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EVERYWHERE DEFINED LINEAR TRANSFORMATIONS
AFFILIATED WITH RINGS OF OPERATORS

ERNEST L. GRIFFIN

Let M be a ring of operators on a Hubert space H. This
paper considers conditions under which an operator T affiliated
with M is bounded (or can be unbounded), in particular, we
consider operators whose domain is the entire space H. We
prove: THEOREM 3. If M has no type / factor part, then T
is bounded. THEOREM 4. T is bounded if and only if T is
bounded on each minimal projection in M. THEOREM β. In
order that every linear mapping from H into H which com-
mutes with M be bounded, it is necessary and sufficient that M
should contain no minimal projection whose range is an infinite
dimensional subspace of H. These results were suggested hj
a theorem of J. R. Ringrose: THEOREM 8. If M=Mf then T
is bounded.

In a paper on triangular algebras ([4], Lemma 2.12) J. R. Ring-
rose encountered the following situation: he was given a linear
operator T with domain equal to an entire Hubert space H and a ring
of operators M commuting with T. In the case M = Mr (M maximal
abelian) he was able to show that T had to be bounded. (For the
relevant background theory, see [1, 2].) The purpose of this paper is
to consider other types of rings of operators commuting with T and
conditions under which T can be unbounded.

2* Since the projections in M commute with T, the ranges of
these projections are invariant under T; and consequently operators
are induced thereby on such subspaces. We begin by considering
orthogonal families of such operators.

LEMMA 1. If {Ey \y e Γ) is an orthogonal family of projections
in M, then the norms {\\ TEy \\\y e Γ} are almost uniformly hounded;
that is, there exists a finite subset ΓQ of Γ and a positive number b
such that || TEy \\ g b for 7 e Γ - ΓQ.

Proof. Assume lemma false. We first choose a EΎi such that
|| TEΎl || > 1. (If || TEy || ^ 1 for all y e Γ; then Γo = null set, 6 = 1
fulfills the lemma.) Now assume for a positive integer n that
{Eyk I & = 1, 2, 3, •••,%} have been chosen so that || TEyje \\ > k for
each k. If || TEy \\ ̂  n+1 for y e Γ - {γk\k = 1, 2, 3, , ri), then

b = n + 1 leads to the conclusion of the lemma. Thus we can pick
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a j n + 1 such t h a t || TEy \\ > n + 1. Finally, our induction produces

a sequence EΊk with || Ώ!£yfc || > & for all integers k.

Next, select a?* in EkH such t h a t 11 xk \ \ = 1 and 11 Txk \\ = \\ TEΊ]xk \\^k

for all k, using || TEk || > k. Let # w = Σ*=i#*/& Now, since

& 2 A 2

yn converges to a vector y in iϊ. Clearly ^ e β ^ J ί f and | / -
Vn e (Σtk>»Eyk)H Since these two subspaces are orthogonal and invariant
under T, T?/w is orthogonal to T(y — yn) for each integer ^# But, by
BesseΓs inequality

r I I 2 » I! T / ζ ' ^ f I I 2

The contradiction \\ Ty \\2 ̂  n for all % completes the proof of the

lemma.

COROLLARY 1. // all the TEy are hounded, then the set
{|| TEy \\\y e Γ\ is uniformly hounded.

COROLLARY 2. // Γ is infinite, at least one of the TEy is
bounded.

LEMMA 2. If the {Ey \ j e Γ) of Lemma 1 is such that the
{|| TEy || I 7 e Γ} are uniformly hounded by the number b > 0, then

Proof. For α? in J3Γ, |j T(ΣyEy)x ||2 = || (ΣyEy)Tx ||2 - 2:γ || EyTx \\2 =
J γ 1| (TEy)Eyx ||2 g J # || Sya? ||2 ^ δ21| x ||2.

LEMMA 3. If E, F are projections which are equivalent relative
to M; then \\ TE \\ -

Proof. Let V be a partial isometry in M with initial domain EH
and terminal domain FH0 (or F* F = E, F F * = F.) Now V(TE)V* =
Γ V2?y* - Γ F F * F F * - ΓF 2 - ΓFand || TF\\ - || F(T^)F* || g | | F | | .
|| TE\\ . || F* || ^ || ΓJS||. Interchanging F - F* yields || Γ^ | | g || TF\\
and completes the proof.

3* DEFINITION 1. Let T be a everywhere defined operator on a
Hubert space. T is said to be totally unbounded with respect to the
ring of operators M if T commutes with the elements of M and TE
is unbounded for each nonzero projection E in Λf.
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THEOREM 1. Let T be a everywhere defined operator on H com-
muting with a ring of operators M. If T is unbounded then there
exists a central projection P in M such that PT is bounded and
PλT is totally unbounded with respect to MPL.

Proof. If T totally unbounded with respect to M, then the pro-
jection 0 qualifies as our P. Thus we may restrict ourselves to the
cases in which nonzero projections E exist in M such that TE is
bounded.

