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ON LOCALLY ^-CONVEX *-ALGEBRAS

R. M. BROOKS

The primary purpose of this paper is to investigate posi-
tive f unctionals on and representations of complete locally m-
convex algebras with a continuous involution with emphasis
on the special case of commutative algebras.

The first part is a study of the continuous positive func-
tionals on a complete locally m-convex (LMC) algebra A with
identity and continuous involution. It is shown that the LMC
equivalent of "positive face of the unit ball" in A* is a w*-
closed convex set and is the closed convex hull of its extreme
points, which are the normalized indecomposable continuous
positive functionals on A. This is applied to the commutative
case to obtain a representative of these f unctionals as integrals
on the space Φ* of symmetric maximal ideals of A.

The second part is an investigation of representations of
an LMC algebra A in B{H). Necessary and sufficient condi-
tions in order that a cyclic representation be continuous are
given. For normed algebras completeness guarantees the con-
tinuity of all representations. An example shows that this
is not the case for LMC algebras. It is shown that cyclic
representations of commutative algebras are equivalent to left
multiplication on a suitably chosen ZΛspace over 0*, and that
the operators can be represented as norm-convergent integrals
with respect to a compactly-supported spectral measure on 0*.
These results are then extended to general continuous repre-
sentations of LMC algebras.

2* Preliminaries* We give here only the basic definitions and

facts needed. For a more complete discussion of the basic properties
of LMC algebras the reader is referred to [2] or [6]. We will be
concerned with topological algebras which are locally convex linear
topological spaces over the complex number field C and satisfy certain
other properties given below.

A subset U of an algebra is called m-convex if U is convex and
U U c U. A topological algebra is called locally m-convex (LMC) if
there exists a basis for the neighborhoods of the origin consisting of
m-convex symmetric sets. If A is an LMC algebra, an m-base for A
is a family of m-convex, symmetric sets whose scalar multiples form
a basis for the neighborhoods of the origin. A directed m-base for
A is an m-base <%? for A satisfying: for each pair Z7, V of members
of ^ there exists W in ^ such that W c U Π V. We note that
from any m-base ^ for i a directed m-base can be constructed by
taking intersections of all finite subfamilies of ^ .
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Each closed m-convex, symmetric neighborhood U in A (LMC
algebra) defines a convex functional p which is submultiplicative, and
U = {x e A: p(x) <̂  1}. The set Nσ = {x e A: p(x) = 0} is a closed ideal
in A and Aπ = AjNu is a normed algebra with \\xu\\ = p(x), where
x is any pre-image of xπ under ππ, the natural homomorphism. We
denote the completion of Aπ by Aπ. If {Uά:jeJ} is a directed m-
base with associated family {pά\ j e J} of pseudonorms, we write "Nj"
for "Nπ", and similarly drop "U" from the other subscripts. The
index set J is directed by the ordering: i < j if, and only if, U5 a Z7<
(equivalently, i < j if, and only if, p^x) <L Py(a?) for each xeA).
Whenever i < j there exists a norm-decreasing homomorphism 7r<y of
Aj onto A* (̂ -(α?,-) = Xi); hence, a norm-decreasing homomorphism πγ3-
of Ay onto a dense subalgebra of At. The family {A, : j eJ}, together
with the homomorphisms {π^ : i < j} is a protective limit system. We
state without proof a theorem, essentially a restatement of Theorem
5.1 of [6], which shows the connection between A and this system.

THEOREM 2.1. Let A be an LMC algebra, {UjijeJ} a directed
m-base for A, and {A5: j e J} and {πiά\ i < j} families of Banach alge-
bras and homomorphisms, respectively, as constructed above. Then:

(1) A is topologically isomorphic to a dense subalgebra of
lim proj {A,}.

(2) If A is complete, (a) the embedding in (1) is onto, and (b)
if x(i) e Ai for each i and if πj} (x(j)) = x(i) whenever i < j, then
there exists x in A such that xt = x(i) for each i.

3. Involution in LMC algebras• We assume in this section
that A is an LMC algebra with involution x—>x*, and give conditions
in order that the involution be continuous.

THEOREM 3.1. If A is an LMC algebra with involution x—>x*;
then x—+x* is continuous if, and only if, there exists a directed
m-base {Uj} such that Uf = Uj for each j(U* = {x*: xe Uj}). In fact,
if the involution is continuous and {Uό} is any directed m-base for
A, then one can construct from {U5} a directed m-base {Vj} satisfying
V* = Vj for each j.

Proof. The sufficiency follows from the fact that the condition
allows one to embed A in a protective limit of Banach *-algebras,
where the bonding maps are *-homomorphisms. For the necessity we
fix a directed m-base {Uj} for A, and observe that U* is an m-convex
symmetric neighborhood of 0 for each j. By letting Vό = Uj Π Uf
we obtain the desired directed m-base.
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THEOREM 3.2. If A is an LMC algebra with identity e and if
is any directed m-base with associated family {pj} of pseudo-

norms, then there exists an m-base {V3} with associated family {q3}
of pseudonorms such that

(1) qό(e) = 1 for each j , and (2) qά(x) ̂  p,(x) ̂  Pj(e)qά{x) for each
xeA and each j .

Proof. The family {Uj} gives rise to a family {Aj} of Banach
algebras, each with identity eό and | |e, || = py(e) ^ 1. If p3{e) = 1,
we let qά = p3- (and consequently V3 — Uj); and if pά{e) > 1, we re-
norm Aj with the operator norm || | |' induced by the left regular
representation. Then 11 ζ3- | |' <: 11 ζj \ | ^ 11 eά \ | 11 ξj \ \' for each ξ3. e A3.
We define qό by qό(x) = | | ^ |Γ, and the conclusion is immediate.

