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POWER-ASSOCIATIVE ALGEBRAS IN WHICH EVERY
SUBALGEBRA IS AN IDEAL

D. L. OUTCALT

By an iί-algebra we mean a nonassociative algebra (not
necessarily finite-dimensional) over a field in which every
subalgebra is an ideal of the algebra.

In this paper we prove

MAIN THEOREM. Let A be a power-associative algebra over
a field F of characteristic not 2. A is an iί-algebra if and
only if A is one of the following;

(1) a one-dimensional idempotent algebra;
(2) a zero algebra;
(3) an algebra with basis uQ, Ui, iel (an index set of

arbitrary cardinality) satisfying UiUj = a^Uo, <*ij € F, i, j e I,
all other products zero. Moreover if J is a finite subset of
ί, then 'Σu.jejaijXiXj is nondegenerate in that ^a>jejan^aj —
0, aif ajGF, ieJ implies «$ = (), ie J;

(4) direct sums of algebras of types (1), (2), (3) with at
most one from each.

This is an extension of a result of Liu Shao-Xue who established
it for alternative and Jordan iϊ-algebras of characteristic not 2 [1;
Theorem 1].

An immediate corollary is that a power-associative iί-algebra over
a field of characteristic not 2 is associative [1; Cor. 1],

Some results on iί-rings are also determined in this paper. By
an iί-ring we mean a nonassociative ring in which every subring is
an ideal.

1* Preliminaries* The associator (x, y, z) is defined by (x, y, z) =
(xy)z — x(yz). We will use the Teichmuller identity which holds in
an arbitrary ring,

(1.1) (wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z .

In a power-associative ring we have the identities (x, x, x) = 0 and
(or, x, x) — 0 which when linearized yield, respectively,

(1.2) Σ (w*(D» Woω, wσ{3)) = 0
σes3

and

(1.3) Σ K(l)Wα(2), Wα(3), WσU)) =

σes4

providing 2x = 0 implies x = 0 in the ring.
481
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Let a be an element of a ring (algebra). By {a} is meant the
subring (subalgebra) generated by a. Shao-Xue has established [1;
Lemma 1]

LEMMA 1.1. If a is an element of an H-algebra, then {a} is
finite-dimensional.

2* Main section* To prove the main theorem we will first
show that an if-algebra with unit is associative, then that a nil
power-associative iϊ-algebra is alternative, finally that a power-
associative iϊ-algebra is the direct sum of an H-algebra with unit
and a nil ίZ-algebra from which the theorem follows by Shao-Xue's
result.

Separate statements for the ring case and the algebra case are
needed where the results are also true of if-rings since there are
ring ideals of an algebra which are not algebra ideals.

THEOREM 2.1. If A is a ring with unit 1, and if A is an H-
ring or an H-algebra, then A is associative.

Proof. The nucleus N of A is defined by

N= {u e AI (u, x, y) = (x, u, y) = (x, y, u) = 0 va?, yeA}.

It follows easily from (1.1) and the linearity of the associator that
N is a subring or subalgebra of A, as the case may be. Hence N
is an ideal of A. But then N(A, A, A) = 0 by (1.1). The theorem
follows immediately from the fact that 1 e JV.

THEOREM 2.2. Let A be a nil power-associative ring which is
either

(1) an H-ring in which px = 0 implies x — 0, x e A, if p = 2
or if p = k\ h, i integers, k φ 0, i ^ 2, or

(2) an H-algebra where the characteristic of F is not 2.
Then A is alternative.

Proof. We first show as in [1; Lemma 3] that for all aeA,

(2.3) α3 = 0 .

Suppose an = 0, an-χ ̂ 0 for ? ι ^ 4 , α e i . Let m = [(n + l)/2]
where [x] denotes the greatest integer in x. Then m + 1 S n — 1.
Now, αm+1 = αmα 6 {αm}, hence am+1 — jam, j an integer in case (1) or
j e F in case (2), since (αw)2 = 0. If jam Φ 0, then a is not nilpotent
(using the restriction on characteristic in case (1)), a contradiction.
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Hence jam = 0 which implies αm + 1 = 0, which is also a contradiction.
Thus we have (2.3).

Let be A such that δ2 = 0. We next establish

(2.4) bA = 0 = Ab .

Choose a Φ 0 in A. Since ab e {b} and δ2 = 0, ab = &δ. Similarly,
since α3 = 0 by (2.3) and ab e {a}, a2b e {α2}, we have αδ = Zα + ma2,
a°b = na2. In case (1) k, I, m, n are integers, and in case (2) they
are elements of F. Since α2δ e {b} and δ2 — 0, we have

0 = (α2δ)δ = (wα2)& = π2α2 .

Hence α2δ = 0. But then since αδ e {δ} and δ2 = 0

0 = (αδ)& = (la + ma2)b — Zαδ = i2α + Ima2 .

Thus i2α2 — 0 since α3 = 0, which implies I — 0 since α ^ 0. Therefore

0 = a(ma2) = aiμb) = α(fcδ) - fc2δ .

