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TOEPLITZ OPERATORS ON Hp

HAROLD WIDOM

A Toeplitz operator is an operator with a matrix represen-
tation (tfw_w)m,n=o where the an are the Fourier coefficients of
a bounded function φ. The operator may be considered as
acting on any of the Hardy spaces Hp(l < p < oo) and it is
the purpose of this note to show that the spectrum of any
such operator is a connected set.

The Hardy space i i r ( l g r g oo) consists of those functions in
Lr(— 7Γ, π) whose Fourier coefficients corresponding to negative values
of the index all vanish. If fe Lp(l < p < oo) with

then by a well-known theorem of M. Riesz the series

is the Fourier series of a function Pf belonging to Lp (and so to Hv),
and moreover

||P/||,^-4,11/11,

where Ap is a constant depending only on p. Thus P is a bounded
projection from Lp to Hp.

(We use the following convention. When we speak of Lr or Hr

then we assume only 1 ^ r g oo but when we speak of Lp or H9

then we require 1 < p < oo.)
Now let φ e L^. We define the Toeplitz operator Tφ on Hp by

T9f=P(φf).

Clearly Tφ is a bounded operator with norm at most Ap \\φ!(«,. In a
previous paper [3] it was shown that for p = 2 the spectrum of Tψ

is connected for all φ. The proof made use of a theorem of Helson
and Szego [2] which characterized those measures dμ with the property
that P (restricted to the trigonometric polynomials) is bounded in the
norm of L2(dμ). It is not at present known whether the analogue of
this theorem holds for p Φ 2, but we shall present here a new proof
which avoids using the Helson-Szego theorem and which holds for
arbitrary p.

Here is an outline of the proof. It suffices to show that if C is
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any simple closed curve in the complex plane which is disjoint from
σ{T^), the spectrum of Tφ, then σ(Tφ) lies entirely inside or entirely
outside C. For λ e C the equation Tφf = λ/ + 1 has a solution / =
fλ e Hp which can be shown to satisfy a differential equation whose
solution is

(1) Λ = Λo e χ P ( T P

cp — μ

where λ0 is a fixed point of C. (This fact, in a somewhat different
setting, was observed by Atkinson [1] and used by him to obtain very
simply the solution of a large class of operator equations.) If one
takes the path of integration to be the entire curve C then it can be
shown very easily from (1) that R(φ)9 the essential range of φ, lies
either entirely inside or entirely outside C. In the latter case, say,
(1) shows how to continue / λ analytically to the inside of C. Now
there is an explicit formula which gives the solution of the equation

in terms of / λ for Xίσ(Tφ). But then this formula shows us how to
continue h = hλ analytically to the inside of C and this continuation
will provide the unique solution of (2). Thus we shall have shown
that σ(Tφ) lies entirely outside C.

The / λ we have been speaking about is an analytic function of
X whose values are measurable functions, and we must develop a little
bit of theory of such things.

Let Ω be an open set in the complex plane and -assume that for
each λ G Ω there is associated a measurable function / λ on a finite
measure space E. (All functions considered will tacitly be assumed
to be finite a.e.) We shall say that / is analytic in Ω if for each
λ0 G Ω there is a disc

D(X0, δ) = {X: I λ - λ01 < δ}

and a sequence α0, au of measurable functions such that for all
X G D(λ0, δ) the series

( Q \ X~* ft ί\ \ \ n

converges a.e. to / λ . we shall say that / is Lr-analytic if each an

belongs to Lr and for each λ e D(X0, δ) the series (3) converges to / λ

in the norm of Lr.

LEMMA 1. // / is Lr analytic then it is analytic.

