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A CHARACTERIZATION OF COMPACT CONNECTED
PLANAR LATTICES

CHARLES E. CLARK and CARL EBERHART

In this paper it is proved that every topological lattice
on the two-cell is topologically isomorphic (iseomorphic) to a
sublattice of the product lattice 7 X I, An explicit description
of the compact connected sublattices of I X I containing (0, 0)
and (1,1) is given. These results, together with a theorem
of A, D, Wallace, yield a characterization of all compact
connected lattices in the plane: each is iseomorphic to a
sublattice of I x I,

A topological lattice is a partially ordered space X with the
property that every pair of elements a, b of X has a least upper
bound, aV/ b, and a greatest lower bound, a A b, so that the opera-
tions v and A are continuous. A simple example of a topological
lattice is the unit interval I with the usual ordering. The partial
order on the m-cell I* given by (x;) < (y,) if and only if z;, <y, for
1 =1, ..., n is a lattice ordering, in fact, it is the lattice ordering
obtained by regarding I* as a product lattice. L. W. Anderson and
A. D. Wallace have found conditions under which a lattice ordering
on the m-cell is the product order. One can also consider the follow-
ing problem: determine all lattice orderings of the n-cell. It is well
known that the usual order is the only lattice order on the interval.
In this paper the problem is considered for the two-cell. It is shown
that every topological lattice on the two-cell is iseomorphic to a
sublattice of the product lattice I x I. This result together with a
theorem of A. D. Wallace is used to prove that every compact con-
nected lattice in the plane is iseomorphic to a sublattice of I x I.
Finally, an explicit description of the compact connected sublattices
of I x I containing (0, 0) and (1, 1) is given.

1. Lattice orderings of the two-cell. Let L be a topological
lattice whose underlying space is homeomorphic to a two-cell. Since
L is compact, L has a unique minimum element 0 and a unique
maximum element 1. It is known [1] that 0 and 1 lie on the boundary
of L and that the boundary arcs T and E determined by 0 and 1
are maximal chains in L and that T and E generate L in the sense
that L =TV E= T A E. In this section we prove that L is iseo-
morphic to a sublattice of I x I. The proof requires several lemmas.

LEMMA 1. Let p,qe L. If pANT)NT=@QAT)NT, then either
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PpANTcgANTorgNANTcpAT.

Proof. We first assume that p,gc E and that p <q. If p =0,
then pegq A T. Suppose p > 0 and that p¢q A T. It is well known
that p V T and ¢ A T are arcs from p to 1 and from ¢ to 0 respec-
tively. Since L is a 2-cell, it must follow that (p V T) N (¢ A T) = O.
Let ze( VvV T)N(g A T) and let

z=sup{@ ANT)NT}=sup{w AT)NT}.

Then z = p \V t for some teT. If ¢t < x, then by the definition of z,
we would have p\VVt = p. Hence ¢ > x. But now the inequality
t <2< q implies that ¢ At =t ¢ ¢ A T which contradicts the choice
of x.

Now let p and ¢ be arbitrary elements of L and choose ¢, f e E
such that pee A T and ge f A T. This is possible since E A T = L.
If either of p or ¢ is an element of T, then the lemma is trivial.
For suppose pe T. Then

pPANT=@ADNT=@ANT)NTcgANT.

We may now assume that p,q¢ T. We contend that e A T)N T =
PADDNT=(FAT)NT=@ANT)NT. To establish the first
equality, let te(e AT)NT. Then since e AT is a chain and
p,tce AN T, either p <tor t=<p. Suppose p=<t. Then for some
tteT,p=enti=At)ANt=(€AN) Nt =t At eT, which is a
contradiction, Therefore ¢t < p and te(p A T)NT. Now suppose
te(p ANT)NT. Then ¢t <p<e implies that te(e A T) N T. This
proves the first equality; the last equality is proved similarly. From
the first part of the proof, we conclude that either e A TC f A T or
fFATceNT. Suppose f ATceANT. Then p AT and ¢ A T are
subchains of ¢ A T, so either p A TCcq AT orgANTcpAT.
For x e T, we define C,c Eby C, ={h € E|x =sup{(h A T)N T}}.

LEMMA 2. The set C, is closed for all xe T.

Proof. We consider the nontrivial case where C, # [0. From
the continuity of A it follows that the set {h e E|xeh A T} is closed.
Let ¢ =inf{heE|xech A T}; then xece’ AN Tand ¢ < ¢ forall ecC,.
If te(@ AT)NT and t > x, then forecC,, we would havet < e’ < e
and hence te(e A T) N T contradicting the fact that ec C,. Hence
x=sup{(¢ AT)NT} and ¢ €C,.

