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FUNCTIONAL REPRESENTATION OF
TOPOLOGICAL ALGEBRAS

PETER D. MORRIS AND DANIEL E. WULBERT

A topological algebra E is an algebra over the real or com-
plex numbers together with a topology such that E is a topolo-
gical vector space and such that multiplication in E is jointly
continuous. For a topological space X, C(X) denotes the alge-
bra of all continuous, complex-valued functions on X with the
usual pointwise operations. Unless otherwise stated, C(X) is
assumed to have the compact-open topology. Our principal
concern is with representing (both topologically and algebrai-
cally) a commutative (complex) topological algebra, with
identity, E as a subalgebra of some C(X), X a completely
regular Hausdorff space. We obtain several characterizations
of topological algebras which can be so represented. The most
interesting of these is that the topology on E be generated
by a family of semi-norms each of which behaves, with respect
to the multiplication in the algebra, like the norm in a (Banach)
function algebra.

Let M be the set of nonzero, continuous, multiplicative, linear
functionals on a topological algebra E, provided with the weak topology
induced by E. We are especially interested in representing E as a
subalgebra of C(M). Our results along this line are found in §4.
If E is also provided with an involution, we wish to represent E in
such a way that involution goes over into complex conjugation. This
problem is studied in §5.

The principal known results along the lines of our investigation
are due to Arens and Michael. Arens ([3], Th. 11.4) characterized
the topological algebras which are topologically isomorphic to C(X),
for X a paracompact space. Michael ([9], Th. 8.4, p. 33) obtained
sufficient conditions for a topological algebra to be topologically iso-
morphic to (C(M), To), where Γo is a topology weaker than the compact-
open topology. Arens ([3], Th. 11.6) obtained a similar result. We
obtain MichaeΓs result as Corollary 5.3.

In §2 we prove that a Hausdorff space X is completely regular
if and only if the closed ideals in C(X) are in one-to-one correspond-
ence (in the usual way) with the closed subsets of X. The necessity
is well known in case X is compact but our theorem seems to be new.
In § 3 we characterize those spaces C(X) which have the Mackey
topology. This section is unrelated to the rest of the paper but is
of some interest in itself.

In § 6 we apply some of our previous results to the general study
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of topological algebras. Section 7 is concerned with a concept, that
of a countably barrelled topological vector space, recently introduced
by Taqdir Husain [7]. We characterize those space C(X) which are
countably barrelled and then give examples to show that not every
C(X) is countably barrelled and to show that there exist countably
barrelled nonbarrelled spaces.

We take the opportunity to explain some of our notation and
terminology. If E is a topological vector space, then Ef denotes the
topological dual of E.

The concept of a locally m-convex topological algebra was intro-
duced by Arens [1]. Let E be a topological algebra. Then E is locally
m-convex if, and only if, E admits a basis for the neighborhoods of 0
consisting of balanced, convex, closed sets ί/such that U2 = UU a U.
Equivalently, E is locally m-convex if, and only if, there is a set {p{: i e 1}
of semi-norms on Esuch that: (i) the sets of the form {xeE: p4(x) ^ 6},
for i e I, b > 0, form a base of neighborhoods of 0; and (ii)

Pi(xy) ^ Pi(x)Pi(y) ,

for ieI,x,yeE. The standard work on locally m-convex algebras is
the Memoir of Michael [9].

If X is a topological space, then C(X) is locally m-convex. Simply
take the semi-norms {pκ: K a compact subset of X} defined by
Pκ(f) = sup {| f(x) \:xeK}, for fe C(X). The same is true of any
subalgebra of C(X).

Throughout this paper, all topological algebras are assumed to have
identities and be commutative. As topological vector spaces, they are
assumed to be locally convex and Hausdorff. The scalar field is always
the complex numbers.

2* Closed ideals in C(X). Let X be a Hausdorff space. If A
is a closed subset of X, let IA = {feC(X):/ vanishes on A}. Then
IA is a closed ideal in C(X). It is well-known that all closed ideals
are of this form if X is compact and that, in fact, there is a one-to-
one correspondence between the closed ideals of C(X) and the closed
subsets A of X via the relation A+-+IA. We have the following char-
acterization of the spaces for which this result holds:

THEOREM 2.1. The closed ideals in C(X) are in one-to-one cor-
respondence with the closed subsets of X via A^IA if, and only if,
X is completely regular.

