SETS OF CONSTANT WIDTH

G. D. Chakerian

Abstract

A lower bound, better than those previously known, is given for the volume of a 3 -dimensional body of constant width 1. Bounds are also given in the case of n-dimensional bodies of constant width $1, n \geqq 4$. Short proofs of the known sharp bounds for such bodies in the Euclidean and Minkowskian planes are given using properties of mixed areas. An application is made to a measure of outer symmetry of sets of constant width in 2 and 3 dimensions.

Let K be a convex body in n-dimensional Euclidean space E_{n}. For each point u on the unit sphere S centered at the origin, let $b(u)$ be the distance between the two parallel supporting hyperplanes of K orthogonal to the direction. The function $b(u)$ is the "width function" of K. If $b(u)$ is constant on S, then we say K is a body of constant width.

If K_{1} and K_{2} are convex bodies, then $K_{1}+K_{2}$ is the "Minkowski sum" or "vector sum" of K_{1} and K_{2} [5, p. 79]. The following useful theorem is well-known.

Theorem 1. A convex body K has constant width b if and only if $K+(-K)$ is a spherical ball of radius b.

In the case of E_{2}, a number of special properties of sets of constant width are known-for example, the following theorem of Pàl (see [5, p. 127]).

Theorem 2. Any plane convex body B of constant width admits a circumscribed regular hexagon H.

We shall be concerned with the following type of result, due to Blaschke and Lebesgue (see [1], [3], [4], [5, p. 128], [9]).

Theorem 3. Any plane convex body B of constant width 1 has area not less than $(\pi-\sqrt{3}) / 2$, the area of a Reuleaux triangle of width 1.

The following short proof of Theorem 3 will set the stage for some later arguments.

Proof of Theorem 3. Let $A(K)$ denote the area of K. The "mixed area" of the plane convex bodies K_{1} and $K_{2}, A\left(K_{1}, K_{2}\right)$, can be
defined by the fundamental relation [5, p. 48],

$$
\begin{equation*}
A\left(K_{1}+K_{2}\right)=A\left(K_{1}\right)+2 A\left(K_{1}, K_{2}\right)+A\left(K_{2}\right) \tag{1}
\end{equation*}
$$

The mixed area is monotonic in each argument [5, p. 86]. That is, if $K_{1} \subset K_{2}$, then

$$
\begin{equation*}
A\left(K_{1}, K\right) \leqq A\left(K_{2}, K\right) \tag{2}
\end{equation*}
$$

It follows from (1), setting $K_{1}=K_{2}=K$, that

$$
\begin{equation*}
A(K, K)=A(K) \tag{3}
\end{equation*}
$$

Now let H be a regular hexagon circumscribed about B (Theorem 2). Assume the center of H is the origin, so $H=-H$. Then, using (2) and (3), we obtain

$$
\begin{equation*}
A(B,-B) \leqq A(H,-H)=A(H, H)=A(H) \tag{4}
\end{equation*}
$$

Thus, by (4), (1), and Theorem 1, we have

$$
\begin{align*}
\pi & =A(B+(-B))=2 A(B)+2 A(B,-B) \\
& \leqq 2 A(B)+2 A(H)=2 A(B)+\sqrt{3} \tag{5}
\end{align*}
$$

from which the theorem follows.
It has long been conjectured that in E_{3} any convex body of constant width 1 has volume at least that of a certain "tetrahedron of constant width" T (see [12, p. 81] for the construction of T). A computation of the volume of T leads to the conjecture,

Conjecture 1. Any 3-dimensional convex body of constant width 1 has volume not less than

$$
\frac{2 \pi}{3}-\frac{\pi \sqrt{3}}{4} \cos ^{-1}(1 / 3) \approx .42
$$

In $\S 2$ we shall prove that if B_{3} is a 3 -dimensional body of constant width 1 , with volume $V\left(B_{3}\right)$, then

$$
\begin{equation*}
V\left(B_{3}\right) \geqq \beta=\frac{\pi}{3}(3 \sqrt{6}-7) \approx .365 \tag{6}
\end{equation*}
$$

