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ON UNIQUENESS OF GENERALIZED
DIRECT DECOMPOSITIONS

C. Y. TANG

Generalized direct products were introduced by B. H.
Neuman and H. Neumann. In this paper we attempt to study
some properties of generalized direct decompositions of groups.
In general, decompositions of a given group into indecompos-
able generalized direct factors are not unique up to isomorph-
isms. The main result of this paper is that if the commutator
subgroup of G is a cyclic p-group contained in the center
Z(@) then any two generalized direct decompositions of G into
indecomposable generalized direct factors with respect to its
center Z(G) of G are isomorphic modulo Z(G).

Generalized direct products with amalgamated subgroups were
defined externally by B. H. Neumann and H. Neumann in [1]. Dif-
ferent existence theorems of such products for given amalgams of groups
were given in [1], [2], [3], [4]. The main application so far has been in
the construction of groups. It seems to us that it is of interest to
study the internal structure of such products. In particular, we like
to obtain some information concerning the decomposition of a given
group relative to some H C Z(G@) into factors indecomposable relative
to the same H. Examples can easily be constructed to show that
such decompositions may not necessarily be unique up to isomorphisms.
The main difficulty is due to the fact that intersections of the com-
mutator subgroups of the factors may not be trivial. In the follow-
ing investigation we shall restrict ourselves to the special case when
the generalized direct product has only a single amalgamated subgroup.

In §2 we shall develop some simple properties concerning the
exchangeability of factors in different decompositions. In §3 we
obtain a characterization of groups which are generalized directly
indecomposable with respect to their centers for the case of nilpotent
groups of class two with cyclic commutator subgroups. With this
result we are able to show that for a nilpotent group of class two
with a finite cyclic commutator subgroup any decompositions into
generalized direct indecomposable factors with respect to its center
Z(G@) are isomorphic mod Z(G). It is of interest to note that, apply-
ing a theorem of Weichsel [5], for Z(G) = C(G) we can give a charac-
terization of eritical p-groups in terms of generalized direct indecom-
posability with respect to the center.

Since it is too difficult to study generalized direct decompositions
with respect to more than one amalgamated subgroup we shall only
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attempt to define generalized direct decomposition with respect to a
single amalgamated subgroup. Moreover in our investigation we shall
always assume the double chain condition of Zassenhaus [6] so that
only a finite number of factors is involved.

DeFINITION 1.1. A group G is said to have a generalized direct
decomposition with respect to a subgroup H if there exist subgroups
Gy, -+, G, such that,

(i) G is generated by Gy, ---, G,,

(ii) G; and G; commute elementwise for all 7 =+ 7,

(iii) @G; contains H for all 1,

(iv) the intersection of G, with the subgroup generated by

Gly M) Gi—-ly Gi+19 0y Gn

is exactly H for all 4.

G,; will be called a generalized direct factor of G with respect to
H, and we shall denote such a decomposition by G = (G, X +++ X G,)x.
If there does not exist such a set of subgroups other than G and H
then we shall say that G is generalized directly indecomposable with
respect to H.

It is to be noted that H must be contained in the center of G.

NoTATIONS AND TERMINOLOGY. For abbreviation we shall call a
generalized direct decomposition with respect to H an H-decomposi-
tion. Correspondingly we shall also use the terms H-products, H-
factors and H-indecomposable.

We shall adopt the following notations:

[[G:=G X+ xG,

<£[_1 Gi>H = (G, X +++ X G,y

If G =TI, G; then G: = [I*.; G, and in the same way if G =
(I17-. Gi)x then G| = (H?aetGi)H- _

If G = (I[[~.G))x then G and G; will always mean G/H and G;,/H
respectively. Moreover if e G then # will be the image of z in G.

For G = T]%.G; the G;-decomposition operator is to be understood
in the sense of Zassenhaus [6].

The commutator of the elements 2 and v is denoted by [x, ¥].

[4, B] denotes the subgroup generated by the set of all com-
mutators [, y] where x¢ A and y e B.

{2y, +++, 2.} and {x,, ---, x,, H) will mean the group generated by
2y, *++, ¢, and the group generated by x,, ---, z, together with ele-
ments of H respectively.
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Z(G) and C(G) will be the center and the commutator subgroup
of G respectively.

DerINITION 1.2. Every H-decomposition of G induces a direct
decomposition of G. Thus two H-decompositions of G are said to be
isomorphic mod H if and only if their induced direct decompositions
of G are isomorphic.

