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ON ABSOLUTELY CONTINUOUS FUNCTIONS
AND THE WELL-BOUNDED OPERATOR

W. H. SiLLs

The author considers an operator 7' in a reflexive Banach
space X for which there is a bounded operational calculus
a— a(T') defined on AC(I), the algebra of absolutely continuous
functions defined on I = [0, 1] with the norm |a(0)| + Var; (@)
for a€ AC(I). Such operators, called well-bounded, have been
investigated by Smart and Ringrose (J. Australian Math. Soc.
1 (1960), 319-343 and Proc. London Math. Soc. (3) 13 (1963),
613-638). The present paper explores a new method for
obtaining the spectral theorem for this operator. Let AC, be
the maximal ideal of members of AC(I) which are zero at 0.
The method consists in introducing Arens multiplication into
AC:™*, the second conjugate space of AC,, and in investigating
the larger algebra for a suitable family of idempotents which
will serve as candidates for bounded spectral projections
associated with 7. Idempotents in AC;™ are mapped into
these projections by means of a homomorphism extension
technique which extends the original operational calculus of
AC, into B(X) (the bounded linear operators on X), to a
bounded homomorphism of ACy™ into B(X). The extended
homomorphism is defined on a quotient algebra of AC;™. This
quotient algebra turns out to be a copy of all functions of
bounded variation on I which are zero at 0 under the usual
pointwise operations.

Let AC(I) be the complex algebra of complex-valued, absolutely
continuous functions on I = [0, 1] with the algebraic operations being
the usual addition and multiplication of functions. This algebra is a
Banach algebra under the norm (see Section 3)

(1.0.1) lall = a(0) | + Var (a), ae AC(I) .

We shall consider a linear operator T in a reflexive Banach space
X for which there is an operational calculus ¢ — a(T') satisfying

l(T) || = Kllell, ae ACI) .

This operator, an example of a well-bounded operator, was introduced
by Smart [14]. Smart showed that 7 determines a bounded, strongly
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continuous family of projections {E,}, indexed on the real line, and he
proved the existence of the scalar operator

szgtdE’tx, xeX.

Ringrose [12] established that S = T and has recently [13] given a
more comprehensive treatment in which he considers the nonreflexive
situation.

In the present paper we explore a new method for obtaining the
spectral theorem for this operator in a reflexive Banach space. Let
AC, be the maximal ideal of members of AC(I) which are zero at 0.
Our method consists in introducing Arens multiplication into ACF*,
the second conjugate space of AC, and in investigating the larger
algebra for a suitable family of idempotents which will serve as
candidates for Smart’s projections. The algebra AC}* is neither
commutative nor semi-simple. Idempotents in this algebra are mapped
into projections in B(X), the algebra of bounded operators on X, by
means of a homomorphism extension technique which extends the
original operational calculus a-—a(7T) defined on AC, to a bounded
homomorphism of AC§* into B(X). Kamowitz has used this extension
procedure in [9]. When X is reflexive, the extended homomorphism
is defined on a quotient algebra of AC;*. This quotient algebra is a
copy of BV, the algebra of functions of bounded variation on I which
are zero at 0 (cf. [15]).

The algebra AC, and its conjugate spaces are discussed in Sections
3 through 5. The extension theorem is in Section 6 and Section 7 is
concerned with the well-bounded operator.

2. Preliminary notions. If X is a Banach space, X* and X**
will denote the conjugate space and second conjugate space of X,
respectively. The natural embedding of X into X** will be written
& — %, where #®*) = a*(x) for #* in X*. It is well known that X
is dense in X** when the latter space is provided with the weak*-
topology [4, p. 425]. Let A be a Banach algebra, with unit or not,
commutative or not, with elements a, b, ---. Let the elements of A*
be written f, g, ---. Denote those of A** by &, 7, ---. Arens multi-
plication is introduced into A** in three stages as follows: for fe A*
and ac A, fGOac A* is defined by (f® a)(d) = f(ab), for be A. If
ne A** and fe A*, n(© fe A* is defined by ( ® f)(a) = »(f © a), for
ac A. Finally, let & ne A** be given. Then & () ne A** is defined
by GO = 0O f), for fe A*. It follows that ¢yl = 141l lI7].
The map (© is bounded and bilinear at each stage of definition., As
is noted in [1, 2], (© is an associative multiplication in A** making
this space into a Banach algebra under the usual norm. The natural
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map a — @ is an isometric algebraic isomorphism, and if A is commuta-
tive, A is in the center of A**. Finally, we recall that for fixed
ne A**) the product & (7 is weak*-continuous in &e A**, and for
fixed ae A, & O 7 is weak*-continuous in ne A**, We note that A**
need not be commutative nor semi-simple even when A is (see Sec. 4,
[3D).