Proof. Since Lr-analyticity implies Li-analyticity we may assume
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r = 1. It suffices to show that if (3) converges Lx for all λ e D(λ0, <?)
then it converges a.e. for all λ e D(X0, δ). Suppose δλ < δ. Then there
is a constant A such that || an ||i ^ Aδf* for all w. Let <52 < δλ. Then
if we set

En - {£: I an(θ) I ̂  S,-}

we have

A δ Γ ^ \ I an{θ) I d 0 ̂  δ 2 " w \ E n \ ,

where | -&» | denotes the measure of En. Thus

and so J^\E»\ < °° This shows that almost all θ belong to only
finitely many En; that is, for almost all θ we have | an(θ) \ < δ^n for
sufficiently large n. Therefore for almost all θ the series (3) converges
for each λeD(λ0, δ2). But δ2 was an arbitrary number smaller than
d. If we take for δ2 successively (1 — k~ι)δ(k = 1, 2, •) we deduce
that for almost all θ the series (3) converges for all λeZ>(λ0, S).

The next lemma is a partial converse of Lemma 1.

LEMMA 2. Suppose f is analytic in Ω. Then for any e > 0
there is a set Eε whose complement in E has measure at most e
such that /, when restricted to Eεj is L^-analytic in Ω.

Proof. First consider a disc D(X0, δ) throughout which (3) con-
verges a.e. to / λ . Then the series

converges a.e. and so by Egoroff's theorem there is a set Fe whose
complement has measure at most ε on which (4) converges uniformly.
There is a constant M such that for all θ e Fe and all n we have

( 5 ) \

Now let λi be any point in the disc D(X0, δ/2). Then (5) shows that

for

the series (3), which converges a.e. to / λ , may be rearranged into a
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power series in λ — \ which converges uniformly for θeFε. This
shows that / restricted to Fε is L^-analytic in D(XO1 δ/2).

Now we can find a countable set of discs jD(λ^ δά) (j = 1, 2, •)
of the type just considered and such that

Ω= U

For each j there is a set F£fj whose complement has measure at most
2~jε and such that / restricted to Fεyj is L^-analytic in

But then

Ec = ή F.,s

has complement of measure at most ε and / restricted to Eε is Loo-
analytic throughout Ω.

LEMMA 3. Let C he a simple closed curve contained in a simply
connected open set Ω. Suppose f is analytic in Ω and

Then f is Lr-analytic inside C and for all λ inside C we have

Proof. Let λ0 be inside C and let δ be so small that D(λ0, δ) is
entirely inside C and

Λ = Σ <Uλ - λo)»

a.e. for each λ e jD(λ0, δ). The beginning of the proof of Lemma 2
showed that if we restrict ourselves to an appropriate set Eε, with
complement of measure at most ε, the series in (6) converges uniformly
as long as λeβ(λ 0, 8/2). Take any geL^. Then we can conclude

fxΰdθ = X ( ^ angdθ)(\ - λo)" λ e D(\0, - | ) .

It follows from the Cauchy inequalities that

( angdθ ^ (A) n max I ί fxgdθ
JEe \2/ |λ-λo|=δ/2 I JE£
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But since / restricted to Es is L^-analytic in Ω,

\

is a complex-valued analytic function in Ω, and so for any λ inside
C we have

(7) lί ftfdθ ^ m a x | ( f^gdθ
v \ ) E £ μeo I Jz?e

where s ~ r/(r — 1). Consequently

angdθ

for all g e L^ and so

{i,'-i"»r*(4r*-
Since ε > 0 was arbitrary it follows that

and so the series in (6) converges in Lr for each XeD(XOi δ/2). Thus
/ is Lr-analytic inside Ω. Finally (7), with Ee replaced by E, gives

We shall have to deal later with the derivative of analytic func-
tion. If / is analytic in Ω we define / ' as follows: if fλ is given a.e.
as the sum of the series (3) for λ e D(X0, δ) then we set

/x = Σ ^ » ( λ - λo)%-1 λ e D(λ0, δ) .

We leave as exercises for the reader the verification that for each
λ e D(XO1 δ) the above series converges a.e. and that if

X e Z?(λ0> δ0) Π D(Xl9 δ,)

then the two possible interpretations of f'k agree a.e., so that f^ is
well defined and, of course, analytic. We also leave it to the reader
to show that if / is Lr-analytic then the same is true of / ' .

Let us return to our Toeplitz operators Tφ acting on Lp. We
denote by p{Tφ) the resolvent set of Tφ, that is, the complement of
σ(Tφ). Recall that the essential range of φ is denoted by R(φ).

LEMMA 4. σ(Tφ) contains R(φ).