Proof. Suppose X is completely regular. Let I be a closed ideal
in C(X). Let A = {x e X: f(x) = 0 for all fe I}. Then A is a closed
(possibly empty) set. We show that 1= IA. Clearly / g IA. Let K
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be a compact subset of X, and let Γ and IA denote the collections
of functions in C(K) which are restrictions to K of functions in I
and IA, respectively. Now Γ and ΓA are ideals in C(K). Since K is
compact, the closure (in C(K), of /' is the ideal in C(K) of functions
vanishing on K Π A. In particular, IA <Ξ CIV. Hence I is dense in
IA and, since I and IA are closed, I = IA. By the complete regularity
of X, IA Φ IB if A Φ B.

If X is not completely regular, then there exists a closed subset
A of X and a point x e X\A such that every function in C(X) that
vanishes on A also vanishes at x. Letting B = A{J {x}, we have
IA = IB with A Φ B. This completes the proof.

COROLLARY 2.2. Let X be completely regular. The closed max-
imal ideals in C(X) are in one-to-one correspondence with the points
of X via the relation x <-> I{x}.

COROLLARY 2.3. Let X be completely regular. The nonzero, con-
tinuous, multiplicative, linear functions on C(X) (i.e. the con-
tinuous algebraic homomorphisms from C(X) into the complex
numbers) are in one-to-one correspondence with the points of X via
the relation x^->mx, where mx(f) = f(x), for feC(X).

3. The Mackey topology on C(X). If E is a locally convex
Hausdorίf topological vector space with dual space £", then the Mackey
topology on E is the topology of uniform convergence on the weakly
compact, convex, balanced subsets of E'(see [8], p. 173).

If X is a completely regular Hausdorίf space and if L is continuous
linear function on C(X), then the support of L, supp(L), is the smal-
lest closed set A such that L(f) = 0 for every feC(X) vanishing on
A. It is not difficult to show that supp(L) always exists and is com-
pact. If B £ C(XY, then the support, supp(ί?), of B is defined to be
cl( U {supp(L): L e B}).

LEMMA 3.1. Let X be a completely regular Hausdorff space. A
subset B of C(X)f is equicontinuous if, and only if, the support K
of B is compact and

sup {| L(f) \:LeB,fe C(X), pk(f) ^ 1} < - .

Proof. Necessity. Since B is equicontinuous it is contained in the
polar of some neighborhood of 0 in C(X). That is, for some n > 0
and some compact H gΞ X,

BQn{Le C(X)': \ L(f) | ^ 1 for every fe C(X) with pH{f) ^ 1}.
Let LeB and suppose feC(X) and / vanishes on H. Then
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Pπ(mf) = 0 ^ 1 ,

for all m > 0. Hence m \ L(f) | ^ 1 for all m > 0. Therefore L(f) = 0.
We conclude that supp(L) £ H and hence that supp(J3) £ H and is
therefore compact. Let K = supp(B) and let fe C(X) be such that
pk(f) = 1. There exists an extension / ' e C(X) of the restriction of
f to K such that pB{f) ^ 1. Then | L(f') | ^ n, for all LeB. On
the other hand, / — / ' vanishes on K so that L(f) — L(f') for all
LeB. Hence

sup {| L(f) \:LeB,fe C(X), pk(f) ^ 1} ^ n,

and the necessity is proved.

Sufficiency. Let

r - sup {| L(f) \:LeB,fe C(X), pk(f) £ 1}.

We clearly have

BQr{Le C(X)': | L(f) | ^ 1 for all fe C(X) with pk(f) ^ 1} .

Hence B is contained in the polar of a neighborhood of 0 in C(X)
and is therefore equicontinuous.

This completes the proof.