Let X, Y and Z be Banach spaces. Let 4 be a bilinear map of
X X Y into Z (written (x, y) — 24y) and suppose that

41| = sup {[ledy || : ||z || = llyll = 1}

is finite. Following Arens [2], we define the adjoint of 4 by the
map 4* : Z* X X —Y* ((z*, 2) — 2*4*x) where we put (*4*x)(y)=
2*(xdy), for zxe Z*,xe X, and ye Y. It is easy to see that 4* is
bilinear and has the same norm as 4. In later sections we shall always
consider a second conjugate space of a Banach algebra as a Banach
algebra.

3. Absolutely continuous functions. Let AC, be the complex
algebra of absolutely continuous ecomplex-valued funetions on I = [0, 1]
which are zero at 0, with the usual multiplication and addition for
functions. In this section, the formula for the Arens multiplication
in AC{* is derived in terms of corresponding finitely additive set
functions.

Let L, be the complex space L{I, .&#, m} where .& is the c-algebra
of Lebesgue measurable subsets of I and m is Lebesgue measure.
Consider the norm on AC, given by

lall={ |0s) |ds = Var @), ac AC,

where a’ is the almost everywhere derivative of ¢. The map a—a’
is an isometric isomorphism between AC, with this norm and L,. A
crude estimate yields ||ab|] =< 2||a||]|b]l. This norm is actually

submultiplicative on AC,.
LemMA 3.1. Under the above norm, AC, is a Banach algebra.

Proof. It is convenient to prove the lemma in L,. Let

(foa)®) = 1)\ 9(s)ds + o) | S@)ds ,

for f,9 in L, and tel. This is a copy of the multiplication in AC,.
We must show that ||fegll; = |fll.llgll;, where ||- ||, denotes the L,
norm, The produet fog is continuous in f and g since || fogl|;, =
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211 fl.Ilgll.. Henece, it is sufficient to verify the inequality we want
for linear combinations of characteristic functions of intervals as these
are dense in L,. Suppose that whenever e and d are intervals from I,
kooksll. = | k. ||. || ko |l;, where k, and k,; are the characteristic functions
of e and d. If f= > ak, and g= 3 Bk, ;» Where the intervals e;
are pairwise disjoint and the intervals d; are pairwise disjoint, then
1 flh= 21| ||k, |l and a similar statement holds for g. Thus,

Fog = (Sak,)o (S Biks) = 3 5 ablk,oka)

and

Feogll = 22 2l asl 1811 koo ko, = 11 Al Mgl

Hence, it is enough to establish the inequality for two characteristic
functions of intervals. This is straightforward and will be omitted.

If the unit function e(t) =1 is adjoined to AC,, we obtain all
absolutely continuous functions on I, AC(I) = AC, & {re}, N complex.
This algebra is a Banach algebra under the norm ||| = |8(0) | + Var (b)
by Lemma 3.1. Each maximal ideal of AC(I) consists of all of those
functions which vanish at a point ¢e€ I([10, the lemma on page 55]).
Equivalently, each multiplicative linear functional on AC(I) is a point
evaluation b — b(%).

LeMMA 3.2. The mnonzero multiplicative linear functionals on
AC, are of the form p(a) =a(t),0 <t =1, ac AC,.

Proof. If p is a multiplicative linear functional on AC,, it extends
to a multiplicative linear functional o on AC,P {\e} given by o(a + \e) =
m(@) + n. Since ¢ is a point evaluation, g is a point evaluation as
stated.

The spaces AC,, ACy and AC#* may be identified, respectively,
with the spaces L,, L., and L, where L., is the complex space L.{I, &, m}
with essential supremum norm which we will denote by N.(:). It is
well known that LX is isometrically isomorphic with the complex
Banach space ba{l,.&”, m} consisting of all finitely additive, complex-
valued set functions & defined on &, which vanish on Lebesgue null
sets and which have finite total variation on I with respect to &
([4, p. 296]). The total variation of & on a set EFe_&”, with respect
to &7, is given by

Var. (¢, E) = sup > | &(E)) |

where the supremum is taken over all partitions of K into a finite
union of mutually disjoint sets F; from &,
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In order to simplify notation we will use the same symbol for
corresponding elements in equivalent spaces. Whether a symbol denotes

a functional or a point or set function should be evident from the
context. Thus, we have the following formulas:

f@ = | r@a s, fe ACE, ae AC,
(3.2.1) !
&) = | F@dz6) fe ACs, ¢ ACT*
where || f|| = No(f) and ||§|| = Var. (¢, I).
The notion of integration of L. functions with respect to finitely

additive set functions as in formula (3.2.1) may be defined as follows:
for ¢eba{l, &, m}, fe L., Ec.&7, let

|, r@ase) = lim | f.6)ds0)
where f,(s) = > ai,kp, (s),n=1,2,8, -+, is a sequence of finite linear

combinations of characteristic funections of disjoint sets from & such
that N.(f — f.) — 0 and where

|, 7:6)d(6) = S au&(B N By -
This integral is finitely additive on . and
[ r@dee)| = Noh) Vare ¢, B) .
The formulas for the Arens multiplication are computed next.