THEOREM 3.2. If A is an LMC algebra with identity e and
continuous involution, then there exists a directed m-base {U3} for
A, with associated family {p3) of pseudonorms, satisfying (1) U* =
Uj for each j (Pj(x*) = p3 (x) for each xeA and each j) and (2)
e e Uj, egXUj if λ < 1 for each j (pό{e) = 1 for each j).

Proof. This follows immediately from the previous two theorems
by first applying Theorem 3.2 to an arbitrary directed m-base, obtain-
ing an m-base satisfying (2), forming a directed m-base from it by
the procedure outlined above, then applying Theorem 3.1 to the
resulting directed m-base.

DEFINITION 3.1. We shall call a (directed) m-base which satisfies
the first part of the conclusion of Theorem 3.3 a (directed) m*-base.
If A has an identity "m*-base" will include the second part of the
conclusion as well.

4* On the conjugate space of an LMC **algebra* We assume
in this section that A is a complete LMC algebra with identity e and
continuous involution x—-•#*, and investigate the relation between
A* and the conjugate spaces of the members of certain protective
limit systems which give rise to A.

DEFINITION 4.1. A linear functional on A is said to be hermitian
if f(x*) = j\x) for each xeA, weakly positive if f(x2) ̂  0 for each
hermitian x e A(x = x*), and positive if f{x*x) ^ 0 for each xeA.

We now fix a directed m*-base {Uό:jeJ} with associated family
{Pj} of pseudonorms, and let A*(j) denote those linear functionals /
on A which are bounded on U3. J(f) will denote the set of all j e J
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such that / is bounded on Ud. It is well-known that a linear func-
tional / on A is continuons if, and only if, / is bounded on some
neighborhood of 0; hence, in our case, if, and only if, /(/) is nonempty.
Thus, A* (the conjugate space of A) is the union of the sets A*(j).
Moreover, if fe A* and j e /(/), then Nά c Nf = {x e A: f(x) = 0} and
/ induces a bounded linear functional fό on A3 by fj(Xj) = f(x). We
use the same notation for the continuous extension of fs to A5. We
let A*( + ), A*(j, +) and A*( + ) denote the positive functionals in
A*,A*(i), and A?, respectively.

THEOREM 4.1. If A is a complete LMC algebra with identity e
and continuous involution and if {UjijeJ} is a directed m*-base
for Ay then the mapping f—>fj is an isomorphism of A*(j) onto Af.
Moreover, ||/y || = sup (| f(x) \;xe Uj) and a functional f in A*(j) is
positive (hermitian) if, and only if, fά is positive (hermitian) in
A*. If fj is weakly positive, then f is also. Finally, the mapping
f—+fj from A*(i, +) onto A*( + ) is bicontinuous with respect to the
relative weak*— (w* — ) topologies in these spaces.

Proof. The mapping f—>fs is clearly a homomorphism of A*(j)
into Af, and if fό = 0, then f(x) = fj{xό) = 0 for each xeA. Thus,
the map is an isomorphism. If FeAf and we define/by f(x) = F(xά),
then fj = F. Also,

= sup (!/(?;) I :f; e A,,

= sup(|/(a?)|:α?€ί7 i).

Thus, the pre-image of the unit ball in Af is exactly the polar Uj
of Uj in A*.

The facts about positivity, weak positivity, and the property of
being hermitian are easily verified by using the definition of the
functionals fs and the fact that Ay is dense in Ay.

The openness of the map /—>fd from A*(j, +) onto A*( + ) rela-
tive to the w*-topologies is clear from the definition of the functionals
fj. To show the continuity of this map we fix a subbasic ^-neigh-
borhood N(fs; fy; ε) of fj9 where ξd e A5 and 0 < ε < 1. Since Aά is
dense in Ay, there exists xe A such that ||«y — 5y|| < (3/(β) + ε)-^.
The w*-neighborhood N(f; x, e; ε/3) of / is mapped into the given
neighborhood of fj. This follows from the fact that the norm of a
positive functional F in a Banach *-algebra with identity e is exactly
F(e) (cf. [7, p. 190]).

We turn now to a consideration of certain collections of positive
functionals. Let K(A), Kj(A), and K(Aj) denote the positive functionals
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in A*,A*(j), and Af, respectively, whose values at the appropriate
identity element is one. K(A3) is a w*-compact, convex subset of Af
and is the closed convex hull of the set E(K(A3)) of its extreme points,
which is the set of all indecomposable positive functionals F on A3-
satisfying F(e3) = 1 (7, pp. 266, 268]).

DEFINITION 4.2. If / and g are in A*( + ) we say that / dominates
g if λ/ — g is a positive functional for some positive number λ, and
that a functional / in A*( + ) is indecomposable provided the only
elements of A*( + ) which / dominates are multiplies of itself.

We note that if / is in A*(j, +) and /dominates a positive func-
tional g, then g is an A*(j, +) and f3 dominates g3. Conversely, if
/ and g are in A*(j, +) and f3 dominates g31 then / dominates g.
From these facts it follows that the maps /—>/,• preserve domination;
hence, indecomposability. We collect these facts as a theorem.

THEOREM 4.2. An element f of K(A) is indecomposable if, and
only if, f3 is indecomposable for each j e J(f). In fact, in order
that f be indecomposable, it suffices that f3 be indecomposable for
one such j .

THEOREM 4.3. If f is an element of K{A), then f is an extreme
point of K(A) if, and only if, f is an extreme point of K3(A) for
each j eJ(f). In fact, in order that f be an extreme point of K{A),
it suffices that f be an extreme point of K3{A) for one such j . Hence,
E(K(A)) = Ό{E(K3(A)):jeJ}.