THEOREM 3.2. Let X be a completely regular Hausdorff space.
The following statements are equivalent:

( i) C(X) has the Mackey topology
(ii) each weakly compact, balanced, convex subset of C(X)f is

contained in a multiple of the bipolar of some weakly compact set of
continuous multiplicative linear functionals;

(iii) if B is a weakly compact, convex, balanced subset of C(X)'',
then supp(B) is compact.

Proof. C(X) has the Mackey topology if, and only if every weakly
compact, balanced, convex subset of C(X)' is equicontinuous. Prom the
fact (Cor. 2.3) that continuous, multiplicative, linear functionals cor-
respond to points of X, it is clear that the multiples of bipolars of
weakly compact sets of continuous, multiplicative linear functionals
are precisely the polars of basic 0-neighborhoods in C(X). Since a
subset of C(XY is equicontinuous if, and only if, it is contained in the
polar of some 0-neighborhood in C(X), the proof that (i) <=>(ii) follows.
From (3.1), the fact that (i) => (iii) is clear. To show that (iii) => (i)
let B be a weakly compact balanced, convex subset of C(X)'. By (iii)
the support K of B is compact. Since B is weakly compact, the set
{\L(f)\:LeB} is bounded for each feC(X). For each LeB, we
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define a functional L* on C(K) by: L*(h) = L(h'), where heC(K) and
h' is any continuous extension of h to all of X. This definition makes
sense because, if h" is a second continuous extension of h to X, then
h" - h' vanishes on K so that L(h") = L(h'). To show that L* e C(iQ',
it suffices to show that L is bounded on {fe C(X): pk(f) ^ 1} since
the compact-open topology on C(K) is the same as the supremum norm
topology. This, however, follows from the continuity of L and the
fact that supp(L) s K. Let E* = {L* : L e B). From the definition
of L*, we have that {| L*(h) | : L* e S*} is bounded for each h e C{K).
By the Uniform Boundedness Principle, B* is bounded in norm. In
other words, by the definition of L* and B*,

sup {| L(f) \:LeB,fe C(X), pk(f) rg 1} < ~ .

Hence, by (3.1), B is equicontinuous. Therefore C(X) has the Mackey
topology.

This completes the proof.

Many spaces C(X) do have the Mackey topology. For example,
letting R denote the real numbers, C(R) is barrelled and therefore has
the Mackey topology (see [10] or [12]). The theorem has some point,
however, since not every C(X) has the Mackey topology. Let W be
the space of ordinals less than the first uncountable ordinal. Then
C(W) does not have the Mackey topology. We sketch a proof of this
fact. For σ e W, let mσeC(W)' be defined by mσ(f) = f(σ), for
fe C(W). Let A = {mσ+1 - mσ : σ e W} and let B be the closed, bal-
anced, convex hull of A. It is easy to see that A is not equicontinuous.
To complete the proof, one then shows that B is weakly compact.
This example was inspired by a similar one in [4].

Since a barrelled space has the Mackey topology, we see that if
C(X) is barrelled, then every weakly compact, convex, balanced subset
of C(XY has compact support. As an impovement on this result we
have the following proposition. The proof is a slight variation of the
proof of a result of Nachbin's ([10], Th. 1) and is therefore omitted.

Let A be a subset of a topological space X. Then A is said to
be C(X)-pseudocompact if, and only if, every function in C(X) is
bounded on A. Note that a C(X)-pseudocompact set need not be a
pseudocompact space.

PROPOSITION 3.3. Let X be a completely regular Hausdorίf space.
Then the support of every weakly bounded (and hence every weakly
compact) subset of C(X)' is C(X)-pseudocompact. In addition, C(X)
is barrelled if and only if the support of each such set is compact.

4* Functional representations of topological algebras* Let E
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be a topological algebra and let M be the set of nonzero, continuous,
multiplicative, linear functional on E. Call M the carrier of E.
Conceivably, M may be empty. If it is not, we topologize it as follows.
Let E' have the weak topology and let M have the relative topology it
inherits as a subset of E'. With this topology, M is a completely
regular Hausdorff space. We construct a mapping G:E—>C(M) by
defining G(x)(m) = m(x) for each xe Eand me M. Call G the Gelfand
map of E. Clearly G is an algebraic homomorphism.