LEMMA 3.8, If fe AC§, ac AC,, then for almost all tel,
(FOAO = | fEEds + fHal) .

Proof. Let F(t) = Sl f(s)a’(s)ds. Then F'(t) = —f(t)a’(t) for
1
almost all tel. If be AC, is arbitrary,

(FO®) = f@h) = | FE@@pOit+ | fOay
S SIF’(t)b(t)dt + S FOaR ()t

Since F and b are absolutely continuous, we may integrate the integral
containing F” by parts to obtain
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~FOue)L+ | oy + | reaoyod
= [ {7 @) + r0amp @ .
Thus, for arbitrary be AC,
FOa® = [ {| reaes + roemled: .

The lemma now follows.

LeMmA 3.4. If f is continuous on I and &eba{l, &, m} and
h(s) = &((0, s)) for 0 < s <1,R(0) =0, then

| 706 = | fedne)
where the second integral is a Riemann-Stieltjes imtegral.
Proof. The total variation of 2 on I,
Var (h) = sup {3 | h(s;)) — h(s;i_) |: O0=s, < ++- <5, =1}
I

does not exceed Var_. (¢, I), by definition of A and the finite additivity
of & By uniform continuity, f can be approximated uniformly on I
by step functions of the form

fEZZf(SDkeiy Nw(f—"fs)<5

where ¢; is an interval with end points s, s;;si€e; and 0=
8, < +++ <8, =1, The integral of f. with respect to ¢ is the Riemann-
Stieltjes sum

S = S F(sHh(ss) — hisi )]

and
s = [ reaze|=|| (e | = e
LEmMMA 3.5. If pe AC;* and fe ACY, then for almost all tel,
(@ N0 = | FEdn6) + 200, 0)50) .
Proof. Let be AC, be arbitrary. Then
(7 © N =71 OH = | (OB
= | {{ reweasianm + | rapoino = J,+ J.
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by Lemma 3.3. Let A(s) = 7((0, s)), 2(0) = 0. By Lemma 8.4, J, is
the R.S. integral

J.= | {|.repsjan .
After integrating by parts,
Jo= | 70, o s eyt .
For J;, define
2*(9) = | g0 7@, geL..

Then z* is a bounded linear functional on L. and, therefore, there is
a Yy ebaf{l, &, m} such that

(3.3.1) 2(9) = | o), geL.
and J, = 2*(b). By Lemma 3.4 and making use of the absolute conti-

nuity of b, we may integrate x*(b) as expressed in (3.3.1) by parts
to get

T, = bO¥(O, OO — | (0, )bt

= b (0, ) — | #(© YWDt = | wict, D)t .

Since
2 (ki) = | FEEE)

and z*(F,.,) = (¢, 1)) from (3.3.1), then

Jo=a®) = | v, vwwa = | {{ reae o .
Therefore,

@ ©HO = | {10,070 + | r@dnE oL

for arbitrary be AC,. This proves the lemma.
The multiplication in AC{* can now be put into concrete form.

THEOREM 3.6. If &,ne ACF*, the corresponding set function
E©Oneball, &, m} is given by
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(8.6.1) (EOE) = Sl{ka(t)v((O, 8) + n(E N @, 1)}dER)
for each Eec &

Proof.  Write (§©On)(&) = (EONks) =& Oks) and apply
Lemma 3.5.

4, Idempotents. With the aid of Theorem 3.6 we can identify
a large family of idempotents in AC}* and discuss their multiplication.
In this section we will find a special family of idempotents useful for
spectral theory.

Let @ be the family of nonzero multiplicative linear functionals
on L.. Each e @, when viewed as a member of ba{l, &, m}, is a
set function on & which assumes only the values 0 and 1. Let <&
denote the family of Lebesgue null sets contained in .&°. There is a
one-to-one correspondence between members of @ and ultrafilters
contained in & ~ < given by

U,=EeZ:pE)=1].

The next lemma is probably well known. A short proof is given for
completeness.

LEmMMA 4.1. There 1s a continuous map h from @ with the
weak*-topology onto I such that for each f continuous on I, ¢(f) =

f(h(p)), e @.