It is not difficult to establish the following results:

THEOREM 1.8. If G is abelian then anmy H-decompositions into
indecomposable H-factors are isomorphic mod H.

THEOREM 1.4. If G splits over H then any H-decompositions
into indecomposable H-factors are isomorphic. Indeed if Z(G) = H
then the decomposition is unique.

2. DEerFINITION 2.1, Let G = (TI%, Gy)y = (II™~, F)y be two H-
decompositions of G. Then the factors G, and F; are said to be ex-
changeable if (F; x Gi)y and (G; X F}), are H-decompositions of G.
Two H-decompositions of G are said to be exchangeable if each factor
of one decomposition is exchangeable with some factor of the other
decomposition.

The following lemma is well known.

LEMMA 2.2, Let G = 1%, G; = 1I™~, F; and let 0, and ¢; denote
the F, = and G;-decomposition operators respectively. G; is exchange-

able with F; if and only if 0; and ¢; induce isomorphisms between
Gi and Fj.

LEMMA 28, If G=G, X G, x A=F, X F, x B where G, and
G, are exchangeable with F, and F, respectively, then (G, X G,) 1is
exchangeable with (F, X Fj).

Proof. Since G, and F) are exchangeable we have
G=G,xXxGGxA=G x F,x B.
Let & map G onto GO with ker § = G,. Then
GO = G,0 x A6 = F,.0 X Bf .

Now G, NG, = G,N F,=1. Therefore, the G,0- and F,§-decomposition
operators induce isomorphisms between G.,0 and F.,§. Hence

GO = G,0 X BO = F,0 x AG .
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But this implies that ker 6 N (G, x B) = 1. It follows that
G=G,xXG, xB.

In the same way we can show that G = F, X F, x A.

COROLLARY 2.4. If G =110 G; =TI~ F; such that G; and F;
are exchangeable for 1 < ¢ <k, then

G=F, X «++ X Fy, X Gpy X +++ X G,
=G X oo XG X Fypyy X ooo X F, .

THEOREM 2.5. If G = (IItei G = (I~ Fy))w, where H = Z(G),
are two exchangeable H-decompositions in which none of the factors
18 trivial, then the two H-decompositions are identical.

Proof. Let G, and F,, say, be two exchangeable factors. If
xe @G, then # = ab for some ac F, and be F,. But the exchangeability
of G, and F, implies that be Z(F,) < Z(G) = H. Hence G, C F,. In
the same way F, C G;, whence F, = G,. Clearly each G; coincides
with one and only one F;. Thus applying Lemma 2.4 to G we have
m = n., This proves tne theorem.

Since any two Remak decompositions of a given group are ex-
changeable the following well-known result becomes an immediate
consequence of this theorem.

COROLLARY 2.6. If Z(G) =1 then G admits a unique remark
decomposition.

3. In this section we shall be mainly concerned with nilpotent
groups of class two since this is the simplest case after abelian groups.
In particular we shall study the H-decompositions of G when H =
Z(@). H-products with H = Z(G) are referred to as central products
by P. Hall. Therefore, we shall call G = (J[~, G:)» a central decom-
position of G whenever H = Z(G). It is to be noted that in a central
decomposition the center of each factor coincides with the center of
the group. Thus in a central decomposition of G into centrally inde-
composable factors each factor G; is indeed indecomposable with respect
to its center Z(G;). When G is nilpotent of class two with a cyclic
commutator subgroup we are able to give a complete characterization
of centrally indecomposable groups.

LEMMA 3.1. Let G =(A X B)y = (C X D),. If x is any element
of C then there exist ac A and be B with a and b respectively of
the form a = cd and b = c¢*d™ where ¢,c*cC and deD such that
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x = ab.

Proof. Let xeC. Then z = ab for some ac A and be B. Now
a=cd and b = ¢’d’ for some ¢,¢’eC and d, d'e D. Thus « = cc'dd’,
whence dd’ = heCND = H. Writing ¢* = ¢’heC we have b = c¢*d",
This proves the lemma.

LEMMA 3.2, Let G=(A X B)y =(C X D)g. If acAand a = cd
with ceC and de D then [¢, Bl € H and also [d, B] C H.

Proof. Consider G = A x B=C x D. Then @ = ¢d centralizes
B. Since CN D =1 this implies that ¢ and d centralize B, whence
e, b] = [b, d] € H for all be B.

DeFINITION 3.3. Let G = ([I%. G:)» and 6 be the homomorphism
mapping G onto G. Then the H-projection of xc€G in G; is defined
to be the set of all preimages of #f; under 6, where 6, is the G-
decomposition operator of G = [[%.G:. We shall denote this set by
Py (x).