We turn to the question of when G is an isomorphism. Let us call
E strongly semi-simple if x e E, x Φ 0 imply m(x) Φ 0 for some me M.
It is then clear that G is an algebraic isomorphism of E into C(M)
if, and only if, E is strongly semi-simple.

A few remarks concerning this definition of strong semi-simplicity
are in order. First, if X is a completely regular space and if E is a
subalgebra of C(X), E is strongly semi-simple. This follows from
(2.3). Secondly, if E is a topological algebra with nonvoid carrier M,
we may, by passing to a quotient algebra F of E, obtain a strongly
semi-simple algebra with the same carrier M. Simply let

I = {x e E: m(x) = 0

for all me M} and let F = E/I. Finally, under suitable restrictions
on E, strong semi-simplicity is equivalent to the property that the
intersection of the closed maximal ideals of E be {0}, i.e., semi-simpli-
city. That this is the case for locally m-convex algebra follows from
([9], Prop. 2.4e and Prop. 2.8) and Arens' generalization [2] of the
Gelfand-Mazur Theorem.

We turn now to the question of the continuity of G and, if defined,
its inverse.

THEOREM 4.1. Let E be a topological algebra with nonvoid
carrier M and Gelfand map G. If E is barrelled, then G is continuous.

Proof. Let x{,iel, be a net in E converging to xeE. Since
E is barrelled, xt converges to x, uniformly on compact subsets of Ef

(regarding E as a set of functions on E'). Hence G{xι) converges to
G(x), uniformly on compact subsets of M. Therefore G is continuous.

It is easy to show that G continuous does not imply E barrelled.
Let R be the real numbers and let C*(R) be the bounded functions in
C ( R ) . T h e n C*(R) i s n o t b a r r e l l e d ( s i n c e {fe C*(R): \f(r) \^l,reR}
is a barrel but not a 0-neighborhood) but G is continuous.

THEOREM 4.2. Let E be a strongly semi-simple topological algebra
with carrier M and Gelfand map G. If every equicontinuous subset
of E' is contained in a multiple of the closed, convex, balanced hull



FUNCTIONAL REPRESENTATION OF TOPOLOGICAL ALGEBRAS 329

of some compact subset of M, then G~ι is continuous.

Proof. The polars of equicontinuous subsets of Er form a base of
O-neighborhoods in E. Let A S E* be equίcontinuous. By hypothesis,
there is a compact subset K of M and n > 0 such that nK00 Ξ2 A.
Taking polars on both sides, we have 1/nK0 g A0. Hence

l/nG(K°) s

Now let

TΓ - {/e C(M): | f(m) \ ̂  1, m e K) .

Then TF is a O-neighborhood in C(i)f). We have

— (Wf] G(E)) = — G(#°) S G(A°) .
n n

This shows that G is open and hence that G"1 is continuous.

COROLLARY 4.3. Let E be a strongly semi-simple topological
algebra with carrier M and Gelfand map G. If the multiples of the
polars of equicontinuous compact subsets of M form a base of
O-neighborhoods in E, then G"1 is continuous.

We need the following:

DEFINITION 4.4. Let E be a topological algebra. Then E is
pseudo-normed if, and only if, there is a set {p{ :ie 1} of semi-norms
on E such that: (i) the collection of sets {xeE: Pi(x) <j δ}, for iel,
b > 0, form a neighborhood base at 0; (ii) Pi(xy) ^ Pi(%)Pί(y), for i e /,
x,ye E) (iii) p^x2) = Pι{x)\ ieI,xeE.

Note that a pseudo-normed algebra is locally m-convex. Also, if
X is a topological space, then, with the semi-norms {pκ : K a compact
subset of X}, any subalgebra of C(X) is pseudo-normed.

If M is the nonvoid carrier of the topological algebra E, let To

denote the topology on C(M) of uniform convergence on closed
equicontinuous subsets of M. Each such set is compact and therefore
To is weaker than the compact-open topology. The topology To was
first defined by Michael ([9], p. 32).