Let h,eC,,n =12 ..., and let h,— h. Then ¢ < h, for each
n and by Lemma 1, we have that ¢ A T h, A T for all values of
n and therefore ¢ AN Tch AN T. Let 2’ =sup{(h A T)N T}. Then
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2’ =z sincexe (hMAT)NT. We have that ¢/, 2’ € o AT and so one of the
inequalities ' < ¢/, ¢’ < o’ must hold. If o’ < ¢, then 2’ c(e AT)NT
which implies that 2’ <2 and hence 2’ =« and heC,. If ¢ < o,
let ¢ =h At for teT. Then

=N =nhANDANT=MmANI)YANt=a" NteT.

This involves a contradiction unless ¢’ = 0. However, if ¢ = 0, then
2=0and h, A T =0 for all values of n; hencen A T = 0 and h cC,.
This completes the proof of the lemma.

We now define relations 27 and 2" on T as follows: for a,be T,

as#b=ace\ T if and only if bee\/ T for all ec E.
a7’ b=ace AN T if and only if bee A T for all ec K.

LEMMA 3. The relations 57 and &~ are closed congruences on T.

Proof. It is easy to see that o and 2" are congruences on T.
We will show that the relation 2" is closed. A dual argument will
show that &7 is closed.

Let a,—a, b, — b with a,, b,e¢ T and a,7"b, for each n. Assume
that a <b. If hee A T for ec E, it follows trivially that ace A T.
Suppose ace A T for ec E. Let x =sup{(e A T)N T}; then a < 2.
If a <=, then for n sufficiently large, a, <2z and hence a,ce A T.
Since a,%7°b, we must have b,ce A T for n sufficiently large and
therefore bece A T. This gives a777b.

We now assume that a = « and let /= sup C,. This sup exists
since C, is closed by Lemma 2. If f=1, then ¢« = b = 1. Suppose
f<1 and let f,—f where f,cKE, f,>f for m=1,2 ..., Let
Y = sup{(fn AN T)N T}. Then since f,€C,, ¥y, > a. Thus for fixed
m, there exists a positive integer N, such that if n = N,, then
a, < Ym, o a,€fn, ANT. Therefore b,cf, NT for n <N,. We
conclude that bef, AN T for each positive integer m and hence
befANT. But a=sup{(fANT)NT} and hence b < a. Therefore
a=b.

LEMMA 4. Let ec E and let « =sup{(e ANT)NT}, & = supC,
' =infV, where V, denotes the congruence class modulo 27~ which
contains x. Then {z|o' Zz=¢e}ce NT.

Proof. If zeT,thenz<x<¢ implies z=¢" Nzece’ AT. Suppose
2¢ T and let fe E such that ze f A T. If f=0,thenz=0¢ce A T.
Suppose f>0. We have o' <z < f and therefore 2’e¢f A T and
since ' 7" x,x e fANT. If te(fAT)NT, thente(z A\ T)N T since
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ATCFfATand 2z¢T. From the inequality ¢ < z < ¢’ we conclude
that te (¢ AT)NT and hence ¢t < 2. Hence z =sup{(fAT)N T}
and by Lemma 1 we have f A TCée' A T and therefore zee' A T.

LemMA 5. If e, feE and pe[(fV T)N(e AN T)\T, then {p}=
Vv IT)neAT).

Proof. Suppose p'e€(fV T)N(e A T). Then either p’<p or
p' = p and in either case it is easily seen that p’¢ T since p¢ T.
Assume that p' <p and let xz =sup{(e AT)NT}. Then since
p,peT,e=sup {pAT)NT}=sup{® A T)N T}. Sincep’' < p on
fVv T, we have that pep’ \V T so that p = p’ \V ¢ for some ¢ e T and
since x =sup{(® A T)N T}, it follows that ¢t = 2. But t<p=e
implies that te(¢e AT)NT and so t<x. Hence ¢t =2 and p =
pVae=7p.

LEMMA 6. Let x€T and let ' = sup Ve. Then C,. + 0.

Proof. The set {heE|xch A T} is closed by the continuity of
A and is nonempty since xel A T. Let e=inf{heE|xch A T}.
Then xce A T and since xo 2’ it follows that «'ee A T. Let ¢ =
sup{(e A T)NT}. Thena” < a’. Suppose hc Eandxech A T. Then
h = e by the definition of ¢ and since z”"ce A T it follows that
a”eh A T. On the other hand, if #”"eh A T for some ke FE, then
xeh AT since v < 2”. Therefore x2r"z” but since 2” = %' and
2 = sup ¥  x, we must have 2" = 2’. Hence ec(C,..

We are now prepared to define the iseomorphism from L into
I x I. For pe L, define

a(p) =sup{p A T)N T}
and
a(p) =inf{(pVv T)NT}.