Proof. The necessity is clear. To prove the sufficiency we fix
/ in K(A) and assume that / is an extreme point of K3{A) for some
j e J(f). If / = tfλ + (1 - t)f2, where 0 < t < 1 and fx and /2 are
elements of K{A), then / — tfx = (1 — t)f2 is a positive functional,
and / dominates fx. Thus, fx e Kj(A) and similar reasoning yields that
/2 G Kj(A). But / is an extreme point of K3(A). Hence, / = fx — f%,
and we conclude that / is an extreme point of K(A).

COROLLARY 4.3. // / is an element of K(A), then f is an extreme
point of K(A) if, and only if, f is indecomposable.

Proof. The proof follows from Theorems 4.2 and 4.3 and the
following facts: (1) / is an extreme point of K3{A) if, and only if, fό

is an extreme point of K(A3) and (2) the theorem is known to be true
in the Banach algebra case [7, p. 266],

THEOREM 4.4. K(A) is a w*-closed, convex subset of A*( + ) and
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is the closed convex hull of its extreme points.

Proof. The theorem follows as a special case of the following
general result. If F is a closed, convex subset of a linear topological
space satisfying: (1) F — \J {K: K e <ĝ } for some family ^ of compact,
convex subsets of F, (2) E{F) = \J{E(K):Ke^} E(S) denoting the
extreme points of a set S); then F — Έ6E{F), (where coS indicates
the closed convex hull of S). We prove now this statement. Now,
co E(F) = co U {E(K): Ke if} = co \J {co E(K): Ke if}. The second
of these equalities is obtained by using the definition of the right-
hand set and the continuity of addition and scalar multiplication.
The last set is exactly cδ U {K: Ke <£*}, by the Krein-Milman theorem
(e.g., see [3, p. 440]); and co \J {K: Ke <gf} = co F = F, since F is
closed and convex.

THEOREM 4.5. If A is a commutative complete LMC algebra with
identity and continuous involution, then the extreme points of K(A)
are exactly the multiplicative continuous positive functionals on A
(the positive continuous homomorphisms of A onto C). The kernels
of these functionals are the symmetric closed maximal ideals of A
(a subset S of A being called symmetric if S* = S).

Proof. The validity of this theorem rests on the same theorem
for commutative Banach *-algebras [7, p. 272]. We fix a directed
m*-base {Uj}. If / is an extreme point of K(A), then for jeJ(f),
the functional fό is an extreme point of K(Aj); hence, multiplicative.
It is easily verified that / must be multiplicative. The converse is
proved similarly. If / is a multiplicative element of K(A), then for
each xeA we have f(x*) = f(x) and the kernel of / is symmetric.
The converse to this statement follows from the fact that if M is a
symmetric closed maximal ideal in A, then M is the kernel of a con-
tinuous homomorphism [6, p. 11]. This homomorphism is clearly her-
mitian, hence positive.

5* Representation of positive functional on commutative
algebras* We obtain first a representation theorem for the conjugate
space of (C(T), τ(^~)), where T is a completely regular Hausdorίf
space and τ(_5θ is the topology of uniform convergence on members
of J7~, a family of compact subsets of T satisfying: (1) \J j ^ — T,
(2) if ^Ό is a finite subfamily of ^~, then there exists Ke^~ such
that U J7~Q a K. We shall call such a family an ascending covering
family of compact sets. We note that such algebras were discussed
in Example 7.6 of [6]. We let & denote the Borel algebra generated
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by the closed sets of T, M( Γ, &) the Banach space of all regular
(in the sense of Dunford and Schwartz [3, p. 137]) countably additive
measures on T with variation norm || μ || = \μ\(T), where | μ | indicates
the total variation measure associated with μ. We denote by M( Γ, ^ , J7~)
the set of all μ in M(T, &) such that || μ \\ — \ μ \ (K) for some
JBΓe^", and note that to each such μ there corresponds a unique
minimal compact set C(μ), called carrier of μ, such that \\μ\\ =
\μ\(C(μ)).

THEOREM 5.1. If T is a completely regular Hausdorff space and
J7~ is an ascending covering family of compact subsets of T, then
there exists an isomorphism μ—>fμ of M(T,&,^~) onto
given by

(5.1) fμ(x) = \ x(t)μ(dt)

which satisfies

(5.2) || μ\\ = *vφ(\f(x)\:xeUκ),

where Uκ = {xe C(T): \ x(t) | ^ 1 for each t e K}.

Proof. If μ is an element of M(T, <^>, ^~), then each x in C(T)
is integrable with respect to μ and we define fμ by formula (5.1).
If Kejr- and | | μ | | = \μ\(K), then

\\μ\\ s u p (| x(t) \ : t e K ) .

Thus, fμ is bounded on the neighborhood Uκ of 0 in A and is con-
tinuous. It is easily verified that μ—*fμ is a homomorphism, and
that the left-hand side of (5.2) dominates the right-hand side. We
now fix μ and an element K of ^Γ such that \μ\(K) = | | μ | | . The
measure μ restricted to K is a regular Borel measure on K and by
the Riesz representation theorem (applied to C(K)) μκ (the restriction)
defines a continuous linear functional fκ on C(K) by a formula analo-
gous to (5.1) and | μκ \ (K) = sup (\fκ(xκ) |: || xκ \\ S 1). (cf. [3, p. 262]).
Thus, for each positive number ε there exists a continuous function
xx on K such that

I μ I (JBΓ) - ε = \\ μκ \\ - e g ί x^μ^dt) = ( x1(t)μ(dt)

and I xλ(t) \ ̂  1 for each teK. Let x be any continuous extension of
xL to T. Such extensions always exist; see [8, p. 242], Then

|| μ || — ε <̂  I x(t)μ(dt) and x 6 Uκ .
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This establishes (5.2) and yields also that μ—»fμ is one-to-one.
To show that the mapping is onto we fix fe (C(T), τ(JΠ)*

There exists K e ^~ such that / is bounded on Uκ and / defines a
bounded linear functional fx on C{K) by fx(xκ) = f(x), where x is any
continuous extension of xκ to T. If xeC(T) and x — 0 on K, then
x is in δUκ for each positive number δ. Hence, f(x) = 0. Thus fλ

is well-defined. It is easily seen that fx is an element of C{K)* and
\\f || = sup (\f(x) |: x e Uκ). There exists a measure ^ in M(K, &κ)
such that fι(xκ) is the integral of ^ with respect to μ1 for each
xκ in C(lf). We define μ on ^ by μ(E) = μτ(E Π K). Then
μeM(T, ^ , J H and /„ - /.