THEOREM 4.5. Let E be a strongly semi-simple topological algebra
with carrier M and Gelfand map G. The following are equivalent:

( i ) E is pseudo-normed;
(ii) E can be embedded algebraically and topologically in a
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product algebra ΐlC(Ki), where K{ is a compact Hausdorff space for
%ei

each ie I;
(iii) E can be embedded algebraically and topologically in a C(X)

for X a locally compact Hausdorff space)
(iv) E can be embedded algebraically and topologically in a

C(X) for X a completely regular Hausdorff space;
( v ) G~ι: (C(M), To) ~^E is continuous;
(vi) G : E —> (C(7kf), To) is a topological and algebraic isomorphism

(into).
Proof. (i)=>(ii): Let {p{: i e 1} be as in the definition of a

pseudo-normed algebra. For each iel, let Ni = {x e E: p^x) = 0}.
Then Ni is a closed ideal. Let A* = £7/-^, equipped with the norm
qi9 where q{(x + Ni) = Pi(x), for xeE. Let C< be the completion of
Ai. Then d is a Banach algebra and qάx2) = tfi(ί)2, for x e C{. Thus
Cί is semisimple and moreover the Gelfand map carrying d into C(Ki),
where Kι is the (compact) carrier of Cif is an isometric isomorphism
(see [11], p. 194, IV). Now according to ([9], Prop. 2.7, p. 10), since
E is locally m-convex, E is topologically and algebraically isomorphic
to a subalgebra of ΐ[{Ai: ie 1} and therefore to a subalgebra of
HiCi'.iel} and therefore to a subalgebra of Π{C(iQ :iel}. This
proves (ii).

(ii) => (iii): Let K be the free union (see [5], p. 132) of the Ki9iel.
It is clear that C(K) is topologically isomorphic to

Since iΓ is locally compact, (iii) is proved.
(iii) => (iv): Obvious.
(iv)=>(v): Without loss of generality, we can assume that E

contains the constant functions in C(X). Now each point of X
determines an element of M, although two distinct points of X may
determine the same element of M. The mapping h of X into M thus
determined, is continuous. Let U = {fe E : | f(x) | ^ ε , x e K} be a basic
0-neighborhood in E, where K ϋ X is compact and ε > 0. Then h(K)
is a compact subset of Jlί and

6h(K)° = {feE:\ m(f) | ^ ε, m e Λ(iΓ)} = {/e # : | /(a?) | ^ ε, x e K) = U .

This shows that the multiples of polars of sets of the form h(K) form
a base of 0-neighborhoods in E. Then, as in (4.3), it follows that
G- 1: (C(M), To) — # is continuous.

(v)=>(vi): We already know that G is an algebraic isomorphism
so it remains to show that G is continuous. Let K be a closed equi-
continuous subset of M and let U - {£(/) e G(E) : |G(/)(aO | ^ 1, x e ίΓ}.
Then G-\U) = {feE:\ m(f) | ^ 1} = K°. But polars of equicontinuous
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subsets of the dual of a locally convex space are always 0-neighbor-
hoods. This proves (vi).

(vi) => ( i ) : For each closed equicontinuous K £ ikf, let qκ(f) = sup
{| G(f)(x) I : x e K}, feE. Then clearly {qκ : K g X closed and equi-
continuous} satisfies the conditions in the definition of a pseudo-normed
algebra. This completes the proof.

Let E, M, G be as above. If G is continuous (e.g., if E is bar-
relled), we get the following stronger result. The proof is omitted.

THEOREM 4.6. Let E be a strongly semi-simple topological algebra
with carrier M and Gelfand map G. If G is continuous, the follow-
ing statements are equivalent:

( i ) E is pseudo-normed;
(ii) E can be embedded algebraically and topologically in an

algebra Π C(Ki), where Kι is a compact Hausdorff space for each

ie I;
(iii) E can be embedded algebraically and topologically in a C(X)

for X a locally compact Hausdorff space;
(iv) E can be embedded algebraically and topologically in a C(X)

for X a completely regular Hausdorff space;
(v) G is a homeomorphism.