Hence Ab = 0.
The anti-isomorphic copy A! of A satisfies the hypotheses of A,

hence A!b' — 0 where br is the anti-isomorphic copy of δ. But then
bA = 0, and we have (2.4).

In view of (2.4), the theorem will be established if we can
show that the associators (α, a, δ), (a, δ, a), and (δ, α, a) vanish
whenever a2 Φ 0 Φ δ2. Hence assume the latter.

By (2.3) and (2.4), for all ce A

(2.5) c*A = 0 - Ac2 .

Since {a} and {δ} are ideals, ab, ba e {a} and ab, ba e {δ}, hence

ab = k^a + ίi^2, ba — mxα + ^ α 2 ,

ab = k2b + i2δ
2, ba = m2b + ?̂ 2δ

2

by (2.3) where &!, k2, lu l2, mu m2, nlf n2 are integers in case (1) or
elements of F in case (2). Computing, using (1.2) with wt — α,
w, = w3 = b, the restrictions on characteristic, and (2.5),

0 = (a, δ, δ) + (δ, δ, a) + (δ, a, δ)

= (αδ)δ - δ(δα) + (δα)δ - δ(αδ)

= {k,a)b - δ(m2δ) + (m2δ)δ - b{k-Jb)
— k\a + fcx^α2 — kjb2 ,

which implies k\a2 = 0 by (2.5). Hence k1 = 0 since a2 Φ 0. Consid-
ering the anti-isomorphic copy A! of A similarly as before yields
m1 = 0. Finally, direct computation using (2.5) and (2.6) yields



484 D. L. OUTCALT

(α, α, 6) = — kxa
2

9 (α, &, a) = (kt — m^α2, and (&, α, α) = mxα
2, which

completes the proof.

Proof of main theorem. We will show that A is alternative,
from which the theorem follows by [1; Theorem 1],

If A is nil, then A is alternative by Theorem 2.2. Hence assume
A is not nil. Let a be an element of A which is not nilpotent. Then
{a} is finite-dimensional by Lemma 1.1. Thus {a} contains an
idempotent e. Define

Ai = {x e AI ex = 0} .

We will show that A1 is nil and that A — {e} 0 A1 from which the
theorem follows by Theorems 2.1 and 2.2 since {e} has unit element e.

Because {e} is an ideal with unit element e,

(a?, β, e) = 0 = (e, β, ac)

for all x e A, hence if we let w1 — x, w2 = wB = e in (1.2) we obtain
the identities

(2.7) 0 = (e, %, e) = (a?, β, e) = (β, β, x) .

Let #! G Aλ. Expanding (β, #!, e) = 0 yields

(2.8) ffjβ = 0 .

Let Vl e A. By (2.8),

(2.9) (xu β, 2/0 = 0 .

In (1.3), let ^ = xl9 wz = ylf w3 = w± = e and use (2.7), (2.8), and

(2.9) to obtain

(2.10) 0 = (β, xu i/O + (β, i/i, αO .

Now, consider {ajj. Using (2.8) and (2.10), we compute for n > 1

exΐ = efaxΓ1) = - (e, a?lf a??"1) = (β, ^Γ 1, ^0

= (ea;?""1)^ — ex? .

Hence

(2.11) 2exl = (ea Γ1)^!, ^ > 1 .

But then by an obvious induction argument we have from (2.11) that
e%l = 0 which implies that {xj c Λ Hence x^ e A1 since {x,} is an
ideal. Therefore A± is a subalgebra of A.

As in the proof of [1; Lemma 2], choose x e i . Then a? =
ex + (a; — ex). Now, e(a? — ex) = 0 by (2.7), hence a; — ex e Alβ Since
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{e} is an ideal, ex e {e}. Moreover, {e} Π A1 = 0, thus A = {β} © A1#

If ^ is not nil, then, as above, A1 has an idempotent ex, and
A1 = {ej 0 A2 where

A2 = {&2 e Aι \ eλxz = 0} .

Hence A = {e} 0 {ej 0 A . Let f = e + elm Since e = efe {/} and
^ = /ex G {/}, e and ^ are linearly dependent because {/} is one
dimensional, a contradiction. Hence A1 is nil, which completes the
proof of the theorem.

JBΓ-algebras which are not associative can be constructed. Let A
be the two-dimensional algebra over a field F with basis α, b satisfying
α2 = ab — b2 = α, ba = 0. It is easy to check that every subalgebra
of A is an ideal. Also, since (6,6, b) = a, A is neither power-
associative nor associative.

BIBLIOGRAPHY

1. Liu Shao-Xue (Liu Shao-Hsueh), On algebras in which every subalgebra is an ideal,
Acta Math. Sinica 14 (1964), 532-537 (Chinese); translated as Chinese Math.-Acta 5
(1964), 571-577.

Received April 5, 1966. This research was supported by the U. S. Air Force
under Grant No. AFOSR 698-65.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA






