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SETS OF CONSTANT WIDTH

G. D. CHAKERIAN

A lower bound, better than those previously known, is
given for the volume of a 3-dimensional body of constant
width 1. Bounds are also given in the case of n-dimensional
bodies of constant width 1, n ^ 4. Short proofs of the known
sharp bounds for such bodies in the Euclidean and Minkowskian
planes are given using properties of mixed areas. An appli-
cation is made to a measure of outer symmetry of sets of
constant width in 2 and 3 dimensions.

Let K be a convex body in ^-dimensional Euclidean space En. For
each point u on the unit sphere S centered at the origin, let b(u) be the
distance between the two parallel supporting hyperplanes of K orthogo-
nal to the direction. The function b(u) is the "width function" of K.
If b(u) is constant on S, then we say K is a body of constant width.

If jKi and K2 are convex bodies, then Kx + K2 is the "Minkowski
sum" or "vector sum" of K, and K2 [5, p. 79]. The following useful
theorem is well-known.

THEOREM 1. A convex body K has constant width b if and only
if K + (-K) is a spherical ball of radius δ.

In the case of E2, a number of special properties of sets of
constant width are known-for example, the following theorem of Pal
(see [5, p. 127]).

THEOREM 2. Any plane convex body B of constant width admits
a circumscribed regular hexagon H.

We shall be concerned with the following type of result, due to
Blaschke and Lebesgue (see [1], [3], [4], [5, p. 128], [9]).

THEOREM 3. Any plane convex body B of constant width 1 has
area not less than (π — τ/3)/2, the area of a Eeuleaux triangle of
width 1.

The following short proof of Theorem 3 will set the stage for
some later arguments.

Proof of Theorem 3. Let A(K) denote the area of K. The
"mixed area" of the plane convex bodies Kx and K2t A{KU K2), can be
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defined by the fundamental relation [5, p. 48],

Kt) = A(K,) + 2A(KU Kt) + A(K2) .

The mixed area is monotonic in each argument [5, p. 86], That is,
if K.aKz, then

(2) A(K19 K) S A(KU K) .

It follows from (1), setting K± = K2 = K, that

(3) A(K,K) = A(K).

Now let H be a regular hexagon circumscribed about B (Theorem 2).
Assume the center of H is the origin, so H — —H. Then, using (2)
and (3), we obtain

(4) A(B, -B) £ A{H, -H) = A(H, H) - A(H) .

Thus, by (4), (1), and Theorem 1, we have

π - A(B + (-B)) = 2A(B) +

^ 2A(B) + 2A(H) = 2A(B)

from which the theorem follows.
It has long been conjectured that in Ez any convex body of

constant width 1 has volume at least that of a certain "tetrahedron
of constant width" T (see [12, p. 81] for the construction of Γ). A
computation of the volume of T leads to the conjecture,

Conjecture 1. Any 3-dimensional convex body of constant width
1 has volume not less than

V* .42 .

In $2 we shall prove that if B3 is a 3-dimensional body of constant
width 1, with volume V(B3), then

( 6 ) V(B3) ^ β = — (3l/(Γ- 7) ** .365 .

Our proof of (6) will depend upon the following theorem of Blaschke [2].

THEOREM 4. / / a 3-dimensional convex body of constant width
b has volume V and surface area S, then

(7) 2 F = & S - ^ L δ 3 .
3
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It follows from (7) that Conjecture 1 is equivalent to:

Conjecture Γ. Any 3-dimensional convex body of constant width
1 has surface area not less than

2π -

Conjecture 1 can be transformed into still another form using the
concept of "mixed surface area." Let S(K) denote the surface area
of K. If JEi and K2 are 3-dimensional convex bodies, then the surface
area of Kx + K2 can be written in the form

S(K, + Kt) = S{KX) + 2S(K19 Kt) + S(K2) ,

where S(Klf K2) is the mixed surface area. Thus, if K has constant
width 1, 4π = S(K + (-JSΓ)) - 2S(K) + 2S(K, -K). Hence Conjectures
1 and 1' are equivalent to:

Conjecture 1". Any 3-dimensional convex body of constant width
1 has mixed surface area not greater than

Firey [6] has proved that the volume V of an ti-dimensional
convex body of constant width 1 satisfies