Proof. Suppose Xep(Tφ). Then for some constant A we have



578 HAROLD WIDOM

for all / e HP! so with another constant A' we have

\\(φ-\)f\\,^A'\\f\\,.

If g is an arbitrary trigometric polynomial we shall have / = eimθg e Hp

for some m. Then

and of course this is exactly

\\(φ-X)g\\p^A'\\g\\1>.

It follows that | φ — X | ^ A! almost everywhere.

LEMMA 5. / / Xep(Tφ) then T{φ_λ)-i, as an operator on

Hq(q = p\p — 1), is invertίble.

Proof. The adjoint of Tψ — λJ is the operator T^χ acting on

i/"3. (Here we use the identification of Hq with H* obtained by

identifying the function g e Hq with the linear functional f-+\fgdθ

on Hp.) Therefore 7̂ =χ is invertible on Hq. Let

u = exp (— 2Plog I φ — λ |)

Then c\φ — X\~2 — uΰ for some constant c, and since by Lemma 4
I φ — λ I"1 e L^ both % and vr1 belong to H^. For ge Hq we have

= φ
ΰv v e Hq°

r denotes the Hr functions with mean zero) and so

cP(φ — λ)-1^ = P(uPφ — Xug) .

This shows that

( 8 ) c 1 { φ _ λ ) - 1 — 1 z J- ̂ λ J- u

We have seen that T—κ is invertible on Hq. Since u"1 e H^ the
same is true of Tu. Since similarly Tu is invertible on Hp, its adjoint
Γ- is invertible on Hq. Thus the three operators on the right of (8)
are all invertible and the lemma is established.

For any Xe p(Tφ) we shall denote by / λ , gλ the unique solutions

of
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( 9 ) 3 V λ ) / λ = l , T{φ_λ)-igλ = l

in HP1 Hq respectively. The existence and uniqueness of gλ are
guaranteed by Lemma 5.

In the following lemma we shall be integrating P(φ — μ)-1 over
a path lying in ρ(Tφ). It follows from Lemma 4 that (φ — μ)-1 is
Lp-continuous on this path and consequently the same is true of
P(φ — μ)~ι. Therefore there is no difficulty making sense of the in-
tegral. We shall interpret it as a weak integral.

LEMMA 6. Let Γ be a rectifiable curve lying in p{Tφ) and hav-
ing initial and terminal points λ0, λ respectively. Then

(10) A = Ao exp {\rP(ψ - μY'dμ} ,

(ii) 9κ

Proof. It follows from (9) that

(12) (φ - λ)/ λ = 1 + ΰλ uλe Hp°

(13) (φ - λ ) - ^ λ = 1 + vλ vλ e Hq° .

Therefore fλgλ = 1 + w where weHf. But since fλgλ e Hι we conclude

(14) fκgλ = 1 .

Now fλ is L^-analytic since, as is well-known, (Tφ — λ/)" 1 is
analytic in p(Tφ). Therefore ΰλ is also Lp-analytic and differentiation
of both sides of (12) gives

(φ - λ) A ~ A = U'κ .

If we multiply both sides of this identity by (φ — \)~ιgx and use (13)
and (14) we obtain

(15) (φ ~ λ)"1 = gxfl - (1 + vx)ΰ'k .

It is easy to see that if hλ is Lr-analytic and hλ belongs to a certain
closed subspace of Lr for all λ then h'κ belongs to the same subspace.
Therefore f'λ belongs to Hp and so gλfle Hlm Similarly ΰ'λeΉξ and
so (1 + vλ)ΰ[ e S j 5 . Consequently (15) gives

P(φ - λ)-1

and so by (14)

(16) A = AP(φ -
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Now consider a disc D(XQ, δ) inside of which we have series
representations

oo

For each XeD(XQiδ) the two series converge a.e. and this implies
that for all θ not belonging to some null set N the series converge
for all λ e D(λ0, δ). Let us write U(θ, λ), V(θ, X) for the sums of the
two series; U and V are defined for θ ί N, λ e D(X0, δ). The equation
(16) is equivalent to the statement that for each n ^ 0 the identity

holds almost everywhere. It follows that for all θ not belonging to
some null set Nι the above identities hold for all n. Thus if θ£ N{J Nx

we have

ϋ(θ,\)= U(Θ,\)V(Θ,\)
oX

for all Xe D(X0, δ). This implies that for any rectiίiable curve Γ
which lies in D(XQ, δ) and has initial point λ0 and terminal point λ