A special case of this theorem, when J7~ is a generating family
for the compact subsets of T and only positive functionals are con-
sidered, is essentially Theorem 5.2 of [4], but the general approach
seems reversed. Gould and Mahowald relate positive functionals on
C(T) to positive functionals on C(βT),βT denoting the Stone-Cech
compactification of T; whereas we relate them to positive functionals
on C(K), where K is a compact subset of T. Also, in general, the
measures associated with positive functionals are Baire measures on T.

We now apply Theorem 5.1 to the problem of representing con-
tinuous positive functionals on a commutative complete LMC algebra
A with identity e and continuous involution. We denote by Φ the
space of continuous homomorphisms of A onto C with the w*-topology,
by Φ* the subspace of Φ consisting of the multiplicative positive func-
tionals on A, by & the Borel algebra generated by the closed subsets
of the completely regular Hausdorff space Φ*, and by & the compact,
equicontinuous subsets of Φ* (E c Φ* is equicontinuous, provided there
is a neighborhood U of 0 in A such that Ed U° Π Φ*). We note that gf
is an ascending covering family of compact subsets of Φ*. There are two
topologies on C(0*) of interest here: (1) tc, the topology of uniform con-
vergence on compact subsets of <?*, and (2) τ0, the topology of uniform
convergence on members of g% Throughout the remainder of this
section A is assumed to be a commutative complete LMC algebra with
identity e and continuous involution. The topology on A is denoted by τ.

LEMMA 5.2. The subspace Φ* of Φ is nonempty if, and only if,
there exist nonzero continuous positive functionals on A.

Proof. The necessity is obvious from the definition of 0*. The
sufficiency follows from the fact that if A*( + ) Φ (0), then K(A) is
nonempty, and consequently has extreme points by Theorem 4.4. But,
by Theorem 4.5, these functionals are elements of 0*.

THEOREM 5.2. // 0* is nonempty, then there exists a continuous
homomorphism x-+xf of (A,τ) onto a dense subalgebra A! of (C(Φ*),τ0).
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The kernel of this map is &*(A) = {x e A:f(x*x) = 0 for each
/eA*( + )}. The algebra A! is closed under conjugation, contains the
constant functions, and separates the points of Φ*.

Proof. For each xeA we define x': Φ* —• C by x'{φ) — φ(x). The
mapping x—*xr so defined is clearly a homomorphism of A into C(Φ*),
each a;' being the restriction to Φ* of the image of x under the embed-
ding of A in (A*, w*)*. Also, it is easily verified that A' separates
the pts. of Φ* and contains the constant functions. Since each φeΦ*
is a positive functional on A we have x'{φ) — φ(x) = φ(x*) = (x*)'{φ),
and A' is closed under conjugation. By a slight variation of [6, Pro-
position 6.8] we conclude that A' is Λ -dense in C(Φ*); hence, τo-dense,
since τ0 :g £. The continuity of the mapping follows from the fact
that each member E of g7 is contained in a set of the form U° Π 0*,
where £7 is a neighborhood of 0 in A.

If ye&*(A), then, in particular, φ(y*y) = 0 for each<pe0* and
y is in the kernel of x—*x'. Conversely, if <p(x) — 0 for each φeΦ*,
then φ(x*x) — 0 for all such φ, and if we regard x*x as a continuous
linear functional on (A*,w*) we have that x*x is identically zero on
JδpΓ(A)). Since by Theorem 4.4, ϋΓ(A) = co E(K(A)) and Λ is con-
tinuous relative to the w*-topology on A*, x*x must be identically
zero on K(A). Thus, xe^?*(A).

THEOREM 5.3. If A is a commutative complete LMC algebra with
identity e and continuous involution, and if A*( + ) Φ (0), then there
exists a one-to-one affine {and positive homogeneous) map μ-+fμ of
the cone of nonnegative measures in M(Φ*, £@, g7) onto the cone
A*( + ) in A* satisfying \\μ\\ — fμ(e) and given by

(5.3) fμ(x) = \ x'(φ)μ(dφ) .

Proof. For each nonnegative μ in M{Φ*, &, g3) we define fμ by
formula (5.3). The mapping μ—*fμ so defined is clearly an affine (i.e.,
preserves convex combinations) and positive homogeneous function into
A*( + ). Also, the equality fμ(e) = | | μ | | is evident from the definition
of fμ. This equality yields immediately that the map is one-to-one.

