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A REPRESENTATION THEOREM FOR ABELIAN GROUPS
WITH NO ELEMENTS OF INFINITE P-HEIGHT

D. L. BOYER AND A. MADER

The purpose of this note is to give a generalization of the
representation Theorems 33.1 and 33.2 of [2], Let G be an
arbitrary abelian group and B = [φxei <#λ>] θ [ φ î Bi] be a
p-basic subgroup of G, cf. [3], where ®λeΛ<#λ> is the torsion-
free part. For all λeA let (F*)λ be a copy of the group of
p-adic integers, and let (Fp)χ denote the infinite cyclic group
of finite p-adic integers in (F%)\. Then G can be mapped
homomorphically into the complete direct sum[Φ* e 4 (F*)λ]0
[φΐki-Bΐ] with kernel pωG. Furthermore, the image of G is
a p-pure subgroup which contains [φλe^(Fp)λ] φ [ Φ ^ i ^ ] as a
p-basic subgroup and is in turn contained in the p-adic com-
pletion of this subgroup (See Section 1 for definitions). This
representation is completely analogous to the representation
theorem for p-groups which is contained as a special case,
and hopefully it is of similar use.

Definitions and facts concerning p-adic and n-adic topologies*

In this article we list the definitions and facts concerning p-adic and
w-adic topologies that are needed in this paper. For references see
[2], [3], and [5].

DEFINITION 1.1. The p-adic topology for an abelian group is the
topology with the subgroups pnG, n — 1, 2, as a basis for the
neighborhoods of 0.

DEFINITION 1.2. The %-adic topology for an abelian group G is
the topology with the subgroups n\G, n = 1, 2, as a basis for the
neighborhoods of 0.

DEFINITION 1.3. The completion of an abelian group in the p-adic
(resp. ^-adic) topology is its metric space completion with respect
to the metric d(x, y) = 10~m, where m is the largest integer such that
x — yεpmG(τesp. m\G).

PROPOSITION 1.4. If H is a p-pure (resp. pure) subgroup of the
abelian group G, then the p-adic (resp. w-adic) topology of the sub-
group is the same as the induced p-adic (resp. %-adic) topology.

THEOREM 1.5. If an abelian group is complete in the n-adic
topology, then it is a direct summand of every abelian group that
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contains it as a pure subgroup.

PROPOSITION 1.6. A subgroup H of an abelian group G is dense
in the p-adic (resp. ^i-adic) topology if and only if the quotient group
G/H is p-divisible (respectively divisible).

2* The representation theorems. Let G be an abelian group,
let B be a p-basic subgroup, cf. Fuchs [3], of G, and we write B ~
©^0 Bn and BQ — φ λ e X # λ X As in [1 p. 325], for each g e G and each
natural n, we can write

2.1. g = b{

o

n) + b± + + bn + δί + pngn where b{

o

n) e Bo, δ< e J5,
for l^ί<^n, bz e φ ί > % Bi9 and ^ e (λ It is proved in [1] p. 326
that the bi9 i Ξ> 1, are unique in any such representation, and that,
given two such representations, one for n and one for m, we have

2.2 b(

o

n) - ¥o

m) e p^^^G .

For each λ, let (F*)λ be the group of p-adic integers, and let
(Fp)λ be the infinite cyclic subgroup of finite p-adic integers. We
introduce the notation P x = φ ί € i 4 (F*)λ, and P2 = φ ? ^ Bi% P1 and P2

are complete groups in the w-adic topology, and the ?ι-adic topology
coincides with the p-adic topology. φ λ e ^ (F*)λ and φ ^ ^ are pure sub-
groups of P1 and P2, hence they possess completions in P± and P2 for
the coinciding ^i-adic and p-adic topologies. Let Cx = [φλe^(^)λ]*
and C2 = [φ^iBi]*, where the '"'indicates the completion. Notice that
Ci is a direct summand of Piy i = 1, 2.

We define a map σ : G —• Px φ P2 as follows. Let g have the

representation 2.1 for each n. Write b{

o

n) = ΣλβΛ m^Xχ, and write

m{χ] in its p-adic expansion

«J ΊΎlk — 2-lk^0 aλ,kP , U = aλ,k = JP ~ -L

I t follows from 2.2 that α£}

fc is independent of n for yfc < n. Now define

2.4 go = ( . . . , Σ f c , 0 αiίί1}2>fc, S δi, 62, •) .

THEOREM 2.5. The map σ is a homomorphism, and her σ — pωG,
the subgroup of elements of infinite p-height. The p-basic subgroup
B of G is mapped onto the group [ φ λ e 4 (^)λ] Θ [ Φ ^ i ^ l which is a
p-basic subgroup of C1 0 C2.

Proof. It is easy to see that σ is a homomorphism. Let g e pωG,
and write g as in 2.1. Then by the p-purity of B, each of b{

o

n\
δi , δΛ, δί is divisible by p% in the summand of i? to which it
belongs. Hence δx = = δw = 0. Since b{

Q

n) is divisible by pn in
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in Bo, it follows that in m[n) = Σk^Άpk the coefficient a£l = 0 for
k g n — 1. Thus <7#" = 0. Conversely, assume gσ = 0. Then in the
representation 2.1, b1 — b2 — = δΛ = 0, and in the equation m^] =
= Σ/^o^P^, 0 g αj$ g p - 1, we have aj£i2) = 0 for each k. The
uniqueness of the αj^ for k< n implies a^\ — 0 for 0^k<n, i.e. m{^]

is divisible by pn. Thus 6̂ %) is divisible in Bo by pw. The remainder
of this part of the proof is exactly as in the proof of Theorem 3 in
[1] pp. 326-7. It is obvious from 2.1 that B is mapped onto

and it is easy to check that this is a p-basic subgroup of Cx 0 C2

THEOREM 2.6. Gσ is p-pure in P1 φ P2, and {Gσ)* = Cx φ C2,
where ^indicates the completion in the p-adie topology.

Proof. By 2.5 5σ is a p-pure subgroup of P2 φ P2. Since Gσ/Bσ
is a ^-divisible (hence p-pure) subgroup of (Px 0 P2)/Bσ, it follows that
Gσ is a p-pure subgroup of P± 0 P2. Since Go" is p-pure in P2 0 P2

it possesses a p-adic completion in P1 0 P2. Pσ ^ Gσ implies Cx 0 C2 =
(Pσ)* ^ (Gσ)*, and since -Bσ is dense in Gσ in the p-adic topology,
Gσ g (Bσ)* = Cx 0 C2, thus (Gσ)* g d 0 C2.

COROLLARY 2.7. Every ahelian group G with no elements of
infinite p-height may be considered to be a p-pure subgroup of some
group [Θ^ί(^) λ ]θ[θ&i^] and containing [θxeΛ^Λ] θ [θ ai #*]
as a p-basic subgroup.

If G is a p-group, then P1 = 0, and Gσ ^ (C2)ί, the torsion sub-
group of C2. Thus in this case our theorems are exactly the important
and useful Theorems 33.1 and 33.2 of [2].
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