U(θ, X) = U(θ, λ0) exp

Since this holds for all θ 0 N U N± and since for each λ, μ

A = U(θ, λ),

we conclude that (10) holds, at least for curves Γ of this special
type. But any rectifiable curve lying in p(Tφ) may be obtained by
joining finitely many curves of the special type, so (10) holds in
general. Formula (11) is an immediate consequence of (10) and (14).

THEOREM. σ(Tφ) is connected.

Proof. It suffices to show that if C is a simple closed curve in
p(Tφ) the σ(Tφ) is either entirely inside or entirely outside C. Let
us apply Lemma 6 with Γ — C and observe that by (14) A is almost
nowhere zero. Then we obtain
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Thus if

= (1 φ(β) inside C

(0 φ{θ) outside C

we have β-2πiPΦ = 1. Therefore PΦ is a real (in fact integer) valued
H2 function and so is constant. But since Φ is real valued this
implies that Φ is itself constant, and so R{φ) lies entirely inside or
entirely outside C. Assume the latter. The other case is quite similar,
except that the point at infinity is involved; but this is handled in
the usual way.

Let Ω be a simply connected open set which contains C and such
that any point of Ω not inside C belongs to p(Tφ). Choose λ o eC,
keep it fixed, and use (10) and (11) to define / λ and gλ for all λ e Ω.
Here Γ is always taken to lie in Ω. Notice that

" P(φ - μ)-'dμ
)r

is independent of Γ (since Ω is simply connected and P(φ — μ)" 1 is
Lp-analytic for μ in Ω) and represents an L^-analytic function of λ.
Therefore fλ and gκ are analytic throughout Ω and by Lemma 3 even Lp-
analytic and Lg-analytic respectively inside C. If h e H° then

whenever λ e p{Tφ), since fλ e Hp. But since / λ is L^-analytic through-
out Ω this identity holds throughout Ω, and so / λ e Hv for all XeΩ.
Similarly we have gλe Hq for all λef i , Moreover the identities (9)
and (14) which hold in p(Tφ) persist in Ω.

We show now that Tφ — XI is invertible for each X inside C.
Suppose heHp and (Tφ — Xl)h = 0. Then

φ — xhe H°

Since, by (9),

we deduce hgλeHf. But since hgxeH1 we must have hgλ = 0 and
so h = 0. We have shown that Tφ — XI is one-one.

Next let keH^ be arbitrary and for Xeρ(Tφ) let hλeHp denote
the solution of

(17) (Tφ-\I)hλ = k.

Then
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= k + Tλ lλeHp° .

Multiplying both sides by (φ — λ)"1flrλ and using (13) we obtain

QΛx =(<P- λ)~^λA: + (1 + vλ)Tk .

Since gλhλ e H1 and (1 + vλ)l e H? we conclude that

= P(φ - λ)

Therefore

hλ = fλP(φ - x

Let this identity, which holds for xe ρ(Tφ), be used to define hλ for
XeΩ. Note that since k is bounded P(φ — λ ) " 1 ^ is Lg-analytic and
so hλ is analytic. But since

μβO

Lemma 3 tells us that hλ is L^-analytic inside C and satisfies the
inequality

(18) || M
μeo

there. By an argument already given Λλ e Hp and satisfies (17) there.
Finally let k be an arbitrary function belonging to Hp. Then

we can find a sequence of functions kn belonging to H^ and satisfy-
ing \\kn — k\\p—+0. Let hn,λ denote the solution of

(Tφ - \I)hn,λ = kn .

As n, m —> oo we have | | kn — km \\p —> 0, so by (18)

l | Λ n > λ - A m f λ | | p ^ 0 .

Then {hm,λ} converges in Lp to a function Λλ 6 Hp and

^ k .

This completes the proof of the theorem.
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