It is easy to see that the H-projection of any subgroup of G in
G; is a subgroup of G, containing H.

From now on, unless otherwise specified, we shall always take
H = Z(G).

LEMMA 3.4, Let G = (A X B)y = (C X D). Let M be a subgroup
of A containing H such that M C P,(C) and Py(M) = C. Then A=
(M x N)y where N = AN D.

Proof. Let x be any element of A. Then 2 = ¢d for some ceC
and de D, Since P,(M) = C this implies that there exists we M such
that 4 = ed,, d,e D. Therefore x = ud*d, whence d;i’d = ux € AN D.
Hence A = {M, N}.

Now M c P,(C) implies that M < CB. But this implies that
[M,N]=1.

Finally {M, N} = A together with [M, N] = 1 implies that

MNNcZA cZG) = H.
Since H © M N N, it follows that A = (M x N).

COROLLARY 3.5. Let G = (A X B)y, = (C x D), where A is H-
wndecomposable. If M is a subgroup of A containing H such that
M c P(C) and Py(M) = C then M = A.

As it was pointed out in §1 that the main difficulty in the study
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of such decompositions is due to the fact that, in general, C(G;) and
C(G}) will not intersect trivially. If, however, C(G;)N C(G}) =1 for
all 7 then we have the following strong result.

THEOREM 3.6. If G = (I17=. G))x s a central decomposition of
G into centrally indecomposable factors such that C(G;)) N C(G) =1
for all ©, then G admits a unique central decomposition into centrally
indecomposable factors.

Proof. Let G = (II™, F;); be a central decomposition of G into
centrally indecomposable factors. Thus G = [[~, G; = [, F;.. Let 6,
and ¢; be the G;- and F;-decomposition operators of G respectively.
Since G, = T, Guig:0; and P, (G,) = Gyg; it follows that

Q; = PGI(PFi(Gl))

is the set of all preimages of G40, under ¢, where G6 = G, and that
Gl = {Ql’ ctcy Qm}-

Now let x ¢ P, (G,) and ye Pr(Gy), 7+ j. Then z =su and y =
tv where s,te @G, aud u,ve G, Since [z,y] =1and C(G)NCG) =1
we have [s, t] = [u, v] = 1. This implies that [Q;, @,] =1 for 7 = j.
Moreover, it is clear that

Qi n {Q1, ctty Qi—-ly Q'H—l’ Tty Qm} c Z(Gl) C H.

Hence G, = (T[], @:)z. But G, is centrally indecomposable. Therefore
there exists 7 =1, say, such that G, =Q, and Q; = H for 7 = 1.
Applying Lemma 3.4 and putting M = P;(G)), A = F; and C = G, we
have F, = (P (G)) x (F:N G)))y, whence F, = P, (G,). But

G1 = Ql = Pel(PFl(Gl))

implies that G, = Py (F)). Thus F, = Py (Ps(F))) and Py (Pg(F) = H
for all 1 1.

Let xe F, and ye F). Then x = g and y = gfv where ¢,, g¥ € G,
and u, ve Gi. Since P, (F,) = G, and C(G,) N C(G}) = 1, it follows that
9f € Z(G) = H. Therefore Fy C Gi. Also Py (Ps(F))) = Hforalli+#1
implies that Py (F}) C FY for all 7+ 1, whence u e Z(G). Therefore
F, c G, and by Corollary 3.5 F, = G,. This implies that

G = (Gl X G;)H = (Gl X F].,)H .

Thus FY c G implies that F/ = G!. Hence by induction m = n and
with proper reindexing F; = G, for all 1.

LEMMA 3.7. The congruences -y = 1 mod n and xy = 0 mod n
have solutions in x,y other than 0 and 1 mod n if and only if n # p*
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or o where p is a prime,.

Proof. We shall first show that if n = p* or « then the only
solutions are 0 and 1 mod n. Letn = «. Then 2y = 0 implies « = 0,
say, whence y = 1. On the other hand if n = »* then xzy = 0 mod n
and 2z +y =1 mod n imply that p*|xz(x — 1). Thus p* |z or p*|
(x — 1) = —y. Hence the only solutions are 0 and 1 mod .