Let 7,7, denote the natural maps from T onto T/ = T, and
T|/5# = T, respectively. Let ¢, = n,oa,, ¢, = .0, and define

6:L—T, x T,
by
6 =06 X ¢ .
THEOREM 1. If L s a topological lattice which is homeomorphic
to a 2-cell, then L 1is iseomorphic to a sublattice of I x I.

Proof. We will show that the map defined above is a one-to-one
continuous homomorphism from L into T, X T,. The theorem then



A CHARACTERIZATION OF COMPACT CONNECTED PLANAR LATTICES 237

follows since T, x T, is iseomorphic to I x I.

(i) The map ¢ is continuous. We show ¢, is continuous. A dual
argument shows that ¢, is continuous.

Let xe T, and let a =supy*(®). Then C,+# O by Lemma 6.
Let e =sup C,. We claim that ¢;'[0, x] = e A L. A similar argument
shows that ¢7'[x, 1] = @’ Vv L where o/ = inf 97*(). Thus the inverse
under ¢, of a subbasic closed set is closed in L and hence «, is
continuous.

Let ze¢e A L. Then b =sup{zAT)NT}<z2z=<e¢ and so b < a.
Then ¢,(2) = n(a,(z)) = 7, (b) < n(a) = . Hence z€ ¢7[0, x]. Now let
ze€¢7'[0, 2], b = sup 97 (¢,(2)), and f = supC,. Since ¢,(2) < x, then
b=a. If zeT then 2<b<a <e¢; thus zee A L.

Now suppose that z¢ T. From the definition of b we have 7,(b) =
n(a,(z)) and hence b6 a,(z). Therefore a,(z) < b. Let h e E such that
zeh AN T. Then since z¢ T, it was shown in the proof of Lemma 1
that sup{(z A T)NT}=sup{(h A T)NT}. Therefore a,(2)eh AT
and since b7 a,(z), we havebe(h A T) N T and hencebe(z A T) N T.
Then by the definition of a,(z), we have b < a,(z). Thus «,(z) = b,
and GATNT=(ANT)NT. By Lemma 1,zA T fA T. Since
b<a,then f<e. Hence z < f< e implies that zee A L.

(ii) ¢ is one-to-one. Suppose p, p’ €L such that ¢;(p) = 4:(p"),
v =1,2. We will show that p = p’. We consider three cases.

Case 1. p,p' e L\T- Then since ¢,(p) = Ni(a(p)) = nua(p”)) =
é.(p"), we have that a,(p)? a,(p’). Choose ¢, fe E such that pee A T
and p’e f A T. Then from the proof of Lemma 1, it follows that

sup{(e A T)N T} =sup{(p A T)N T} = ay(p),
and
sup{(f AT)NT}=sup{(® ANT)NT} = a(p) .

But since «a,(p)¥ a(p’), we must have a,(@)c(e A T)NT and
a@e(f ANT)NT. It now follows that «a,(p) < a,(p) £ a,(p’) and
hence a,(p) = a,(p') = a,(¢) = a(f). Hence by Lemma 1, either
fANTceANT or e NTCfANT. Suppose fATCeANT. Then
p,p’ee AN T. Using a similar argument and the dual of Lemma 1 we
obtain ge E such that p,p’eg v T. Since p,p’¢ T, we conclude
from Lemma 5 that p = p'.

Case 2. p,p'eT. Assume p=9p'. If p" =1, then p’elV T
and p’ 57 p implies that pel Vv T and so p = 1. Suppose p’ <1 and
let f=sup{heE|pech\V T}. Then f<1. Let f,— f, where f, e FE
and f, > f for all n. Then p¢f, VvV T and hence p'¢ f, Vv T for all
n. Therefore if f, \V pe T, then £,V p > p’, and if f, V p¢ T then
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p=((.VD)ADPE(F,VDP) AT and hence p c(f,V p) AT since
p7 p and f, vV peT. So f,Vp=p for all n. Therefore, by the
continuity of V,p =V p 9. Then p = p'.

Case 3. pe¢T,p eT. Choose ¢, f¢ E such that
peANT)N(FVT).

Then since pe T, {p} =€ AT)N(f Vv T) by Lemma 5. Since
6.(p) = ¢,(p'), we have sup{(p A T)N T} ¥ p' from which follows
pep ANTneANT. Similarly, p'ef\V T, contradicting Lemma 5.

(iii) ¢ is a homomorphism. We will show that ¢, is a homomorphism
with respect to \/, Similar arguments will show that ¢, is a homo-
morphism with respect to A and that ¢, is a homomorphism with
respect to \V and A.

Let p,p' e Ly x = ay(p) = sup{(p A T) N T},

o' =a(p) =sup{ Vv T)NT},
and
z=a(pVp)=sup{(pVvp)ANT)NT}.