(8) V^
~~ nl

In §2 we give the generally better lower bound,

( 9 ) V ^ Xωn I

where ωn is the volume of the unit ball in En, and

τ τ - τ / 3
λ =

2π

Let C be a centrally symmetric convex body centered at the origin
in En. Then C is the unit sphere for a Minkowskian geometry. We
say that a body K has "constant width relative to C" if K+ (~K) is
homothetic to C. In particular, one says that K and C are "equivalent
in width" in case K+ (—K) — 2C, since the condition implies that K
and C have the same width function. When C is the ordinary unit
sphere we obtain the ordinary sets of constant width. Results about



16 G. D. CHAKERIAN

plane sets of relative constant width analogous to Theorem 2 and 3
are known (see [8], [10], and [11]). In § 3 we give a proof of the
analogue of Theorem 3 in the Minkowski plane, using the same method
as in our proof of Theorem 3.

Section 4 is devoted to some results on measures of outer symme-
try for sets of constant width.

2* Proof of (6). Let Bs be a 3-dimensional convex body of
constant width 1. Then the inscribed sphere of J53 has radius ^
1 — i/3/8 (see [5, p. 125]). Assume that the center of the inscribed
sphere is the origin. If p(u) is the supporting function of i?3, then
we have p(u) ^ 1 — 1/3/8". Hence,

(10) 3F(£3) = ( p(u)dS(u) ^ (1 - VSβ)S(Bt) ,

where S(J33) is the surface area of Bs. Using Theorem 4 in (10), we
obtain

(11) 3 V(B3) ^ (1 -V3/8)(2 V(B>) + ψ) ,

and (6) follows upon solving (11) for V(B3). This completes the proof.

Proof of (9). Define

(12) Xn = inf V(K) ,

as K ranges over all bodies of constant width 1 in En, and V(K) is
the volume of K. The Blaschke selection principle implies that there
exist bodies of constant width 1 having volume λΛ. Let B be such a
body, and let p(u) be the support function of B with the center of
its inscribed sphere as origin. Then, by [5, p. 125],

p(u) ^ 1 - V- n

Denoting the area element of B by dS(u), we have,

(13) nxn = nV(B) = ^p(u)dS(u) ^ ( l - V'—?L—}S{B) ,

where S(B) is the surface area of B. If we denote by Bu the pro-
jection of B onto a hyperplane orthogonal to u, then (see [5, p. 89])

(14)
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where V(BU) is the (n — l)-dimensional volume of Bu and the inte-
gration is over the surface of the unit sphere in En. Since Bu is an
(n — l)-dimensional body of constant width 1, we have by (12) that
V(BU) ^ λΛ_lβ Hence

(15) S(B) ^ nω«x*~i .

Combined with (13), this yields

n + 2<

from which (9) follows. This completes the proof.

3* In this section, C is a centrally symmetric plane convex body
centered at the origin 0. C admits an inscribed affine regular hexagon
H (i.e., the affine image of a regular hexagon) having a side parallel
to any specified direction [10]. Let the vertices of H be labelled
Pi,P2, ,P 6 on the boundary of C traversed in the positive direction.
A "relative Reuleaux triangle" is obtained by attaching arcs PJ^, P3P4,
and PδP6 of the boundary of C to the respective sides PJ^, P20, 0Px of
the triangle OP^. With H as above, a centrally symmetric hexagon
circumscribed about C and touching C at Piy 1 g i ^ 6, is called a
"C-hexagon." In fact, any hexagon homothetic to such a hexagon
will be called a C-hexagon. Note that it case C is a circle, any C-
hexagon is just a regular hexagon. One then sees that the following
theorem from [10] is a Minkowskian geometry analogue of Theorem 2.

THEOREM 2!. Let K be equivalent in width to C. Then K
admits a circumscribed C-hexagon.

Let H be a C-hexagon circumscribed about C. Let H' be the
corresponding affine regular hexagon inscribed in C with its vertices
on H. Then we shall show that

(17) A(H) ^ 4/3 A{H') .

This follows from the following general lemma.

LEMMA 1. Let H' be an affine regular hexagon inscribed in a
centrally symmetric plane convex body K. Then

(18) A(K) ^ 4/3 A(H') .