Suppose now % %= p* or o, Then there exist integers B,v =1
such that » = B8y and (8,v) = 1. This implies that there exists in-
tegers s and ¢ such that s + tv =1. Letx =sBandy =ty = (1 — ).
Clearly 8|« and v|(x — 1). On the other hand n}tx or (x — 1). For,
if not, say, n|x = sB. This implies that v |s, whence v |sB + tv = 1.
Thus sB and ty are solutions to the given congruences with neither
of them congruent to 0 mod =.

THEOREM 3.8. Let G/H be an abelian group of ramk two. G is
centrally indecomposable if and only tf C(G) is a cyclic p-group or
an infinite cyclic group.

Proof. Since G/H is an abelian group of rank two it implies that
there exist a,be G such that G = {a, b, H} where a,b¢ H and 1
[a,b]e H. Let [a,b] =k and ord h = n where n = p* or oo. It is
clear that C(G) = {h} and the orders of a and b must be either div-
isble by # or infinite. Indeed if n = p* then a?* and b”* are elements
of H Let G= (A X B)y. Then a = 2y and b = 'y’ where z,2' € A
and y,y’ € B. But z = a®bfu,y = a'b®, &' = a*'bFu’ and ¥y’ = "%V’
where u, v, %', v ¢ H. Since [z,y] =1 we have ad — 87y = 0 mod =n.
Moreover a = xy = a*t"bFHh—Fryw implies a**'0f+h Py = 1, This
This means a**"'p#*%c H. But

[a, ax*Tpf+%] = 1

implies 8+ 6=0 mod % and [b,a**'b%*°] =1 implies a+v—1=0mod n
or @ +v =1mod » Hence 0 =adé — By = é(a +v) = 6 mod n. Applying
the same argument to «’ and %’ we have 8/ =0’ =1 mod % and o' =
—Y'=0mod n. But 8=0=a =7 = 0 mod n implies b, b, a* and
o’ are elements of H., Thus for [z,%'] =[2',y] =1 we must have
' =0 and B’y =0 mod n. It follows that (aB')(vé’) = 0 mod n.
But (@ + 7)(B" + &) =1 mod n implies af + v¢’ =1 mod n. Hence,
by lemma 3.7, the congruences cannot have solutions other than 0 and
1 mod n. Suppose af’ =0 and v’ =1 mod n. Since vy =1 — a and
0'=1—5 mod n we have 1 — a)(1 — £') =1 mod n which implies
B = —a mod n. Recalling the facts that [, ¥'] = [¢’, y] = 1 and a?*,
b** ¢ H we must have (1 + @) = 0 and —a(l — @) = 0 mod n. This
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means 2« = 0 mod n. If p +# 2 then @ = 0, which will imply a, be B.
If p =2 then 2a = 0 mod 2. Thus @ = 0 or t2* for some odd ¢.
Clearly both (1 — #2**) and (1 + #2*) are relatively prime to 2* for
k+1. Since y = a2 and %' = b***z* for some z,2*e H we have
a,beB. Thus B=G. If k=1 and a =1 then G = A. Similarly,
if a8’ =1 and v’ =0 mod » we have G=A or B. Hence G is
centrally indecomposable.

To prove the converse we shall show that if the order of C(G)
is not a prime power or infinity then G is centrally decomposable.
Again let G = {a, b, H} and [a, b] = k with ord h = n # p* or . By
Lemma 3.7 there exist solutions other than 0 and 1 mod » to the
congruences £ + ¥ = 1 and #y = 0 mod n. Let a,8 be such a pair
solutions. Let A = {a*, b*, H} and B = {a?, b, H}. A simple check
will show G = (A X B)g.

THEOREM 3.9. Let G be a mnilpotent group of class two with a
cyclic commutator subgroup. If G = (II71 Gi)x ts a central decom-
position of G into centrally indecomposable factors them G; = Gi/H
is an abelian group of rank two.

Proof. Clearly G; cannot be of rank one since this will imply
G; C Z(G) = H. Hence G; will not be a proper central factor. We
shall therefore assume that G; is of rank » > 2. Thus

Gi: {aly s, Oy, H}'

Since C(G) is cyclic we shall let C(G) = {h} where h € H. This implies
C(G;) = {h*}. Therefore there exist a, be G; such that [a, b] = h* = c.
Let A ={a,b, H}. Clearly A+ G, since A/H is of rank two. Let
B, +++, By € G, such that G; = {a, b, 8, + -+, B, H} and that k is minimal.
Let [a, 8;] = ¢* and [b, 8] = ¢*. Define B = {B,a*b~™, H;1 =1, ---, k}.
Clearly G; = {4, B}. Also [a, B;atib~*] = ¢*-¢c~* = 1 and [b, B;afib~*] =
¢ti.¢# =1, Therefore [A, B] = 1. Furthermore if xe¢ AN B then

xeZ(G,) Cc H.

