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POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY
SUBALGEBRA IS AN IDEAL

D. L. OutrcaLt

By an H-algebra we mean a nonassociative algebra (mot
necessarily finite-dimensional) over a field in which every
subalgebra is an ideal of the algebra.

In this paper we prove

MaiNn TueoreM. Let A be a power-associative algebra over
a field F' of characteristic not 2. A is an H-algebra if and
only if A is one of the following;

(1) a one-dimensional idempotent algebra;

(2) a zero algebra;

(3) an algebra with basis ., u;, 1€ (an index set of
arbitrary cardinality) satisfying w.u; = a;juo, ai;€F, ¢, jel,
all other products zero. Moreover if J is a finite subset of
I, then 3, ;c;aisw:x; is nondegenerate in that >, .o, a;a0; =
0, @;,a;€F, 1€J implies a; = 0, 1€ J;

(4) direct sums of algebras of types (1), (2), (3) with at
most one from each.

This is an extension of a result of Liu Shao-Xue who established
it for alternative and Jordan H-algebras of characteristic not 2 [1;
Theorem 1].

An immediate corollary is that a power-associative H-algebra over
a field of characteristic not 2 is associative [1; Cor. 1].

Some results on H-rings are also determined in this paper. By
an H-ring we mean a nonassociative ring in which every subring is
an ideal.

1. Preliminaries. The assoctator (z, y, ?) is defined by (z, ¥, 2) =
(xy)z — x(yz). We will use the Teichmiiller identity which holds in
an arbitrary ring,

L1 (we,y,2) — (w, 2y, 2) + (w, ¢, y2) = w(x, y, 2) + (W, &, Y)z .

In a power-associative ring we have the identities (x, z, ) = 0 and
(2, @, ) = 0 which when linearized yield, respectively,

(1'2) Z (wo(l)y wo(z), wa(S)) = 0
cE€Sy
and
(1.3) > (WoyWare), Waz), Wor) = 0
o€y

providing 2z = 0 implies « = 0 in the ring.
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Let a be an element of a ring (algebra). By {a} is meant the
subring (subalgebra) generated by a. Shao-Xue has established [1;
Lemma 1]

LEmMMA 1.1, If a is an element of an H-algebra, then {a} 1s
Sinite-dimensional.

2. Main section. To prove the main theorem we will first
show that an H-algebra with unit is associative, then that a nil
power-associative H-algebra 1is alternative, finally that a power-
associative H-algebra is the direct sum of an H-algebra with unit
and a nil H-algebra from which the theorem follows by Shao-Xue’s
result.

Separate statements for the ring case and the algebra case are
needed where the results are also true of H-rings since there are
ring ideals of an algebra which are not algebra ideals.

THEOREM 2.1. If A is a ring with unit 1, and 1f A is an H-
ring or an H-algebra, then A s associative.

Proof. The nucleus N of A is defined by
N={ueAl(u,z,y)=(x,u,y) = (x,y,u) =0 Va,ye A} .

It follows easily from (1.1) and the linearity of the associator that
N is a subring or subalgebra of A, as the case may be. Hence N
is an ideal of A. But then N(A4, A, A) =0 by (1.1). The theorem
follows immediately from the fact that 1e N.

THEOREM 2.2. Let A be a nil power-associative ring which s
etther

1) an H-ring in which px =0 implies x =0, x€ A, of p=2
or if p =k, k, © integers, k =+ 0,1 = 2, or

(2) an H-algebra where the characteristic of F is not 2.
Then A 1is alternative.

Proof. We first show as in [1; Lemma 3] that for all a e A4,
(2.3) a?=0.

Suppose a” =0,a"* =0 for n =4, acA. Let m = [(n + 1)/2]
where [x] denotes the greatest integer in x, Then m + 1 <n — 1.
Now, a™* = a™a < {a™}, hence a™**' = ja™, j an integer in case (1) or
je F in case (2), since (a™)* = 0. If ja™ = 0, then ¢ is not nilpotent
(using the restriction on characteristic in case (1)), a contradiction.
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Hence ja™ = 0 which implies a™** = 0, which is also a contradiction.
Thus we have (2.3).
Let be A such that v* = 0. We next establish

(2.4) bA=0= Ab.