Our proof of (6) will depend upon the following theorem of Blaschke [2].
Theorem 4. If a 3-dimensional convex body of constant width b has volume V and surface area S, then

$$
\begin{equation*}
2 V=b S-\frac{2 \pi}{3} b^{3} \tag{7}
\end{equation*}
$$

It follows from (7) that Conjecture 1 is equivalent to:

Conjecture 1'. Any 3-dimensional convex body of constant width 1 has surface area not less than

$$
2 \pi-\frac{\pi \sqrt{3}}{2} \cos ^{-1}(1 / 3)
$$

Conjecture 1 can be transformed into still another form using the concept of "mixed surface area." Let $S(K)$ denote the surface area of K. If K_{1} and K_{2} are 3 -dimensional convex bodies, then the surface area of $K_{1}+K_{2}$ can be written in the form

$$
S\left(K_{1}+K_{2}\right)=S\left(K_{1}\right)+2 S\left(K_{1}, K_{2}\right)+S\left(K_{2}\right)
$$

where $S\left(K_{1}, K_{2}\right)$ is the mixed surface area. Thus, if K has constant width $1,4 \pi=S(K+(-K))=2 S(K)+2 S(K,-K)$. Hence Conjectures 1 and 1^{\prime} are equivalent to:

Conjecture $1^{\prime \prime}$. Any 3-dimensional convex body of constant width 1 has mixed surface area not greater than

$$
\frac{\pi \sqrt{3}}{2} \cos ^{-1}(1 / 3)
$$

Firey [6] has proved that the volume V of an n-dimensional convex body of constant width 1 satisfies

$$
\begin{equation*}
V \geqq \frac{\pi-\sqrt{3}}{n!}, n \geqq 2 \tag{8}
\end{equation*}
$$

In § 2 we give the generally better lower bound,

$$
\begin{equation*}
V \geqq \lambda \omega_{n} \prod_{k=3}^{n}\left(1-\sqrt{\frac{k}{2 k+2}}\right), n \geqq 3 \tag{9}
\end{equation*}
$$

where ω_{n} is the volume of the unit ball in E_{n}, and

$$
\lambda=\frac{\pi-\sqrt{3}}{2 \pi}
$$

Let C be a centrally symmetric convex body centered at the origin in E_{n}. Then C is the unit sphere for a Minkowskian geometry. We say that a body K has "constant width relative to C " if $K+(-K)$ is homothetic to C. In particular, one says that K and C are "equivalent in width" in case $K+(-K)=2 C$, since the condition implies that K and C have the same width function. When C is the ordinary unit sphere we obtain the ordinary sets of constant width. Results about
plane sets of relative constant width analogous to Theorem 2 and 3 are known (see [8], [10], and [11]). In § 3 we give a proof of the analogue of Theorem 3 in the Minkowski plane, using the same method as in our proof of Theorem 3.

Section 4 is devoted to some results on measures of outer symmetry for sets of constant width.
2. Proof of (6). Let B_{3} be a 3-dimensional convex body of constant width 1. Then the inscribed sphere of B_{3} has radius \geqq $1-\sqrt{3 / 8}$ (see [5, p. 125]). Assume that the center of the inscribed sphere is the origin. If $p(u)$ is the supporting function of B_{3}, then we have $p(u) \geqq 1-\sqrt{3 / 8}$. Hence,

$$
\begin{equation*}
3 V\left(B_{3}\right)=\int_{B_{3}} p(u) d S(u) \geqq(1-\sqrt{3 / 8}) S\left(B_{3}\right), \tag{10}
\end{equation*}
$$

where $S\left(B_{3}\right)$ is the surface area of B_{3}. Using Theorem 4 in (10), we obtain

$$
\begin{equation*}
3 V\left(B_{3}\right) \geqq(1-\sqrt{3 / 8})\left(2 V\left(B_{3}\right)+\frac{2 \pi}{3}\right), \tag{11}
\end{equation*}
$$