We fix feA*( + ) and define f'\A!~+ C by f'(x') = f(x). The
function / ' is well-defined, since the kernel of x—>x' is &*(A)
(Theorem 5.2), which is contained in the kernel of / . To show that
the positive functional / ' on A! is τ0-continuous, we assume without
loss of generality that f(e) = 1, and exhibit a τ0-neighborhood of 0'
in A! on which / ' is bounded. Since / is continuous on A, there
exists a neighborhood U of 0 in A on which / is bounded, and since
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there exists a directed ra*-base for A we may assume that U is m-
convex, symmetric, U* = U and eeU but e£ XU for all λ < 1. Then
I f(x) I <: 1 for x e U (in general one has | f(x) | ^ f(e)pπ(x) for a positive
functional / bounded on U). This is easily obtained by considering
the induced functional fπ on the Banach *-algebra Aπ and using the
analogous result which obtains there [7, p. 189]. Thus, feKu(A),
which is the closed convex hull in A* of U° (Ί Φ*. We now show
that / ' is bounded on the ^-neighborhood N(0'; E, 1) Π A' of 0', where
E = U° Π Φ* and N(0'; E, 1) Π A' is the set of all x' e Ar such that
\x'(<p)\^l for each φ e E. If x' e N(0'; E, 1) n A', then | x'(φ) | ^ 1
for all φe U° f) Φ*; and if we regard x as a continuous linear func-
tional on (A*, w*), then α? maps [7° Π Φ* into the unit disc in C.
But then, x maps co (Z7° Π 0*) = JMA) into the same disc. (This last
is an easy corollary to [5, problem 15C], which is itself easy to verify.)
Thus / ' is τ0-continuous on A', has a unique extension to a continuous
positive functional F on (C(<P*), τ0), and by Theorem 5.2 there exists
a measure μ in M(Φ*, &, g?) such that F is given by integration
with respect to μ. It is easily seen that μ is nonnegative and / = fμ.

6. Representations of LMC *-algebras* We assume throughout
this section that A is a complete LMC algebra with identity e and
continuous involution. By a continuous representation of A in ^(H)
we mean a homomorphism T(x —> Tx) of A into .^(H) continuous
relative to the given topology on A and the uniform topology on
έ%?(H). If / is a positive functional on A and Lf = {x e A: f(x*x) = 0},
then Xf = A/Lf is a pre-Hilbert space with inner product (ξx, ξy) =
f(V*χ)i where ζx is the class in Xf which contains x. We denote by
Sf(Xf) the vector space of all linear transformations on Xf and by
Hf the completion of Xf.

THEOREM 6.1. If f is a continuous positive functional on A,
then f induces a representation x —» Tx of A in jSf(Xf) defined by
TJy = ξxy and

(1) each Tx is continuous on Xf; hence, extendable to an operator
in ^{Hf),

(2) the resulting representation of A in &{Hf) is continuous
and has cyclic vector ξe,

(3) for each xeA,f(x) = (Txξe1 ξe).

Proof. We first establish the inequality f(y*x*xy) ^ f(y*y)K(x),
for each pair x, y in A, where K{x) is independent of y. Since / is
continuous / is bounded on some neighborhood U of 0 and we may
assume that U is m-convex, symmetric, and satisfies U* = U and
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eeU but egxU for λ < 1. Then / determines a unique positive
functional fπ on Aσ, and we consider the functional g on Aπ defined
at ξeAπ by g(ξ) = fuiVu^Vu) for a fixed element y of A. It is easily-
verified that g is a positive functional on Â -; consequently | g(ξ) | ^
0(β)||£|| (see [8, p. 189]). By an application of Theorem 4.1 there
exists he A*, bounded on U, such that g = hπ. Then h(x) = hπ{xπ) =
9(Pπ) = f(v*xy), and f(y*x*xy) ^ /(2/*2/) || αv ||2 = f(y*y)pA%)2. Thus,
|| Γ^H 2 ^ 2>σ(»)ΊlfiflΓ, f r o m which it follows that Tx is continuous
on Xf and has a continuous extension to Hf, which will also be denoted
by "T". Moreover, || Tx || ^ pσ(x), and it follows that x—> Tx is con-
tinuous. From the definitions of Hf and Tx it is clear that ξβ is a
cyclic vector for the representation and f(x) — (Txξe1 ζe).

THEOREM 6.2. If #—> Tx is a cyclic representation of A in
then a necessary and sufficient condition in order that x-+Tx be
continuous is that there exists a cyclic vector ζ0 such that the positive
functional f defined by f(x) — (Txζ0, ζ0) is continuous. If this is the
case for one cyclic vector', then it is the case for all such vectors.
Thus, to each continuous cyclic representation x—+Tx there corre-
sponds a continuous positive functional f on A such that f(e) = 1
and the representation x~>Tx is equivalent to the representation of
A in &(Hf) induced by f. This correspondence is one-to-one to within
equivalence.

Proof. If x —• Tx is continuous and cyclic, then the functional /
defined by f(x) = (Txζ0, ζ0) is continuous for each cyclic vector ζ0.
Conversely, if /, as defined above, is continuous for some cyclic vector
Co, which may be chosen to have norm one, then / defines a continuous
representation x—>Tx(f) in &(Hf). We let Hr denote the set
{Txζ0:xeA} and define V'\ H'-+Hf by V'(Txζ0) = Tx(f)ξe (ξe is a unit
cyclic vector in Hf). We have || Γβζ0|| = || Tx(f)ξe\\, and V is ex-
tendible to an isomorphism-isometry V of H onto Hf which satisfies
VTX = Tx(f) V for each xeA. Thus, x -> Tx and x ~> Tx(f) are equiva-
lent and x —•* Tx is continuous. The above also yields: if x—>Tx and
x-+Sx are continuous cyclic representations and ζ0 and ζ'o are cyclic
vectors for x-+Tx and x—>SX, respectively such that the same func-
tional / is defined by both representations, then each is equivalent to
x —• Tx(f) and they are equivalent.