Assume that ¢ < «’. Then z Vv &’ = 2’ and p(z V &) = (%) V n(') =
7). Then ¢.(p) V ¢.(p") = nu(x) V Ni(a’) = n(@'). We will show that
é(p V p') = (R) = (), l.e., 277,

We have that 2’ <p'<pV o, so Z’e((pVP)AT)NT and
hence ' < z. If zee AT for ecE, then clearly «'ce A T. Now
suppose ' €e A T,ee E. We consider two cases.

Case 1. p'¢ E. We may assume that ¢ = inf{he E|2'ch N T}.
If peT, then p’ =a'ce A T. If p’¢ T, then choose g€ E such that
p'eg ANT. Then o’ < p' < g implies that 2’ €¢g A T and hence ¢ < g¢.

From Lemma 6,e¢ = sup C,.. But the proof of Lemma 1 gives

o =sup{(® ANT)NT}=sup{lg ANT)N T},

and therefore g < e. Hence g = ¢ and p’ < e.

We will show that p<e also. If peT, then p=a 2" <e.
Suppose pe T and let f=inf{heFE|peh < T}. Then since pe T,
sup{(f AT)NT}=sup{(pAT)NT}=2a = 2" and hence f < e. Then
the inequality p < f < e gives the desired conclusion.

We now have ' < e¢,p <e¢; hence p Vv p' <e. Since p'ece AN T,
the inequality ' < p Vv »' < ¢ and Lemma 4 gives p V p'ee A T.
Hence zce A T. This concludes the proof for Case 1.

Case 2. p'eE. If p' < p, then p Vv p’' = p implies x = z. But
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then © < 2’ < 2z implies @’ = 2z and so zece A T.
If ¢ p A L then since

z=sup{p ANT)NT}<a' =sup{®» ANT)NT},

the proof of the continuity of ¢, shows that pep” A L. Hence
pV p = p and again we conclude that z = &', This concludes the
proof that ¢, is a homomorphism with respect to \/, and the proof
of Theorem 1.

2. Compact connected lattices in the plane. In [4] Wallace
proved that a compact connected lattice L which is imbeddable in the
plane is a cyclic chain (in the sense of Whyburn {5]) and that each
true cyclic element is a convex sublattice and is homeomorphic to a
2-cell. Thus by Theorem 1, each true cyclic element is iseomorphic
to a sublattice of I x I. Let 4 denote the diagonal thread in I x I.
Label the true cyclic elements of L, {C;}i,. Denote the 0 and 1 of
C; by a; and b, respectively. Let T be any maximal chain from 0 to
1 in L, and let % be an iseomorphism from 7T onto 4, the diagonal
in I x I. Then the “square” in I x I with upper right hand vertex
h(b;) and lower left hand vertex h(a;) is a sublattice of I x I which
is iseomorphic to I x I. Hence C; may be imbedded in this sublattice
as in Theorem 1. In this manner an iseomorphism of L into I x I
is determined. Thus we have proven:

THEOREM 2. Every compact connected lattice in the plane 1is
iseomorphic to a sublattice of I x I.

Finally we state an explicit description of the compact connected
sublattices of I x I containing (0, 0) and (1, 1).

THEOREM 3. Let f and g be functions from I into I satisfying

(1) f, g9 are nondecreasing, f(0) =0, g(1) =1,

(i) f() < g(x) for all x€l,

(iii) f is continuous from the left and g is continuous from the
right.
Then the set L ={(x,y): f(@) Sy = g@)} s a compact connected
sublattice of I x I containing (0,0) and (1,1). Conversely, if L s
a compact connected sublattice of I X I containing (0,0) and (1,1)
then there exist functions f and g satisfying i-iii such that

L={@x9:f0)=y=9@).

Proof. The proof is straightforward and will be omitted. The fune-
tions f and ¢ alluded to in the second part are defined as follows:
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g(x) = sup {L N ({z} x I)} for xel
Sf(x) = inf {L N ({a} x I)} for xel.

3. Comments. Edmondson has given an example of a topological
lattice on a 3-cell which is nonmodular; hence this lattice is not a sub-
lattice of I x I x I [2]. This shows that the higher dimensional
analogous of Theorem 1 are false.

This the result of this paper does not hold if the term “lattice”
be replaced by “semilattice” is a consequence of the results of D.R.
Brown, [1], regarding semilattice structures on the two-cell.

Wallace has conjectured that every 2-dimensional compact con-
nected lattice with no cutpoints is a two-cell. A related conjecture is
that every 2-dimensional compact connected lattice can be imbedded in
the plane. If this were true, the words “in the plane” in the state-
ment of Theorem 2 could be replaced by “2-dimensional.”

The authors are pleased to acknowledge their indebtedness to
Professor R.J. Koch for his suggestions in the preparation of this

paper.
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