Proof. By considering the support lines of K through the vertices
of H'f one sees that it suffices to prove (18) for K a centrally
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Figure 1.

symmetric hexagon H. Since the problem is affine invariant, one may
even assume H' is a regular hexagon, although this does not really
simplify matters. In Figure 1, P/, P/, P/, P4' are consecutive vertices
of JET, and Pu P2, P3 are vertices of H. AD is drawn parallel to P4T3,
which is parallel to PIP, (the degenerate cases, where P3 = P4' or
Px = P; are easily disposed of and will not be dwelt upon here). B
is the intersection of P,P2 with AD, and C is the intersection of PSP2

with AD. Triangle P[P3P^ is congruent to PICA, and P/PJPi is
congruent to P[BA. Hence the area of the pentagon PIP.P^P; is
not greater than the area of triangle P[AP[, so the area of H is not
greater than twice the area of P[AP{, which is precisely 4/3 A(H').
This completes the proof.

THEOREM 3'. Any plane convex body K which is equivalent in
width to C has area not less than that of some relative Reuleaux
triangle equivalent in width to C.

Proof. It is easy to check that the area of any relative Reuleaux
triangle T equivalent in width to C is given by

(19) A(T) = 2A(C) - 4/3 A(H) ,

where H is the affine regular hexagon inscribed in C on which the
construction of T is based. Let H' be a C-hexagon circumscribed
about K (Theorem 2'), let H" be the translate of H' circumscribed
about C, and let H be the corresponding affine regular hexagon in-
scribed in C with its vertices on H". Let the center of H' be at the
origin (which can be assumed by translating K) so Hf = — H\ Then,
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proceeding as in the proof of Theorem 3, and using (17), we have

AA(C) = A(K + ( - # ) ) = 2A(K) + 2A(K, -K)

(20) ^ 2A(K) + 2A{H', -H') = 2A{K) + 2A{H')

= 2A(K) + 2A{H") ^ 2A{K) + 8/3 A(H) .

Hence,

(21) A(K) ^ 2A(C) - 4/3 A(ff) - A(T) .

This completes the proof.

To prove that a relative Reuleaux triangle is the only body
equivalent in width to C with minimum area requires a little more
argument. A sketch of the proof is as follows. If K is such a body
of minimum area, then equality must hold throughout (20). This
means that A(K, —K)~ A(Hf) for a C-hexagon Hf circumscribed
about K. It follows that A(-K, K) - A{H', K). If we let ptf), p2(θ)
be the support functions of K and Hf respectively, with origin at the
center of H', and let s± denote arclength along Ky the last equation
implies that

(22) j P l (0 + π)dSl

Equation (22) implies that K must pass through 3 alternate vertices
of H', from which readily follows the fact that if is a relative
Reuleaux triangle.

4* For any ^-dimensional convex body K we define a "coefficient
of outer symmetry," μ(K), as follows. Let S be a centrally symmetric
convex body of minimum volume containing K. Then

(23) μ(K) = J ϊ | l ,

Thus μ(K) S 1, and μ(K) — 1 if and only if K is centrally symmetric.
Sharp lower bounds for μ{K) are not known for n ^ 3; however, it is
known that μ(K) ^ 1/2 if K is 2-dimensional, with equality holding
if and only if K is a triangle. A standing conjecture is that in
En, n^3, μ(K) ^ μ(T), where T is a simplex.

THEOREM 5. Let B be a plane convex body of constant width 1.
Then μ(B) ^ μ(R), where R is a Reuleaux triangle, and equality
holds only if B is a Reuleaux triangle.

Proof. Let H be a regular hexagon circumscribed about B.
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Then, using Theorem 3, we have

(24) μ{B) > = = . 8 1 - .
τ/3

where R is a Reuleaux triangle of width 1. On the other hand, any
centrally symmetric convex set S containing R must also contain an
equilateral triangle T of side 1 and thus has area ^ 2A(T) = A(H).
Hence

(25)

Equality can hold in (24) only if A(B) = A(i2), which happens only if
B is a Reuleaux triangle (see end of §3). This completes the proof.

It is known that any set K of constant width in E3 admits a
regular circumscribed octahedron J (see [7]). Suppose K has constant
width 1, and let S be a centrally symmetric set of minimum volume
containing K. Then, using (6),

(26) μ{K) = V{K) > β = -?£- ^ .42
V ; ^V ^ F(S) ~ V(J) / 3

Clearly one can obtain crude lower bounds, in this same fashion, in
terms of λΛ and the volume of some centrally symmetric "covering
body" Jn (one could, for example, use for Jn a sphere of radius
Vn/(2n+2)).
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