We assume now that x—>Tx and x —• Sx are equivalent continuous
cyclic representations of A in H and Hr with unit cyclic vectors ζ0

and ζό and positive functionals / and g, respectively. Let V\H-^Hr

be the isomorphism-isometry such that VTX = SxV for each xeA.
Then || Txζ01|2 = \\ SXQ ||2 and f(x*x) = g{x*x) for each xeA. By using
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the polarization formula for the inner product we obtain f(y*x) = g{y*x)
for each pair of elements x, y of A, from which it follows (with y — e)
that / = g. In particular, if x —> Tx is a continuous cyclic representa-
tion of A and ζlf ζ2 are any two unit cyclic vectors, then they define
the same positive functional on A.

If x —• Tx is a representation of A in &(H), then there exists a
c^/ciίc decomposition {x —> T"} of α? —* 71*; a? —> Tβ induces a direct sum
decomposition i ϊ = Σ« Θ •#« of iί, where each Ha is a cyclic subspace
for x-+Tβ, and Tx

a = Tx\Ha. Moreover, T.ζ = Γ.{ζβ} = {Γ.βζβ} for
each ζ = {ζα} in £Γ. For a detailed treatment of the construction (a
Zorn's lemma argument), the reader is referred to [7, p. 241]. We
shall not in general indicate the index set to which the α's belong.

THEOREM 6.3. If x—>Tx is a representation of A in
then x —> Tx is continuous if, and only if, there exists a cyclic de-
composition {x —> Tx) of x—*Tx and a neighborhood Uof 0 in A such
that the family {Ta} of linear transformations is uniformly bounded
on U (i.e., there exists M> 0 such that || Tx\\ ^ M for each xeU
and each a). If this is the case for one cyclic decomposition of
x—>Tx, then it is the case for all cyclic decompositions. The con-
dition, may be stated equivalently as follows: there exists a cyclic
decomposition {x —» Tx} such that for any choice {ζ°a} of unit cyclic
vectors (ζ°a for x —> Tx) the resulting family {fa} of positive func-
tionals is bounded on some neighborhood of 0 in A.

Proof. If x —> Tx is continuous and {x —• Tx} is any cyclic de-
composition then the transformation T is bounded on some neighbor-
hood U of 0 in A and || 2 ΐ | | ^ || Tx\\ for each xeA and each a.
Thus, {Ta} is uniformly bounded on U. Conversely, if {&* —> Tx} is
a cyclic decomposition of x —> Tx and U and M are as in the condition,
then for x e U, ζ e H, \\ Txζ ||2 = Σ« || Txχa ||2 ^ M2 Σ« II ζ* II2. Hence,
11 Tx 11 ̂  M ίor each xe U, and x —> Tx is continuous.

We consider now the second part, assuming first that x —* Tx is
continuous. We fix a cyclic decomposition {x —» Tx} and unit cyclic
vectors {ζ«}. There is a neighborhood U of 0 in A on which each
Ta is bounded. Consequently, each fa is bounded on U. Conversely,
if {x —» Tx) is a cyclic decomposition of x-+Tx, {ζ«} is a family of
unit cyclic vectors and the corresponding family {/α} of positive func-
tionals is bounded on some neighborhood U of 0 in A, which we may
choose to have the usual "nice" properties, then for each a we have
\fa(x) I S 1 for each x e U. Now,

II ψa 112 _ Q r m /I I rpaηnafΌ 112. . / p A II T^α^O 112 < ^ 1 \
II i » II — S U P {\\ 1 x 1 y L.a \\ . y kz Ji., \\ 1 yL^a \\ ^ ±)
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and

II T:& II2 = fa{y*x*xy) =g \\ Ty%°a \\*Pv(x)*.

(See the proof of Theorem 6.1). Thus, it xeU, then || T; || ^ 1, and we
conclude that x—*Tx is continuous from the first part.

COROLLARY 6.3. Let x —• Tx be a representation of A in
and A be commutative, and let {x —> Tx} be any cyclic decomposition
of # —> Tx, {ζ°a} a family of unit cyclic vectors, {fa} the corresponding
family of positive functionals on A, and {μa} the family of non-
negative measures in M(Φ*, έ%, I?) uniquely determined by {fa}.
The representation x —• Tx is continuous if, and only if, \Ja C(μa) is
an equicontinuous subset of Φ* (i.e., its closure is in g7).

Proof. If x—>Tx is continuous, then there exists a neighborhood
U of 0 in A such that each fa is bounded by one on U. Then 11 μa \ | =
I μa I (U° Π Φ*) and C(μa) c U° Π Φ*. Thus, \Ja C(μa) is equicontinuous.
Conversely, if \Ja C(μa) is equicontinuous, then there exists a neighbor-
hood U of 0 in A such that \Ja C(μa) c U° Π Φ*. Hence, each fa is
bounded on U, and x —• Tx is continuous.

An example of B. Yood [9, p. 361] shows that representations
of normed *-algebras, hence of LMC *-algebras, need not be continuous.
However, in the normed case, completeness of the algebra is sufficient
to guarantee the continuity of all its representations. Since in his
example the algebra is not complete, the question of sufficiency of
completeness for LMC *-algebras remains unanswered. We give an
example to show that complete LMC *-algebras may have discontinuous
representations, even if each representation in every cyclic decomposi-
tion of the given representation is continuous.

EXAMPLE 6.1. Let Ωo be the space of ordinals < Ω (the first
ordinal with uncountably many predessors) with the order topology.
The following properties of ΩQ are essential to this example: (1) every
complex-valued continuous function on Ωo is bounded, (2) every interval
[1, a], a < Ω, is compact, (3) (C(Ω0), tc), K denoting the compact-open
topology, is a commutative complete LMC algebra with identity and
continuous involution (conjugation), (4) every countable subset of Ωo

has a least upper bound in Ωo, and (5) for C(Ω0), φ* = φ = Ωo and
the compact, equicontinuous subsets of Φ* are exactly the compact
subsets of Ωo. Properties (1), (2), and (4) are fundamental properties
of Ωo, (3) follows from the fact that Ωo is locally compact (cf. [6,
Appendix D]), and (5) follows from Example 7.6 of [6]. We denote
by 12(ΩO) the Hubert space of all tuples {za: a < Ω} of complex numbers
satisfying Σ * I s« I2 < °°
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For each x e C(Ω0), we define Tx: 12(ΩO) -> 12(ΩO) by T.{za] = {x(a)za}.

