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spherical coefficients.

THEOREM 3. Let f{θ) e Lι(0, π), an = ti [ f(θ)P£(cos 0)(sin θ)κdθ,

λ > 0, I t(θ) \gC,

Γ " \dt(θ)\g.C, » = 0,l, . . . .

Then if bn = «i Γt(θ)f(θ)P£(cos0)(sinθ)κdθ and if {an}e V>«, l < p < co,

-l<a<p-l "then {δj € lp>a and \\ bn \\p,a S A \\ an \\Pta.

For p = 2 Hirschman has already obtained a form of the
Marcinkiewicz theorem. If we let

then we get the projection theorem of Hirschman [8] but only for
ultraspherical coefficients. Hirschman proves his result for Jacobi
coefficients and presumably Theorem 1 is also true for Jacobi poly-
nomials. However this is still open.
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