5* Topological algebras with involution* We need the follow-
ing:

DEFINITION 5.1. A topological algebra E is called an algebra with
involution if there is a mapping x —» x* of E onto itself satisfying,
for x,y eE and β a scalar,

( i ) #** = χ;
(ii) (x + y)* = x*_+ y*
(iii) (βx)* = βx*(β = complex conjugate);
(iv) (xy)* = £*τ/*.

E is a *-algebra if it is an algebra with involution admitting a set
{Pi :ie 1} of semi-norms satisfying

( i ) ' Pi(xy) ^ Pi(x)Pi(y), for x,yeE;
(ii) ' the sets {xeE;Pi(x)<b}, for ieI,b>0, form a base of

O-neighborhoods in E;

(iii)' Pi(xx*) = Pi(x)\ for xeE.
Michael ([9], Dfn. 6.3, p. 23) calls our algebras with involution,

*-algebras. A *-algebra is locally m-convex and, in fact, pseudo-
normed. The proof of this fact is omitted (see [11], p. 230). For a
topological space X, the usual involution on C(X) is complex conjuga-
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tion. If E is a subalgebra of a C(X) such that feE implies JeE,
then E is said to be self-adjoint. Obviously, a self-adjoint subalgebra
of a C(X) is a *-algebra with the usual semi-norms. If E and F are
algebras with involution, then H:E-+F is a *-homomorphism if i ϊ
is an algebraic homomorphism and H(x*) = H(x)*, for xei?.

We characterize *-algebras in the following;

THEOREM 5.2. Lβί E be a topological *-algebra with carrier M
and Gelfand map G. Then E is a strongly semi-simple *-algebra if,
and only if, G : E—+ (C(M), To) is a topological *-isomorphism onto
a dense (in the compact-open topology) self-adjoint subalgebra of C(M).

Proof. Sufficiency is clear. If E is a strongly semi-simple *-algebra,
then G: E—> (C(M), To) is already known to be a topological and
algebraic isomorphism. To complete the proof, it suffices to show that
G is a *-isomorphism. That this will imply that G is self-adjoint is
clear. The fact that G(E) is dense then follows from the Stone-
Weierstrass Theorem generalized to arbitrary C(X) (see [5], p. 283, or
[9], Prop. 6.8, p. 24). To shows that G is a ^-isomorphism, let
moeM. Since {m0} is compact, there is ie I and δe(0,l) such that

D = {x e E: pt(x) <b}^{xeE:\ mo(x) | < 1} .

Let K = D° Π M. Then K is compact. Let Nt = {x e E : p{(x) = 0}
and let Aι = E/Ni provided with the norm ĝ  defined by

for x G E. Finally, let d be the completion of A{. Now if x e E, then
it is easily seen that p{(x) = Pi(x*). Hence x,y eE,x — y eNi imply
x* — y* eNi. Therefore the formula (x + Ni)* = x* + Ni defines an
involution on A{. Moreover q^xx*) = q(xf for x e A{. Hence the
involution may be extended to C* so that C* is a I?*-algebra. By a
well known theorem (see [11], p. 230, Th. 1), d is topologically
*-isomorphic to C(Ki), where K{ is its carrier. Let G{ be the Gelfand
map of d. It is routine to verify that there is a homomorphism
m-^mi of K onto K{ and that, for meK and xeE,

Now it is well known that Gi is a ^-isomorphism so that, if x e E,
Gi(x* + Ni)(mi) is the complex conjugate of Gt(x + Ni)(mi). Hence
G(x*)(m) is the complex conjugate of G(x)(m). In particular, this is
true for m = m0. Since m0 is arbitrary, G is a ^isomorphism. This
completes the proof.
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It should be noted that a *-algebra is automatically strongly semi-
simple. To prove this, let E be a *-algebra and let x be a nonzero
element of E. Then there is a semi-norm p{ such that pζ(x) Φ 0.
Letting Ni9 Ai9 pi9 and d be as in the previous proof, we have that
x + Ni is a nonzero element of C{. Since C< is semi-simple, there is
a continuous multiplicative linear functional m{ on d such that

m^α + Ni) Φ 0 .