Since each x e C(Ω0) is bounded, the operators Tx are continuous.
One cyclic decomposition of x —* Tx is {x —> Tx}, where for each
a < Ωo T«\ C -> C is defined by T;(z) = x(a)z for zeC. Each of the
representations x —> 2? is clearly continuous and cyclic. However,
x —• Γg. is not continuous; since if we choose a unit cyclic vector
3«(= 1) for each representation in the cyclic decomposition given above,
then the corresponding measure on Ωo is the point-measure μa defined
by μa(E) = 0 if a ί E, 1 if a e E for E e &. But \Ja C(μa) = Ωo,
which is not compact. Hence (by Corollary 6.3), x-+Tx is not
continuous.

To show that every cyclic decomposition consists of continuous
representations we show that the homomorphism x —+ Tx is continuous
relative to the strong operator topology on &(H), from which it
follows that every cyclic representation in a given decomposition is
also continuous relative to this topology. It is immediate from this
that the positive functionals defined by these cyclic representations
are all continuous, and the representations must, therefore, be con-
tinuous. We fix yel2(Ω0), then #—• Txy is a linear homomorphism of
C(Ω0) into H, and to show continuity it suffices to find a neighborhood
of 0 in C(Ω0) on which this mapping is bounded. There exists a
countable subset ΔaΩQ such that ya = 0 for a e Ωo — A, and there
exists a0 e ΩQ such that J c [ l , 4 The set U = {x e C(Ω0): \ x(a) \ <: 1
for a ^ a0} is a neighborhood of 0 in C(Ω0) and for each x e U we
have

Thus, for each y e 12(ΩO), x —• Txy is a continuous map of C(ΩQ) into H,
and x—+Tx is continuous relative to the strong operator topology on

The following theorem is valid for arbitrary *-algebras with
identity (cf. [7, p. 265]).

THEOREM 6.4. A cyclic representation x —» Tx of a ""-algebra A
with identity in &(H) is irreducible (no nontrivial subspaces of
H are invariant with respect to each Tx) if, and only if, the positive
functional f defined by f(x) — (Txζ, ζ) is indecomposable for each
cyclic vector ζ in H.

COROLLARY 6.4. If A is a complete LMC algebra with identity
and continuous involution, then a continuous cyclic representation
is irreducible if, and only if, for each unit cyclic vector the
corresponding positive functional is an extreme point of K{A). In
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particular, if A is commutative, then the functionals corresponding
to irreducible representations are multiplicative and the represen-
tations are one-dimensional.

Proof. The first part follows from Theorem 6.4 and Corollary
4.3. The second part from the fact (Theorem 4.5) that the extreme
points of K(A) are multiplicative, when A is commutative.

A family of representations of a *-algebra A is said to be complete
if for each nonzero x0 in A there exists a representation x —> Tx in
the family such that TXQ Φ 0. We state now a theorem analogous,
as much as possible, to the theorem on complete families of represen-
tations of Banach *-algebras (cf. [7, p. 267]).

THEOREM 6.5. The family of all continuous irreducible represen-
tations of a complete LMC algebra A with identity and continuous
involution is complete if, and only if,

&*(A) = (0), where &*(A) = {xeA:f(x*x) = 0 for each fe A*( + )} .

Proof. &*(A) is a subset of the kernel of each continuous
representation of A. So, if &*(A) Φ (0), then for each x0 in
&*(A), xQ Φ 0 we have TXQ = 0.

Conversely, if &*(A) = (0) and x0 Φ 0 then there exists an extreme
point / of K(A) such that f(xfx0) Φ 0. But then || TXQ\\ Φ 0, where
x —• Tx is the irreducible representation defined by /.

7* Representations of commutative LMC ** algebras* We as-
sume throughout this section that A is a commutative complete LMC
algebra with identity e and continuous involution.

THEOREM 7.1. Let x —> Tx be a continuous cyclic representation
of A in ^?(H). Then x—*Txίs equivalent to a representation x—>Lx

of A defined by

(7.1) (Lxw)(φ) = X\φ)w{φ)

in some Hilbert space L2(μ) (= L2(Φ*, &, μ)), where μ is a non-
negative element of M(Φ*, &, g7).

Proof. We fix a continuous cyclic representation x —> Tx of A in
^(H) and a unit cyclic vector ζ0, and define the positive functional
/ by f(x) = (TxζQ, ζo). The functional / i s continuous, and by Theorem
5.3 there exists a unique nonnegative measure μ in M(Φ*&, if) such
that
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f{χ) = \ %'{φ)μ{dφ) ,

where xr is the element of C(Φ*) defined by x'(φ) = <p(x) for each <p e Φ*.
Since the given representation is equivalent to the representation
x —* Γβ(/) of A in ^(Hf), we show that the latter is equivalent to
left multiplication in L\μ). The kernel of x—>x' is &*(A) and that
of x —• ξX(A —> A/L/ = X/) is A : Ly, which contains ^?*(A). Thus,
there is an induced homomorphism xf —* f̂  of A' onto X/# Also,
A'aL2(μ), and if | |a/| | 2 denotes the L2(μ)-norm of x\ we have

= t
JΦ

- II f . I

So »' —> f β is an isomorphism-isometry of the pre-Hilbert space A! onto
X/# But A' is /c-dense in C(Φ*), and the latter is ZΛdense in L\μ)
(μ being compactly-carried). Hence, x' —> ζx extends to an isomorphism-
isometry V of L\μ) onto Hf. The representation x —> Γβ(/) of A in

and the map V induce a representation a ^ L , of A in
by

L.w - 7- 1 Γ.(/)7w for w G L2(//) .