Choose @ = 0 in A. Since abe {b} and b* = 0, ab = kb. Similarly,
since o = 0 by (2.3) and abe{a}, a’be{a’}, we have ab = la + ma?,
a*b = na’., In case (1) k,1, m,n are integers, and in case (2) they
are elements of F. Since a’be {b} and »* = 0, we have

0 = (a’b)b = (na*)b = n'a*.
Hence a’b = 0. But then since abe {b} and * = 0
0 = (ab)b = (la + ma*)b = lab = l’a + Ima® .
Thus Ifa® = 0 since a® = 0, which implies I = 0 since @ = 0. Therefore
0 = a(ma®) = a{ab) = a(kd) = k% .

Hence Ab = 0.

The anti-isomorphic copy A4’ of A satisfies the hypotheses of A,
hence A'd’ = 0 where b’ is the anti-isomorphic copy of b. But then
bA = 0, and we have (2.4).

In view of (2.4), the theorem will be established if we can
show that the associators (a,a,bd), (a,b, @), and (b, @, a) vanish
whenever a* = 0 == b*, Hence assume the latter,

By (2.3) and (2.4), for all ce 4

(2.5) ¢A=0=Ac.
Since {a} and {b} are ideals, ab, ba € {a} and ab, ba e {b}, hence

ab = ka + 1,a%, ba = m,a + n,a°,

2.6
(2.6) ab = kb + 1,b*, ba = m,b + n,b*

by (2.3) where k,, k., I, l,, m;, m,, n, n, are integers in case (1) or
elements of F in case (2). Computing, using (1.2) with w, = qa,
w, = w, = b, the restrictions on characteristic, and (2.5),

0= (a,b,b) + (b,b,a) + (b, a, b)
= (ab)b — b(ba) + (ba)b — b(ab)
— (-,a)b — b(m,b) + (m.b)b — b(ke.b)
= It + kla® — kb

which implies kia* = 0 by (2.5). Hence k; = 0 since a’ # 0. Consid-
ering the anti-isomorphic copy A’ of A similarly as before yields
m; = 0. Finally, direct computation using (2.5) and (2.6) yields
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(a, a,b) = — ka®, (a,b,a)=(k,— m)a®, and (b, a, a) = m,a?, which
completes the proof.

Proof of main theorem. We will show that A is alternative,
from which the theorem follows by [1; Theorem 1].

If A is nil, then A is alternative by Theorem 2.2, Hence assume
A is not nil. Let @ be an element of A which is not nilpotent. Then
{a} is finite-dimensional by Lemma 1.1. Thus {a} contains an
idempotent e¢. Define

A ={xecAlex =0}.

We will show that A, is nil and that A = {¢}@ A, from which the
theorem follows by Theorems 2.1 and 2.2 since {¢} has unit element e.
Because {e} is an ideal with unit element e,

(v, 6,6) = 0= (e, ¢, 2)

for all x ¢ A, hence if we let w, = ¢, w, = w, = ¢ in (1.2) we obtain
the identities

(2°7) 0= (6, @, e) = (.’,U, e, 6) = (6, e, x) .

Let x, ¢ A,. Expanding (e, x;, ¢) = 0 yields

(2.8) xe=0.,
Let y,e A,. By (2.8),
(2.9) (€, e,9)=0.

In (1.3), let w, =%, w,=1v, w,=w,=¢ and use (2.7), (2.8), and
(2.9) to obtain

(2°10) 0 = (6, mlr yl) + (6, yly xl) .
Now, consider {z,}. Using (2.8) and (2.10), we compute for n > 1

ex? = e(xar™) = — (e, ,, a77) = (e, a7, )

= (ex?™)w, — ext .
Hence
(2.11) 2ex? = (ext o, m > 1.

But then by an obvious induction argument we have from (2.11) that
ex? = 0 which implies that {z} € A,. Hence xy,€ A, since {z.} is an
ideal. Therefore A, is a subalgebra of A.

As in the proof of [1; Lemma 2], choose x€ A. Then x =
ex + (x — ex). Now, e(x — ex) = 0 by (2.7), hence x — ex € A,. Since
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{e} is an ideal, ex c{e}. Moreover, {¢} N 4, = 0, thus A = {e} P A..
If A, is not nil, then, as above, A, has an idempotent e, and
A, = {e} P A, where

A, ={®,ec A |ex, = 0}.

Hence A={e@P{e}PA. Let f=e¢+e. Since e=-¢efc{f} and
e, = fe,c{f}, e and e, are linearly dependent because {f} is one
dimensional, a contradiction. Hence A, is nil, which completes the
proof of the theorem.

H-algebras which are not associative can be constructed. Let A
be the two-dimensional algebra over a field F' with basis a, b satisfying
a*=ab=0=a, ba = 0. It is easy to check that every subalgebra
of A is an ideal. Also, since (b,b,b) = a, A is neither power-
associative nor associative.
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