In fact this also says that A cannot be contained in B. Hence G; =
(A X B)y contradicting the hypothesis that G, is centrally indecom-
posable.

Applying Theorems 3.8 and 3.9 the following characterization of
centrally indecomposable nilpotent groups of eclass two with cyclie
commutator subgroups is immediate.

THEOREM 3.10. Let G be a nilpotent group of class two with a
cyclic commutator subgroup. G 1is centrally indecomposadble if and
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only if G/H is of rank two and C(G) is either a p-group or an infinite
group.

COROLLARY 3.11. Let G be a milpotent group of class two with
a cyclic center. G 1is centrally indecomposable if and only +f G/H
18 of rank two and C(G) is either a p-group or an infinite group.

It is of interest to note at this point that applying a theorem of
Weichsel [5] we have a characterization of critical p-groups when
their centers coincide with their commutator subgroups.

THEOREM 3.12. Let G be a p-group with Z(G) = C(G). G s
eritical if and only if Z(G) is cyclic and G is centrally indecom-
posable.

Proof. Let G be a critical group. Since G is a p-group this
means Z(G) # 1. Therefore C(G) = Z(G) # 1. Hence G is nilpotent
of class two. By Theorem 3.1 of [5], (noting that a critical group
is equivalent to its not being an in-direct product), Z(G) is cyclic and
G may be generated by two elements. Let G = {a,b}. Since G is
not abelian we must have a, b¢ Z(G). Therefore G/Z(G) is of rank
two. But G is a p-group. It follows that C(G) is a p-group. Hence,
by Corollary 8.11 G is centrally indecomposable.

Conversely, let Z(G) be cyclic and G be centrally indecomposable.
By Corollary 3.11, we have G/Z(G) is of rank two. Thus

G = {a, b, Z(G)} .

But Z(G) = C(G). Therefore G = {a, b}. Hence, by Theorem 3.1 of
[5], G must be critical.

LEMMA 3.13. Let G be a mnilpotent group of class two with a
cyclic commutator subgroup. Let G = (1%, G)r = (II™, F)x be two
central decompositions of G imto centrally indecomposable factors.
If F; = {s,, t;, H} such that F; = {3;} x {t;} then for a given G; there
exist subgroups A; C G; and B; C G such that A; = {sju;?, tiv;?, H}
and B; = {s'~*u,;, t;"v;, H} where u;, v, € F;.

Proof. Consider G = [[~,G; = [[. F;. By Lemma 8.1, there
exist @eG; and be@, with @ = ¢u;* and b =¢*u; where ¢, ¢* e F)
and #,c F! such that 5, = ab. Let ¢ = 5¢f and ¢* = §it7. This
means §; = 5:+°¢P+7,  Since F; = {5} x {t;}, it follows that ¢} = ¢;#
and §; = 51¢. Therefore G, contains an element of the form a =
sttfu;' and G contains an element of the form b = s;=*¢;*u; such that
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for a suitable k€ H we have s; = abk. In the same way there exist
a* = sitivi'e G; and b* = s;77ti %, € G such that ¢; = a*b*k* for some
suitable k*e H. Since [G;, G}] = [F;, F!] =1, therefore, [a,b] =1
implies that,

L= [, w] = [55tf, si7*t5?] = hostvied = s

where h = [s;,¢;]. Thus 8 =0 mod ¢ where ¢ = ord h. In the same
way [a*, b*] = 1 implies ¥ = 0 mod ¢q. On the other hand [a, b*] =1
and [a*, b] = 1 respectively imply:

[, ] = [s518, s7787%] = hee=orsor = oo

and [u;, v;]™" = [v;, w;] = [s[t}, si=°t;7F] = h—Fr+e—18 = pe-b3  Therefore
al —6) =1 — a)d mod ¢q, or ¢ =0 mod ¢q. Since for any N with
q|» we have s}, t’e H. It follows that sfu;* and tfv;* are elements
of G, and si~*u; and ti~*v, are elements of G}. Hence

A; = {stui?, tiv;, H} C G;
and B; = {si~*u,, ti~*v,;, H} C G’.

THEOREM 3.14. If G is a nilpotent group of class two with a
finite cyclic commutator subgroup, then any two ceniral decompositions
of G into centrally indecomposable factors are isomorphic mod H.