Choose a maximal collection {Ey | 7 e Γ} of nonzero orthogonal
projections of M with each TEΊ bounded. It then follows from
Corollary 1 to Lemma 1 that the {|| TEΊ \\ \ 7 e Γ} are uniformly bounded.
Then, Lemma 2 shows that T is bounded on ΣyerEy.

Now, let P = ΣyeΓEy. Obviously TP is bounded; and if TE is
bounded for 0 Φ Έ ̂  P1-, E e M, then E could be added to our maximal
collection {Ey | 7 e Γ}. Thus, it only remains to prove that P is central.

Let Q be the central cover of P in M. If Q — P Φ 0, apply the
projection comparison lemma ([1], p. 227, Lemma 1) to (Q — P, P) to
get two nonzero projections E, F in M such that E^LP, F^Q — P and
E ~ F. But Lemma 3 shows that || TF\\ = \\ TE || < 00 contradicting
the first part of the proof of this lemma. Thus Q — P = 0 and P is
central in M.

4* It is clear from Theorem 1 that the problem of classifying
everywhere defined unbounded operators commuting with rings of
operators can be reduced to the study of totally unbounded operators.
Thus we consider the following theorem.

THEOREM 2. // T is totally unbounded with respect to the ring
My then M is a finite direct sum of finite factors of type I. In
each factor direct summandf Mr is an infinite factor of type I.

Proof. Let E be any nonzero projection in M and assume that
E does not contain a minimal projection of M. If so, then there
exists a nonzero projection E1 in M such that EX^E and E1 not
minimal. Similarly an E2(Φ 0) in M with E2 ^ Et and E2 not minimal
exists. Continuing in this fashion by induction we obtain a decreasing
sequence of projections {Ek | k = 1, 2, 3, •} in M. But now {Fk —
Ek — Ek+11 k — 1, •} is an infinite set of orthogonal projections in
M and Corollary 2 to Lemma 1 yields a projection Fs on which TFS is
bounded-contradicting total unboundedness. Thus each nonzero pro-
jection in M contains a minimal projection.
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Now pick a maximal family {Fy \jeΓ} of orthogonal minimal
projections in M. Clearly, Γ is finite. If ΣyerFy — P Φ I, then PL

contains a minimal projection F orthogonal to the Fy contradicting
maximality of {Fy | 7 e Γ).

Thus I = ΣyerFy = ΣkeκPκ, where the Pk are the central projections
obtained by adding up the (finite) families of equivalent minimal pro-
jections in Γ. It is clear that M — ΣkMPk is a direct sum decompo-
sition of M into a finite number of finite factors of type I. It is
also clear that Mf = ΣkM'Pk is a direct sum decomposition of Mf into
factors of type I. Further, if one of the MfPk is of finite type, the
fact that MPk is a finite factor of type I leads to PkH being finite
dimensional in H and to TPk being necessarily bounded-contradicting
total unboundedness of T. Hence each MrPk is of infinite type I.

The next theorems are corollaries of Theorems 1 and 2. In each,
T is everywhere defined and commutes with a ring of operators M.

THEOREM 3. If M has no type I factor part, then T is bounded.

THEOREM 4. T is hounded if and only if it is bounded on each
minimal projection in M.

THEOREM 5. If the coupling operator for the pair of rings Mf,
M is essentially bounded then T is bounded. In fact, Mr — {T: H
into H\ T linear and commutes with M}. (see [2], p. 497, Def. 3.2).

THEOREM 6. In order that every linear mapping from H into
H which commutes with M be bounded, it is necessary and sufficient
that the finite central part of M should contain no minimal pro-
jection whose range is an infinite subspace of H.

Proof. Sufficiency is clear. In case a minimal projection E has
infinite dimension in H, let an unbounded operator with domain equal
to EH be selected leaving EH invariant; and extend it to an orthogonal
family of minimal projections (whose union is the central cover of E)
by means of partial isometries. On parts orthogonal to the central
cover define the mapping to be zero. If T is this operator, it is clear
that T is unbounded, everywhere defined, and commutes with M —
thus contradicting our hypothesis.

THEOREM 7. If Mr is finite, then T is bounded.
THEOREM 8. {See Ringrose [4], Lemma 2.12) If M = M\ T is

bounded. (This is a corollary to Theorems 5 and, 7.)

5. We now consider the well-known theorem: If T is an every-
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where defined linear operator on H, then T is bounded if and only if
T is closed. This is usually deduced from the closed graph theorem,
but we shall give here a proof along the lines of the first sections
of this paper.

By a theorem of von Neumann ([3]) a closed operator with dense
domain &τ has a polar decomposition VS with S ^ 0, £grs =
2$τ, II y\\ ^ 1, so that it suffices to restrict ourselves to the case
T ^ 0. We assume T unbounded.

Since T is now self-ad joint, we apply the spectral theorem to
obtain a sequence of orthogonal projections {Ek e M \ k — 1, 2, •} (M =
ring generated by spectral family of T) with || TEh \\ unbounded. But
now the reasoning of Lemma 1 proves that T cannot be defined on
all of H.
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