Let m be the continuous multiplicative linear functional on E corres-
ponding to mi as in the previous proof. Then m(x) Φ 0. Hence E is
strongly semi-simple.

As a corollary to Theorem (5.2), we get a result due to Michael
([9], Th. 8.4, P. 33).

COROLLARY 5.3. Let E be a complete *-algebra. Then E is
topologically *-isomorphic to (C(M), TQ).

We remark that other conditions equivalent to E being a *-algebra
are now easily derived using (4.5). For example, E is a *-algebra if,
and only if, E is topologically *-isomorphic to a self-ad joint subalgebra
of C(X), for some completely regular Hausdorff space X.

As in §4, if G is known to be continuous (e.g., if E is barrelled),
we can replace To with the compact-open topology in (5.2) and (5.3).

Recall that a completely regular space X is realcompact if, and
only if, the only multiplicative linear functions on C(X) are the
evaluations at points of X (see [6]). According to a result of Nachbin
[10] and Shirota [12], C(X), for X completely regular Hausdorff, is
bornological if, and only if, X is realcompact. From the fact that a
complete bornological space is barrelled, we have:

COROLLARY 5.4. A complete topological *-algebra E is topologically
*-isomorphic to C(X), for some realcompact X if, and only if, E is
bornological.

The following result is an easy consequence of (5.2). For a
theorem of a similar type, see [13], Th. 3, p. 268.

COROLLARY 5.5. Let X be a realcompact space and T a topology
on C(X) such that (C(X), T) is a complete topological algebra. Then
T is the compact-open topology if, and only if, (C(X), T) is a bor-
nological *-algebra in which all the evaluations at points of X are
continuous.

The final result of this section implies a weak version of a theorem
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of Michael ([9], Th. 12.6, p. 53)

COROLLARY 5.6. Each multiplicative linear functional on a
complete bornological *-algebra is continuous.

6* Applications to topological algebras*

THEOREM 6.1. Let E be a barrelled topological algebra with
nonvoid carrier M. If A is a closed subset of M then A is compact
if, and only if {m(x) :meA} is bounded for every xe E.

Proof. Necessity is clear. If {m(x) :meA} is bounded for every
x e E, then A is weakly bounded. But in the dual of a barrelled space,
a set is weakly compact if, and only if, it is closed and weakly bounded
([8], Th. 18.7, (iii), p. 171). The proof follows from the observation
that M is weakly closed in Ef.

COROLLARY 6.2. Let E be a barrelled topological algebra with
nonvoid carrier M. Then M is compact if, and only if, the image
of E under the Gelfand map is contained in the bounded functions
in C(M).

COROLLARY 6.3. Let E be a barrelled topological algebra with
nonvoid carrier M. Then C(M) is barrelled.

Proof. Note that, by (6.1), a closed C(M)-pseudocompact subset
of M is compact. According to a well known result due independently
to Nachbin [10] and Shirota [12], the real space C(X, R) is barrelled
if, and only if, every C(X, ϋ?)-pseudocompact subset of X is compact.
Omitting the routine proof that C(X, R) is barrelled if, and only if,
C(X) is, the proof is complete.

We are now in a position to give a simple proof of a theorem due
to Warner ([13], Th. 4, p. 269). Call a topological algebra E with
nonvoid carrier M full if the Gelfand map is an algebraic isomorphism
of E onto C(M) (see [9], Dfn. 8.3). A topological space X is hemi-
compact if X = UΓ=î »» where each A{ is compact, and each compact
subset of X is contained in some Aim Also, X is a Λ-space provided
a subset of X is closed if its intersection with each compact subset of
X is closed.

THEOREM 6.4. (Warner). Let E be a full Frechet algebra with
carrier M. Then the Gelfand map is a homeomorphism and M is a
hemicompact k-space.
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Proof. A Frechet space is barrelled and therefore the Gelfand
map is continuous. By (6.3), C{M) is barrelled. Therefore the closure
of the Gelfand image of an open set has nonvoid interior. From this
and the fact that E is a Baire space, we see that C(M) is a Baire
space. By the Open Mapping Theorem ([8], Th. 11.4, P. 99), the
Gelfand mapping is a homeomorphism. Since C(M) is thus a Frechet
space, M is a hemicompact Λ-space, by a result of Warner ([13], Th.
2, p. 267). This completes the proof.