Proof. For each e @ define h(p) to be the point t €l to which
the ultrafilter U, converges. That is tosay, {{}=N[E:Ec ., p(E)=1],
where F is the closure of E in I. This map is onto I, since, given
te I, the filter base consisting of open neighborhoods of ¢ in I is
contained in & ~ <% and by Zorn’s lemma is contained in an ultra-
filter in & ~ #. If @ is the set function corresponding to this
ultrafilter, then h(p) =t. To show A is continuous, let F be a closed
neighborhood of ¢ in I and let ¢, € @ where h(p,) = ¢t. By the definition
of h it is obvious that the weak*-neighborhood of ¢, given by
[pe@:|p(F) — @,(F)| < 1] is mapped into F under h. To conclude
the proof, let f be continuous on I and let A(p) =t. Then

lo(f) —f@) | = gllf(S) — f (@) [ dop(s) = Svlf(S) — f(©) [ dop(s)
where V is an arbitrarily small neighborhood of ¢ in I.

DEFINITION 4.2. Let F, = [pec @ : h(p) = t],t €I denote the fiber
at t.



ON ABSOLUTELY CONTINUOUS FUNCTIONS 357

If pe F,, we will write ¢ = ¢,. Each member of F, assumes
the value 1 on each open neighborhood of tin I. If Ec . and t¢ E,
then ¢, (F) = 0 for each @, € F.

In the next lemma we consider multiplication between members
of fibers. We will adopt the econvention that ¢,((0, 0)) = #,((1, 1)) = 0.

LEmMMA 43, If0=s=t=1 Fe.&, and ¢, ¢, are members of
F,, F,, respectively, then

(P © PIE) = p(E)py((t, 1)) + .(E)P.((0, )

4.3.1
A3 o O p)@) = pdE)pd(5, 1) + o B)pd(0, 5)) -

Proof. First suppose that 0 < s < ¢ < 1. By Theorem 3.6,

(@ © P)(E) = SI{kE(u)%((O, u) + eE N (4, D)idp,(u) .

By the multiplicative property of ¢,, this is equal to

[, 20, . ) + 9B o, Dip,(w) .

Since  @,((0, )) = ki.n(w) and @(u, 1)) = kq,(w) except at some
endpoints, which can be ignored,

P OPB = | dow) + o) dpw

(0

and the first formula of (4.3.1) is apparent by the multiplicative
property of ¢,. The other cases and the second formula are verified
in a similar manner.

THEOREM 4.4. (i) Each o @ is an idempotent,
(i) If0<s<t=1 and o, p, are members of F,, F,, then

(4.4.1) P D= P, (O Py = @, .

Proof. (i) If pe®,9o=¢, for some sel. By (4.8.1),
(. © p)E) = @ (F) for each Ec <.

(ii) Sinece s < ¢, @,((t, 1)) = 0 and ¢,((0,¢t)) = 1. Formula (4.3.1)
implies that (p, © @, )(E) = ¢(E) for Ee <. Similarly, as ¢,((s, 1)) =1
and ¢,((0, 5)) = 0, we have (p, © @,)(F) = @,(E).

A finer classification of members of @ will be needed. If @, € F,,
it must assume the value 1 on exactly one of the intervals (0,s) or
(s,1), if 0<s<1l. We shall write ¢, = @] if @,(s,1)) =1 and
o, = @; if p,((0,s)) = 1. At the end points of I =[0,1], we must
put ¢, = @ and @, = ¢7; @ and @, are not defined.
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This classification splits each interior fiber into a positive and
negative part, F, = Fj U F;,0 < s <1, The next theorem gives the
Arens multiplication between elements of the same fiber. The non-
commutativity of the multiplication is evident in (i) or (iii).

THEOREM 4.5, Let @f, 7 € F;r and @7, vy € Fy for t as indicated
below. Then

(1) or Oy =gl if 0=t <1,

(ii) @ O¥r =47 Ol =@/ if 0<t <1,

(i) @r Oy =y of 0<Et =1

Proof. The proof is an immediate consequence of (4.3.1).

The multiplication between members of @ may be summarized as
follows: if ¢ <s in I, let F, preceed F,. In a given fiber F,, let
F; preceed F; when defined. If ¢ and + are any two members of
@ which do not both lie in a positive or negative part of a fiber,
their product is commutative and is equal to the one in the fiber ahead
in this ordering.

The remainder of this section is concerned with Theorem 4.6, Let
LE be the real space of equivalence classes of essentially-bounded and
real-valued &“-measurable functions on I with essential supremum norm
N.(-). Let MZ(M.) denote the space of all real-valued (complex-valued),
bounded and _&-measurable functions on [ with supremum norm.