In particular, for w eA' (w = y',y e A) we have

= x'yf = x'w .

Since A' is dense in L2(μ), we have Lxw = aj'te; for all w e I/2(//).

THEOREM 7.2. Let x —> Tx be a continuous cyclic representation
of A in &(H), then each operator Tx is given by

(7.2) Γ. = ( x'(φ)P(dφ) ,

where P is a regular spectral measure on (Φ*, έ%) with compact,
equicontinuous carrier (there exists Ke^ such that P(E) = P(E n K)
for each Ee&). The operators P(E) commute with all operators
in έ^(H) which commute with each Tx, the integral converges in
the operator norm, and the spectral measure is uniquely determined
by (7.2).

Proof. The representation x —> Tx in &{H) with unit cyclic
vector ζ0 is equivalant to a representation x—>LX in some L\μ) with
cyclic vector β'. Let V be the isomorphism-isometry giving equivalence.
We shall define the spectral measure P with values in
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The operators V and F" 1 will carry it into the desired spectral measure
having values in ^?(H).

For each Ee^we define P(E): U{μ) -+U(μ) by P(E)w = χEw,
where χE is the characteristic function of E. It is readily verified
that (1) P(E) is a projection in ^(L\μ)) for each Ee&, (2) for
each pair v, w in L\μ) the set function v(E) = (P(E)v, w) is a regular
measure on, (3) P(C(μ)) = I, the identity operator on L2(μ), and
P(E) = P(E n C(μ)) for each # e ^ .

To show convergence of the integral we fix w e L2(μ), xeA and
ε > 0. Since x' is continuous on Φ* and C(μ) is compact, there exists
a family {Eu , JS^} in ^ such that (J {#<: i - 1, 2, . . ,n - 1} =
C(μ), 2?* f) Ej = φ for ί =£ i, and the oscillation of a;' on E{ is less
than e for each i. We let En = Φ* — C(μ) and choose φ^E^ for
each ΐ. Then

= Σ ί I rffr) - x'iΨi) I2 I W(φ) I2 μ(dφ)

The norm convergence of the integral follows. The proof of the fact
that the operators P(E) commute with all operators which commute
with each Tx follows exactly as in the normed case (cf. [7, p. 248]).
If P and Q are regular spectral measures satisfying (7.2), v and w
fixed elements of L\μ) and λ and v the corresponding measures given
by (P(E)v, w) and (Q(E)v, w), respectively, then

ί X'(φ)\(dφ) = \ X'{φ)v{dφ)

for each xeA. But A' is τo-dense in C(Φ*), λ and v are members of
M(Φ*, &, g7), and X = v. Thus, P = Q.

THEOREM 7.3. Let x —• Tx be a continuous representation of A
in &(H). Then x—>Tx is equivalent to a representation x—>Lx of
A in a Hubert space H' = ^a® L\μa), where (1) each μa is a non-
negative element of M(Φ*, &, 8"), C(μa) its carrier, (2) x—>LX is
given by Lx({wa}) = {x'wa} for each w = {wa} e Hr and xeA, and (3)
\JaC(μa) is an equicontinuous subset of Φ*. Moreover, there exists
a regular spectral measure P on (Φ*, &) with values in ^?{H) and
compact, equicontinuous carrier such that for each xeA
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(7.3) Γ. = ί x'(y)P(dφ) .

The integral converges in the operator norm of ^?(H), each operator
P(E) commutes with all operators in ^(H) which commute with
each Tx, and the spectral measure P is uniquely determined by (7.3).

Proof. Let {x —> Tx} be a cyclic decomposition of x —> Tx with
unit cyclic vectors ζ«. Each x —• Tx is equivalent, via Va, to a re-
presentation x —• Lx of A in L2(μα) with cyclic vector β'. The family
of isometries {Va} can be combined to yield an isomorphism-isometry
V of H = Σ« θ #« onto IP = Σ« θ £2(/O by defining

It is readily verified that V is an isomorphism-isometry into H'. We
show that the image of H is dense in H'; hence, V is onto. If
w = {wα} e if' and ε > 0 then there exists a countable collection
j^ζ = {α:n: ̂  = 1, 2, •} of α's such that wa = 0 for α: g J^J. For each
αw in J ^ there exists xaeA such that || wa% — x'an ||2 < ε/2\ If
α g X we let xa = 0. Then {^}eiϊ' and {ϊ\ζ°} is an element of
H, since

Also, V({T%J?a}) = {x*e'}> the latter being an ε-approximation to w.
Finally, if we define Lx({wa}) = {x'wa}, then VTX = LXV for each x e A.

For each a there is a spectral measure Pa with values in &(L\μa)).
we define a spectral measure P with values in &{H'). As in Theorem
7.3, it is easily shown that P is carried by V and V~ι into a spectral
measure with values in ^?{H) which has the desired properties. For
each Ee gf and weH' P(E)({wa}) = {Pa(E)wa} = {χEwa}.

It is readily verified that P so defined is a regular spectral measure
on ($*, &) and that P(E) = P(£7 Π U« CO"*)) f o r e a c h - # e ^ But
\JaC(μa) is an equicontinuous subset of (?*, so P satisfies the carrier
condition claimed. The uniqueness and commutativity properties are
established as in Theorem 7.2. The norm convergence of the integral
depends on the fact that the closure K of (J« C(μa) is an element of
g\ The proof is analogous to that of Theorem 7.2, where {Eu , En_^
is a partition in & of K and En = Φ* — K.
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