and (6) follows upon solving (11) for $V\left(B_{3}\right)$. This completes the proof.
Proof of (9). Define

$$
\begin{equation*}
\lambda_{n}=\inf V(K) \tag{12}
\end{equation*}
$$

as K ranges over all bodies of constant width 1 in E_{n}, and $V(K)$ is the volume of K. The Blaschke selection principle implies that there exist bodies of constant width 1 having volume λ_{n}. Let B be such a body, and let $p(u)$ be the support function of B with the center of its inscribed sphere as origin. Then, by [5, p. 125],

$$
p(u) \geqq 1-\sqrt{\frac{n}{2 n+2}} .
$$

Denoting the area element of B by $d S(u)$, we have,

$$
\begin{equation*}
n \lambda_{n}=n V(B)=\int_{B} p(u) d S(u) \geqq\left(1-\sqrt{\frac{n}{2 n+2}}\right) S(B) \tag{13}
\end{equation*}
$$

where $S(B)$ is the surface area of B. If we denote by B_{u} the projection of B onto a hyperplane orthogonal to u, then (see [5, p. 89])

$$
\begin{equation*}
S(B)=\frac{1}{\omega_{n-1}} \int V\left(B_{u}\right) d u \tag{14}
\end{equation*}
$$

where $V\left(B_{u}\right)$ is the $(n-1)$-dimensional volume of B_{u} and the integration is over the surface of the unit sphere in E_{n}. Since B_{u} is an ($n-1$)-dimensional body of constant width 1 , we have by (12) that $V\left(B_{u}\right) \geqq \lambda_{n-1}$. Hence

$$
\begin{equation*}
S(B) \geqq \frac{n \omega_{n} \lambda_{n-1}}{\omega_{n-1}} \tag{15}
\end{equation*}
$$

Combined with (13), this yields

$$
\begin{equation*}
\lambda_{n} \geqq\left(1-\sqrt{\frac{n}{2 n+2}}\right) \frac{\omega_{n}}{\omega_{n-1}} \lambda_{n-1} \tag{16}
\end{equation*}
$$

from which (9) follows. This completes the proof.
3. In this section, C is a centrally symmetric plane convex body centered at the origin 0 . C admits an inscribed affine regular hexagon H (i.e., the affine image of a regular hexagon) having a side parallel to any specified direction [10]. Let the vertices of H be labelled $P_{1}, P_{2}, \cdots, P_{6}$ on the boundary of C traversed in the positive direction. A "relative Reuleaux triangle" is obtained by attaching arcs $P_{1} P_{2}, P_{3} P_{4}$, and $P_{5} P_{6}$ of the boundary of C to the respective sides $P_{1} P_{2}, P_{2} 0,0 P_{1}$ of the triangle $0 P_{1} P_{2}$. With H as above, a centrally symmetric hexagon circumscribed about C and touching C at $P_{i}, 1 \leqq i \leqq 6$, is called a "C-hexagon." In fact, any hexagon homothetic to such a hexagon will be called a C-hexagon. Note that it case C is a circle, any C hexagon is just a regular hexagon. One then sees that the following theorem from [10] is a Minkowskian geometry analogue of Theorem 2.

Theorem 2'. Let K be equivalent in width to C. Then K admits a circumscribed C-hexagon.

Let H be a C-hexagon circumscribed about C. Let H^{\prime} be the corresponding affine regular hexagon inscribed in C with its vertices on H. Then we shall show that

$$
\begin{equation*}
A(H) \leqq 4 / 3 A\left(H^{\prime}\right) \tag{17}
\end{equation*}
$$

This follows from the following general lemma.
Lemma 1. Let H^{\prime} be an affine regular hexagon inscribed in a centrally symmetric plane convex body K. Then

$$
\begin{equation*}
A(K) \leqq 4 / 3 A\left(H^{\prime}\right) \tag{18}
\end{equation*}
$$

Proof. By considering the support lines of K through the vertices of H^{\prime}, one sees that it suffices to prove (18) for K a centrally