THEOREM 4.6. There exists a function U: I — @ such that

(@ U@eFrifo=st<l,

() U@EN(S) = f(t) except on a Lebesgue null set depending on f,
for each fe L.,

(¢) sup{{U@(f)|:tel0, 1)} = Nu(f), f€ L,

d) U(-): L.— M. is an algebraic isomorphism,

(e) If fis continuous from the right vn [0, 1), then Ut)(f)= f(¢).

Proof. Let fe ME and let

PO =Tmn| " Feds, telo, 1),
(4.6.1) t

l

()W) =Tmn|  f(s)ds .

n

B8

Then p(f + 9)(¢) = p(f)?) + p(e)(¢) if f,geMZ,tel, and if =0,
p(af)(t) = ap(f)(t). By the Hahn-Banach theorem, for ¢e I, there is
a linear functional G(-)(t) on MZ to the real numbers such that

G = p(N@). Since —p(—1)(t) = G(f)E),
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t+1/n J— t+1/n

(4.6.2) h_nrgngt f(s)ds = G()() = linrn nSt f(s)ds , telo, 1)
and a similar formula holds for G(f)(1). By Lebesgue’s differentiation
theorem, G(f)(t) = f(t) for almost all teI and by completeness of
%7, G maps ME into itself. The properties of G include: (i) G(f) = f
a.e. onl, (ii) GA)=1, (i) f=0a.e. impliessG(f)=0, (iv) f=0
implies G(f) = 0, (v) G islinear. If G were also multiplicative the
proof could be concluded. A. and C. Ionescu Tulcea have given an
elegant proof that a closely related mapping is multiplicative in [8,
Prop. 4]. Following their proof, let ¢’, 6" be set mappings of & into
& given by

(4.6.3) O'(E) = [t: G(kg)(t) = 1], 0"(E) = [t : G(kg)(t) # 0] .

They show that the convex set consisting of all mappings G’ of MZ
into itself which satisfy properties (i) through (v) and which also satisfy

(4.6.4) kof(E) é Gl(kE) é kB"(E) ’ EG =z ’

has an extreme point H and that H is multiplicative on MZE. Since
H is defined on LE by (iii), the map f — H(f)(t), t € I, is a multiplicative
linear functional on LE. If we set U(@)(f) = H(f)(@) + t1H(f)(t) for
f = fi + if; in the ecomplex space L., where f,, f; are real, then U(¢)
is multiplicative on L., Formula (4.6.4) holds for U because it is true
for H. By (4.6.2) through (4.6.4), U(f) must assume the value 1 on
ki, if t€]0,1). Hence, U(t)e F;” as asserted. Part (c) is easy to
verify. For part (e), suppose t€[0,1) and that f has a limit from
the right at ¢t. Then

U = £+ 0| = || (76— 7+ Opr (e
= |"17@ = 7+ 0 1dpr(e)

for each ¢ > 0. Hence, U@)(f) = f( + 0).
The following corollary will be needed in the last section.

COROLLARY 4.7. If fe L, and Ut + 0)(f) exists for te]0,1),
then U(t + 0)(f) = UE)(S).

Proof. Let g(s) = U(s)(f),s€[0,1). As in the proof of part (e)
above, U(t)(9) = g(t + 0). Since f = g almost everywhere, U(s)(f) =
U(s)(g) for all s€[0,1). In particular, g(¢) = g(t + 0).

5. Functions of bounded variation. Let BV, denote the algebra
of complex-valued functions of bounded variation defined on I = [0, 1],
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which are zero at (, with the usual operations for functions. In this
section a quotient algebra of AC;* will be identified with BV,

Let A be a commutative Banach algebra. Let Y be the closed
linear manifold in A* which is generated by the multiplicative linear
functionals ¢ on A. Let

Yi=[fed &(p)=0].

Civin and Yood [3] have shown that (i) Y * is a closed two-sided ideal
in A** (i) A**/Y " is a commutative and semi-simple Banach algebra
and (iii) /2, the canonical image of g in A***, is a multiplicative linear
funetional on A** whenever g is multiplicative on A.

We recall (Lemma 3.2) that the nonzero multiplicative linear
functionals on AC, are given by point evaluations g,(a) = a(?), ¢ € (0, 1],
ac AC,. Let Y, as above, denote the closed subspace of AC; generated
by the g,’s. First we identify Y. Let Y denote the algebra of all
finite unions of intervals of the form [s,¢) for 0 <s <t <1. Let
B = B{]0, 1), 2} denote the Banach space of all uniform limits of complex
linear combinations of characteristic functions of sets from X with the
norm || f|lz = sup{| f(¢)|:t€[0, 1)}, fe B. Let Y. denote the closed
linear manifold in L. which corresponds to Y in AC; under the
isometric isomorphism between ACF and L. mentioned in Section 3.