Proof. Let G = (I Gy = (II™, F;)x be two central decomposi-
tions of G into centrally indecomposable factors. Since C(G) is cyclic,
by Theorem 3.9, G; and F; are abelian of rank two for all i. In
particular we shall let F; = {s;, t;, H} such that F'; = {s,} x {t;}. Thus,
by Lemma 3.13, and using the same notations, there exist 4; C G;
and B; C G. Since C(G) is finite and cyclic, by Theorem 3.8, C(F%)
must be a cyclic p-group. Let p* =ord C(F;). Then either « or
(1 — a) must be relatively prime to p. Therefore either {s%, t;, H) or
{si~*, ti=*, H} must give the group F..

CAsE 1. F; = {s{, t;, H} for all j. (Note: a, u;, v; are dependent
on G;.) In particular we shall let © = j. Since G; is centrally inde-
composable, therefoge, by Lemma 3.4, G; = A;. A simple check will
show that F; and G, are exchangeable in the decompositions

G=11G =1F,.
v=1 v=1
Thus by Lemma 2.2, F; ~ G,;. Moreover, applying Lemma 2.3, we

must have m = n. Hence the two central decompositions are isomor-
phic mod H.
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CASE 2, There exists j such that F, = {si~*, ti%, H}. We shall
prove this case by induction on n. Clearly the theorem is true for
n = 1. Consider G = (G; x G})y = (F; x F!)y. Since C(F}) is a cyclic
p-group therefore ord [s;, t;] must be a power of p. Moreover

[, v € {[s, t:} .

Therefore C(B;) must be a cyclic p-group. Hence by Theorem 3.8
B; is centrally indecomposable., Moreover, by Lemma 3.4,

G; = (B; X N)x

where N = G, N F!. Therefore, by induction, B =~ G, for some %k = j
and any central decompositions of N into centrally indecomposable
factors are isomorphic mod H to (II%u; G.)z. A simple check will
show that in the decompositions G = G; x B; x N= F; x F!, B; and
F; are exchangeable. Thus B; ~ F;. Furthermore by the construc-
tion of A; and B; we have F; C {4;, B;}. Therefore F; c (G; X B;)y.
Let U= F/Nn(G; x B;);. We shall show that P = (G; X B;)y =
(F; x U)y. It is clear that [F;,, U] =1 and F; N U = H. Let

ze(G; X B))y .

Then « = gb for sme ge G, and be B;. But g = fu and b = f*u* for
some f, f*e F; and w, u*c F}. Since F; C P we must have u, u* ¢ P,
Hence z = (ff*)(uu*) where ff*e F; and wu*e (F/NP)= U. Thus
we have,

G=(G; X B; X Ny =(F; x UX N)yg =(F; X F); .

Since (U x N), c F! we must have (U X N), = F!. We must now
show that U is centrally indecomposable. Since G; is centrally inde-
composable there exist g, g* € G; such that G; = {g, g*, H} and G, =
{7} x {g*}. Let g = fu and g* = f*u*, where f, f* ¢ F; and u, u* € F}.
Thus if xe€G; and © = yv where ye F; and ve F] we have,

x =yv = w(g, g = w(f, f*)-ww, u*)-h

where h e H and w(g, 9*) is a word on g, g* (we shall regard w as a
function). Since y and w(f, f*) are elements of F);, therefore, ve
{w,w*, H}. In particular we note that u; and », are elements of
{w,w*, H}. Since F; C P it is not difficult to see that {u, u*, H} CP
and indeed U = {u, u*, H}. Furthermore C(G,) is a cyclic p-group.
Therefore C(U) must be a cyclic p-group. Hence U is centrally inde-
composable. Recalling that any central decomposition of N into cen-
trally indecomposable factors is isomorphic mod H to (I]r:j..G.)r it
follows that in the central decomposition of F/] = (U X N)y into
indecomposable factors there will be exactly (n — 1) indecomposable
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factors. Hence by induction F} = ([[™; F,)y is isomorphic mod H to
F! = (U x II'=tN,)y, where N = (I[*z*N,), and N, centrally inde-
composable and m — 1 =n — 1.

We now note that in the decompositions of P = (G, x B,) =
(F; x U), B; and F; are exchangeable. This implies G; and U are
exchangeable in these two decompositions. Thus G; and U are is-
omorphic. Hence with suitable re-indexing we can have G, ~ F';, where
G, and F, are re-indexed factors of G, and F} respectively. Recall-
ing that G, = B; and B; =~ F; the theorem follows immediately.

The author wishes to thank the referee for his suggestions.
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