Figure 1.
symmetric hexagon H. Since the problem is affine invariant, one may even assume H^{\prime} is a regular hexagon, although this does not really simplify matters. In Figure $1, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}$ are consecutive vertices of H^{\prime}, and P_{1}, P_{2}, P_{3} are vertices of $H . \quad A D$ is drawn parallel to $P_{4}^{\prime} P_{3}$, which is parallel to $P_{1}^{\prime} P_{1}$ (the degenerate cases, where $P_{3}=P_{4}^{\prime}$ or $P_{1}=P_{1}^{\prime}$ are easily disposed of and will not be dwelt upon here). B is the intersection of $P_{1} P_{2}$ with $A D$, and C is the intersection of $P_{3} P_{2}$ with $A D$. Triangle $P_{4}^{\prime} P_{3} P_{3}^{\prime}$ is congruent to $P_{3}^{\prime} C A$, and $P_{1}^{\prime} P_{1} P_{2}^{\prime}$ is congruent to $P_{2}^{\prime} B A$. Hence the area of the pentagon $P_{1}^{\prime} P_{1} P_{2} P_{3} P_{4}^{\prime}$ is not greater than the area of triangle $P_{1}^{\prime} A P_{4}^{\prime}$, so the area of H is not greater than twice the area of $P_{1}^{\prime} A P_{4}^{\prime}$, which is precisely $4 / 3 A\left(H^{\prime}\right)$. This completes the proof.

Theorem 3'. Any plane convex body K which is equivalent in width to C has area not less than that of some relative Reuleaux triangle equivalent in width to C.

Proof. It is easy to check that the area of any relative Reuleaux triangle T equivalent in width to C is given by

$$
\begin{equation*}
A(T)=2 A(C)-4 / 3 A(H) \tag{19}
\end{equation*}
$$

where H is the affine regular hexagon inscribed in C on which the construction of T is based. Let H^{\prime} be a C-hexagon circumscribed about K (Theorem 2^{\prime}), let $H^{\prime \prime}$ be the translate of H^{\prime} circumscribed about C, and let H be the corresponding affine regular hexagon inscribed in C with its vertices on $H^{\prime \prime}$. Let the center of H^{\prime} be at the origin (which can be assumed by translating K) so $H^{\prime}=-H^{\prime}$. Then,
proceeding as in the proof of Theorem 3, and using (17), we have

$$
\begin{align*}
4 A(C) & =A(K+(-K))=2 A(K)+2 A(K,-K) \\
& \leqq 2 A(K)+2 A\left(H^{\prime},-H^{\prime}\right)=2 A(K)+2 A\left(H^{\prime}\right) \tag{20}\\
& =2 A(K)+2 A\left(H^{\prime \prime}\right) \leqq 2 A(K)+8 / 3 A(H)
\end{align*}
$$

Hence,

$$
\begin{equation*}
A(K) \geqq 2 A(C)-4 / 3 A(H)=A(T) \tag{21}
\end{equation*}
$$

This completes the proof.
To prove that a relative Reuleaux triangle is the only body equivalent in width to C with minimum area requires a little more argument. A sketch of the proof is as follows. If K is such a body of minimum area, then equality must hold throughout (20). This means that $A(K,-K)=A\left(H^{\prime}\right)$ for a C-hexagon H^{\prime} circumscribed about K. It follows that $A(-K, K)=A\left(H^{\prime}, K\right)$. If we let $p_{1}(\theta), p_{2}(\theta)$ be the support functions of K and H^{\prime} respectively, with origin at the center of H^{\prime}, and let s_{1} denote arclength along K, the last equation implies that

$$
\begin{equation*}
\int p_{1}(\theta+\pi) d s_{1}=\int p_{1}(\theta) d s_{1} \tag{22}
\end{equation*}
$$

Equation (22) implies that K must pass through 3 alternate vertices of H^{\prime}, from which readily follows the fact that K is a relative Reuleaux triangle.
4. For any n-dimensional convex body K we define a "coefficient of outer symmetry," $\mu(K)$, as follows. Let S be a centrally symmetric convex body of minimum volume containing K. Then

$$
\begin{equation*}
\mu(K)=\frac{V(K)}{V(S)} \tag{23}
\end{equation*}
$$

Thus $\mu(K) \leqq 1$, and $\mu(K)=1$ if and only if K is centrally symmetric. Sharp lower bounds for $\mu(K)$ are not known for $n \geqq 3$; however, it is known that $\mu(K) \geqq 1 / 2$ if K is 2 -dimensional, with equality holding if and only if K is a triangle. A standing conjecture is that in $E_{n}, n \geqq 3, \mu(K) \geqq \mu(T)$, where T is a simplex.