LEMMA 5.1. The spaces Y., and B are isometrically isomorphic
under the map U(-) of Theorem 4.6.

Proof. By (3.2.1), if ¢€[0,1), then
(@) = | ko @)z, ae AC, .

Thus, point evaluations in AC? correspond to equivalence eclasses in
L., which contain characteristic functions of the form k,,. Hence,
Y. is the closed linear marifold in L. generated by such equivalence
classes. Since k,; is continuous from the right, its equivalence class
is mapped into k,, € M. under U(-). Hence, U(-) carries Y. onto
B and is clearly an isometric isomorphism.

Let ba denote the complex space ba{[0,1), 3} consisting of all
finitely additive, complex-valued set functions v defined on ¥ for which
Vars(y, [0, 1)) is finite. It is well known that ba is isometrically
isomorphic with B* under the correspondence

(5.1.1) 2*(f) = g{mnf(s)d«y(s), o*e B* veba,

where the norm of 2* is equal to the total variation of . A nice
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discussion of this integral may be found in [7; 4, p. 258]. Since Y
(which we identify with Y.) and B are iscmetrically isomorphic and
Y* and AC;*/Y*+ are isometrically isomorphic by general principles,
we conclude that AC;*/Y* and ba are isometrically isomorphic.

THEOREM 5.2. With the usual point-wise multiplication, BV,
1s a Banach algebra under the norm Var;(-) and is isometrically
algebraically isomorphic with the quotient algebra ACY*|Y .

Proof. If ge BV, and we define 7,([s, t)) = g(t) — g(s) for 0 =<
s <t =1, we obtain a member of ba. It is obvious that Var;(g) =
Var; (v,, [0, 1)). Conversely, for veba we may define g,(t) = ([0, ¢))
for 0 <t <1, g,0) =0, to obtain a member of BV,. It follows that
BYV,, ba and the quotient algebra are isometrically isomorphic as Banach
spaces. It remains to show that the multiplication induced in BV,
from the quotient algebra is the usual pointwise multiplication of
functions. It is apparent from the Hahn-Banach theorem and the
various isometric isomorphisms mentioned above that set functions in
ba arise precisely from set functions in ba by restriction to the
subalgebra ¥ < <. Thus, a general member of BV, may be viewed as

ge(t) = E([Oy t))) ge(o) = 0 E) é S ACSk* .

Let ne AC§*. By remark (iii) in the second paragraph of this section,
& O () = E(p)m(p,) for point evaluations g, on AC,. On the other
hand,

CERY () = | ootz = &(10,1)

and similarly, () = 7(0, £). Thus, if gee,() = (E O 7)([0, £)) corre-
sponds to & (97, considered as a member of ba, then Fean(t) = g:(t)g(2).

The noncommutativity of ACF* was shown in Theorem 4.5, Another
proof of this fact and a proof that AC}* is not semi-simple has been
given by Gulick [6] based upon methods of Civin and Yood.

6. Extension of a homomorphism. Let A be a Banach algebra
and suppose (©, is a bounded homomorphism of A4 into B(X), the algebra
of bounded linear operators on a Banach space X. Under the natural
embedding ¢ — & we may consider A as a subalgebra of A** with
Arens multiplication., In this section we consider the problem of
extending o, to the larger algebra. We recall that a net {T,} converges
to T in the weak operator topology in B(X) if and only if #*T,x —
2*Tx for each z*e X* and each xe X,
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THEOREM 6.1. If X is reflexive, o, has an extension to a
homomorphism p of A** B(X) such that

(i) lledli=llell

(ii) o ts continuous from A** with the weak*-topology into B(X)
with the weak operator topology.
Moreover, o s unique among all extensions of 0, having property (ii).

Proof. Define the bilinear map 4: X* x X — A* by (x*4x)(a) =
z*oa)x for ac A, x* e X*,xe€ X. Then 4 is bounded by |/p,|| and
the bilinear adjoint 4* is given by (§4*x*)(x)=E(x* 4x), & € A** (Section 2).
For fixed &e A**, this gives a linear map p,(§): x* — E4*x* of X*
into X* and | o\(§)a*a | = | (4 ") x| = [E@ )| = |[E1l] ool [l &> ([ 1]« .
Therefore, [|0.&) || = 1|&lllloo]] and p(&) is in B(X*). Since X is
reflexive, the operator adjoint o(£) of p0,(§) carries X into X, is an
operator in B(X), and satisfies