DEFINITION 6.5. Let E be a topological algebra with nonvoid
carrier M. If x e E and {m(x) : m e M) is bounded, then x is said to
be bounded. If every x e E is bounded, E is bounded.

DEFINITION 6.6. Let E be a barrelled semi-simple topological
algebra, with carrier M. Let G be the Gelfand Map. Denote by T
the relative topology (from C(M)) on G(E) transferred to E. Let E*
be the dual of (E, T).

It is clear that T is weaker than the given topology on E, so
that E* s Er.

THEOREM 6.7. Let E be a barrelled, semi-simple, topological
algebra, with nonvoid carrier M. Then E is normable if, and only
if, E is bounded and E* = E''.

Proof. If E is normable, then it is pseudo-normed and therefore
the Gelfand map is a homeomorphism. Clearly M is compact. The
conclusion follows immediately. Suppose E is bounded and Έ% — Er.
By (6.1), M is compact and therefore C(M) and hence G(E), is nor-
mable. Thus G(E) is bornological and therefore has the Mackey
topology. Since E* = Ef, both T and the given topology on E are
compatible with duality (E,Ef). Hence T is identical with the given
topology on E. Hence G is a homeomorphism and E is normable.
This completes the proof.

7 Countably barrelled spaces. At the 1966 International Con-
gress of Mathematicians, T. Husain introduced the concept of a count-
ably barrelled space as a generalization of that of a barrelled space.
(See also [7]). At the time, Professor Husain asked for examples of
countably barrelled spaces which are not barrelled. With the methods
used in this paper, we can present such an example.

DEFINITION 7.1. A topological vector space E is countably bar-
relled if every σ(Er, unbounded subset of Ef which is the countable
union of equicontinuous sets is itself equicontinuous.
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THEOREM 7.2. Let X be a completely regular Hausdorff space.
Then C(X) is countably barrelled if, and only if, every C(X)-pseudo-
compact subset of X which is the closure of a countable union of
compact sets is actually compact.

Proof. Necessity. Suppose B is a C(X)-pseudocompact subset of
X and that B = Cl{\J~=ιKn), where each Kn is a compact subset of
X. For each n = 1,2, , let An = {LeC(X)': supp (L) s Kn and
I L(f) I ̂  1 for every fe C(X) with pKn(f) g 1}. By (3.1), each An is
equicontinuous. Let A = U~=1 An. It is clear that A is σ(C(X)'', C(X))-
bounded since supp (A) = I? is C(X)-pseudocompact. Hence if C(X) is
countably barrelled, A is equicontinuous and therefore B is compact
by (3.1).

Sufficiency. Suppose C(X) is not countably barrelled so that there
exists a bounded A = [Jn=iAn, where each An is an equicontinuous
subset of C(XY, such that A is not equicontinuous. By (3.1), supp (An)
is compact and, by (3.3), supp (A) is C(X)-pseudocompact but, by (3.1),
not compact. However it is clear supp (A) = CΪ(U»=i SUPP (Ά»)) Hence
X contains a C(X)-pseudocompact subset which is the closure of a
countable union of compact sets but is not compact.

This completes the proof.

Not every C(X) is countably barrelled. Let W* denote the space
of ordinals less than or equal to the first uncountable ordinal and let
T denote the Tychonoίf plank. Then T = Cl(\Jϊ=1(W* x {n})). But
T is pseudocompact and each W* x {n} is compact. Since T is not
compact, C(T) is not countably barrelled.

For an example of a countably barrelled nonbarrelled space, let
W denote the space of ordinals less than the first uncountable ordinal.
Since W is pseudocompact, C(W) is not barrelled. On the other hand,
it is easy to see that the closure of a countable union of compact
subsets of W is compact. Hence C{W) is countably barrelled.
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