Theorem 5. Let B be a plane convex body of constant width 1. Then $\mu(B) \geqq \mu(R)$, where R is a Reuleaux triangle, and equality holds only if B is a Reuleaux triangle.

Proof. Let H be a regular hexagon circumscribed about B.

Then, using Theorem 3, we have

$$
\begin{equation*}
\mu(B) \geqq \frac{A(B)}{A(H)} \geqq \frac{A(R)}{A(H)}=\frac{\pi-\sqrt{3}}{\sqrt{3}}=.81 \cdots \tag{24}
\end{equation*}
$$

where R is a Reuleaux triangle of width 1 . On the other hand, any centrally symmetric convex set S containing R must also contain an equilateral triangle T of side 1 and thus has area $\geqq 2 A(T)=A(H)$. Hence

$$
\begin{equation*}
\frac{A(R)}{A(H)}=\mu(R) \tag{25}
\end{equation*}
$$

Equality can hold in (24) only if $A(B)=A(R)$, which happens only if B is a Reuleaux triangle (see end of $\S 3$). This completes the proof.

It is known that any set K of constant width in E_{3} admits a regular circumscribed octahedron J (see [7]). Suppose K has constant width 1, and let S be a centrally symmetric set of minimum volume containing K. Then, using (6),

$$
\begin{equation*}
\mu(K)=\frac{V(K)}{V(S)} \geqq \frac{\beta}{V(J)}=\frac{2 \beta}{\sqrt{3}} \approx .42 \tag{26}
\end{equation*}
$$

Clearly one can obtain crude lower bounds, in this same fashion, in terms of λ_{n} and the volume of some centrally symmetric "covering body" J_{n} (one could, for example, use for J_{n} a sphere of radius $\sqrt{n /(2 n+2))}$.

References

1. A. S. Besicovitch, Minimum area of a set of constant width, Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity (Amer. Math. Soc., 1963), 13-14.
2. W. Blaschke, Einige Bemerkungen über Kurven und Flächen von konstanter Breite, Ber. Verh. sächs. Akad. Leipzig 67 (1915), 290-297.
3. K_ Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Annalen 76 (1915), 504-513.
4. H. G. Eggleston, A proof of Blaschke's theorem on the Reuleaux Triangle, Quart. J. Math. 3 (1952), 296-7.
5. - Convexity, Cambridge Univ. Press, Cambridge, 1958.
6. W. J. Firey, Lower bounds for volumes of convex bodies, Archiv der Math. 16 (1965), 69-74.
7. D. Gale, On inscribing n-dimensional sets in a regular n-simplex, Proc. Amer. Math. Soc. 4 (1953), 222-225.
8. T. Kubota and D. Hemmi, Some problems of minima concerning the oval, Jour. Math. Soc. Japan 5 (1953), 372-389.
9. H. Lebesgue, Sur le problème des isopérimètres et sur les domaines de largeur constante, Bull. Soc. Math. France, C. R. (1914), 72-76.
10. D. Ohmann, Extremal probleme für konvexe Bereiche der euklidischen Ebene, Math. Z. 55 (1952), 346-352.
11. M. Sholander, On certain minimum problems in the theory of convex curves, Trans. Amer. Math. Soc. 73 (1952), 139-173.
12. M. Yaglom and V. G. Boltyanskii, Convex figures, GITTL, Moscow, 1951 (Russian); English transl., Holt, Rinehart and Winston, New York, 1961.

Received September 29, 1965.
University of California, Davis