(6.1.1) x*o(&)x = &(x*dx)

for all e X and z*e X*, It is also obvious that || p(&) || = || 11| 0|l
Thus, o clearly satisfies (i) and is a linear extension of p, to A**,
Because z*4x e A*, it is obvious from Formula (6.1.1) that p satisfies
(ii). It remains to show that o is multiplicative and is unique subject
to condition (ii). Since each &e A** is the weak*-limit of a net {d,}
from A, an obvious computation establishes that Formula (6.1.1) may
be expressed as

(6.1.2) x*o(&)x = lim, z*p(a.)x , = weak*-lim, @, ,

for all xe X and x*e X*, If o' is any mapping of A** into B(X)
which extends p, and which satisfies (ii), it is easily seen, with the
aid of Formula (6.1.2) that o = ¢’. Now let & = weak*-lim, @, and let
n = weak*-limg by where @, and b; are in A. Then a@,©O7n=
weak*-limg @, @ 53 (see Section 2). By Formula (6.1.2), 2*0(@, © )& =
limg *0(3. © be)w = limg 20,(a,be) = lim, ©*0,(a.)0u(b)® = *ou(aa) o).
Since ¢ & n = weak*-lim, &, © 7, using Formula (6.1.2) again, we get
x*0(¢ O n)x = lim, x*o(a)oM)x = z*o(§)o(n)x. Since this holds for
each » and z*, o(§ © 7) = p(§)e(®).

With minor modifications the proof of Theorem 6.1 establishes the
following variant on that theorem

THEOREM 6.2. If A is a commutative Banach algebra and p, is
a bounded homomorphism of A inmto B(Y*) for some Banach space
Y, then p, has an extension to a homomorphism o of A** into B(Y*)
such that

(i) looll =1ell,
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(ii) If & = weak*lim, d,, € A**, a, € A, then pE)y*y =
lim, py(a.)y*y for all ye Y and y*e Y*.
Moreover, p ts unique among all extensions of o, having property (ii).

We shall only be interested in the reflexive situation as in Theorem
6.1. Let M denote the closed linear manifold in A* generated by linear
funectionals of the form x*4x, x* € X*, v € X. It is evident from Formula
(6.1.1) that the kernel of p is M*. Formula (6.1.2) implies that the
range of the extension p is contained in the closure of the range of
0o in the weak operator topology. Thus, if A is commutative, the
range of p is a commutative algebra of operators in B(X).

The question arises whether Theorem 6.1 can be applied to p in
order to obtain a further extension to A****, There are no further
nontrivial extensions by the method of Theorem 6.1.

7. Well-bounded operators. Let X be a reflexive Banach space.
Let T be the well-bounded operator mentioned in Section 1 with an
operational calculus a— a(T) where a € AC(I) and

(7.0.1) )| = K{ja()] + Var @}, I=10,1].

This operational caleculus is uniquely determined by its values on complex
polynomials as these are dense in AC(I) with the norm (1.0.1) (cf.
[14, Lemma 2.1]).

Let p, be the homomorphism p,(a) = a(7") induced on AC, by the
operational calculus. As in Theorem 6.1, o, has a unique extension
to a bounded homomorphism o of ACF* into B(X) such that x*p(§)z =
E(x*dx) for xe X, x*e X* and &e ACY¥. The existence of p and the
map ¢t — U(t) of Theorem 4.6 lead to the spectral theorem for 7. The
space Y and B mentioned below are defined in Section 5.

THEOREM 7.1. (i) If ze X,x*e X*, then x*dxe Y,
(ii) For each xc X, the vector valued function t— o(U(t))x s
continuous from the right in [0, 1).

Proof. By Theorem 4.4, if 0=<s=<t<1, U)QOU@E)=U@E)OU(s)=
U(t). Hence, {o(U(t))} for te[0,1) is a bounded and nonincreasing
family of projections in B(X). Since X is reflexive a theorem of
Lorech [11, Theorem 3.2] states that the function ¢— o(U(¢))x has a
limit from the right at each point of [0,1) and has a limit from the
left at each point of (0,1]. If x*e X*, the function ¢ — x*o(U(t))x =
U(t)(x*4x) has the same limit properties. By Corollary 4.7 this function
is continuous from the right in [0, 1). The space B can be characterized
as the space of all bounded complex-valued functions defined and
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continuous from the right in [0,1) and which have limits from the
left at points of (0, 1] (see [7], Theorem 4.,5]). Therefore, U(-)(x*4x)
is in B, By Lemma 5.1, z*4x is in Y (we identify Y. with Y).
This proves (i). To prove (ii), let s be fixed in [0,1). By Loreh’s
theorem, there is a z€ X such that z = lim,_, ., o(U(¢))x. Since x*z =
lim,_ 4, 2*0(U(¢))x = x*o(U(s))x for each xz*e X*, then z = (U(s))x.

COROLLARY 7.2. The kernel of o contains Y+,

Proof. Sinece M, the closed linear manifold in ACy generated by
the funectionals z*4x is contained in Y, the kernel of p, M+, contains Y+,

DEFINITION 7.3. For each te[0,1) choose a member V(¢) from
the positive side of the fiber F" (Sec. 4) and let

0if —c0 <E<0
EB=1I—poV#t)if 0=st<1
Tif1<t< o

where 0 and [ are the zero and identity operators in B(X).

THEOREM 7.4. The family of projections {E,} does mot depend
upon the choice {V(t)} (when X is reflexive) and satisfies

(i) E=K+1,

(il) EsEt = Emin(syt)y

(iii) lim,.,., B.x = E,x for each xe X,

iv) E,=0ft<0,E,=11ft=1,

Proof. Let t€[0,1) be fixed. By the definition of F;" any two
members, say V(¢) and U(t) agree as set functions on intervals of
the form [0, s) for 0 < s < 1. Hence, as functionals on AC¥, V(¢)(¢,) =
U(t)(¢.) for each point evaluation g, on AC, (see Formula (5.2.1). By
linearity and continuity, V(¢) and U(¢) agree on Y. Since X is
reflexive, o(V (¢)) = o(U(t)) by Corollary 7.2. The second statement is
clear by Definition 7.3 and Theorem 4.4, The third was shown in
Theorem 7.1 (ii).

At this stage it is an easy matter to obtain spectral integrals for
a T satisfying (7.0.1). Let a = (¢ — a(0)e) + a(0)e be in AC(I) =
AC, D {ne}. Let z*e X* and z€ X. Then

2*a(T)x = x*xa(0) + x*0oi(a — a(0)e)x
= x*za(0) + (z*4x)(a — a(0)e)

— w*wa(0) + Sl(x*dx)(s)a'(s)ds
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by Formula (3.2.1). By Theorem 4.6 we may replace (x*4x)(s) by
U(s)(z*4x) and by Definition 7.3 we have

(7.4.1) x*a(T)x = x*xa(0) + Slw*(I — E)xa'(s)ds .

This Lebesgue integral is a Riemann-Stieltjes integral by the absolute
continuity of @ and because the integrand, a member of B, has at
most a countable set of discontinuities. Also, by a slight generalization
of a theorem of Graves ([5, Theorem 1]) it can be shown that the
Riemann-Stieltjes integral

SJ(I — E)wda(s)

exists in X whenever a is continuous and of bounded variation on the
closed and bounded interval J, (A variant of the proof given in [5]
is valid for such an a because the vector valued function ¢ — E,x has
at most a countable set of discontinuities by right continuity ([14, p.
330])). We may suppose that ¢ is absolutely continuous on [—¢, 1],
& > 0. By these remarks, we may remove the z* from (7.4.1), integrate
by parts on [—¢, 1] and let ¢ — 0 to obtain the strong integral

(7.4.2) T = S:_a(s)dEsx , ae AC(I), ze X .

If the unit function e is adjoined to BV, we obtain BV(l)=
BV, @ {\e}, the Banach algebra of complex-valued functions of bounded
variation on I with the norm |g(0)| + Var;(9), 9 BV (). As in the
proof of Theorem 5.2, members of BV, arise from set funections
£e AC}* by the correspondence g.(t) = &([0, ¢)) for 0 < ¢t < 1, ¢.(0) = 0.
The notion of integration of functions in B with respect to set functions
in ba as in (5.1.1) is essentially the same as that given in the paragraph
after Formula (3.2.1). The only difference is that Y replaces & and
the sup norm on [0, 1) replaces N.(-). With this in mind it is easy
to see that

|, e = | roase)
whenever fe B. Thus, proceeding as in the derivation of (7.4.1), one

obtains the operational calculus g, — ¢.(T') of BV, into B(X) in the
weak form

sro@s = | o*(I ~ B)adg(t) = 2*(T)o .

This calculus may be extended to BV, {\¢} in the obvious way.
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In conclusion, the role of the negative sides of the fibers will be
clarified. Let ¢€(0,1] be fixed. For each se[0,t) choose a member
@of e Ff. Let ¢y € F be choosen. Let 0 < » < 1. It is easy to verify
that lim,.,_, @ (g,) = lim,,_, ¢, ([0, 7)) = 9; ([0, 7)) = @: (1) for point
evaluations .. The limit also holds on finite linear combinations of
the p, and, hence, it holds on Y. Therefore, a*o(p; )z = @i (x*4x) =
lim,, , pf (x*4dz) = lim,_,_,2*(I — E,)x = *(I — E,_)x for each 2 X
and z*e X*, Hence, o(p;7) =1 — E,_,.
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