SOME CONTINUITY PROPERTIES OF THE SCHNIRELMANN DENSITY

R.L. DUNCAN

Let S denote the set of all infinite increasing sequences of positive integers. For all $A = \{a_n\}$ and $B = \{b_n\}$ in S, define the metric $\rho(A, B) = 0$ if A = B, i.e., if $a_n = b_n$ for all n and $\rho(A, B) =$ 1/k otherwise, where k is the smallest value of n for which $a_n \neq b_n$. Similar metrics have been considered previously [1, 2]. Our purpose here is to discuss several continuity properties of the Schnirelmann density $d(A) = \inf A(n)/n$, where A(n) is the number of elements of A not exceeding n. In particular

the number of elements of A not exceeding n. In particular, we obtain a characterization of the set of all sequences having density zero as the set of points of continuity of d(A).

THEOREM 1. d(A) is upper semicontinuous on S.

Proof. For each $\varepsilon > 0$ there is a k such that $A(k)/k < d(A) + \varepsilon$. If $\rho(A_n, A) = 1/k_n \to 0$, then $k_n \to \infty$ and there is an N such that $k_n > k$ for all n > N. Hence $d(A_n) \leq A_n(k)/k = A(k)/k < d(A) + \varepsilon$ for all n > N and the desired result follows.

Let $L_a = \{A \in S | d(A) = a\}$ $(0 \leq a \leq 1)$ denote the level sets of d(A) and define $M_a = \{A \in S | d(A) \geq a\}$. Also, let \overline{L}_a denote the closure of L_a .

THEOREM 2. $\bar{L}_a = M_a$.

Proof. If $\lim \rho(A_n, A) = 0$ and $A_n \in L_a$ for all n, then $d(A) \ge \lim \sup d(A_n) = a$ by Theorem 1 and $\overline{L}_a \subset M_a$.

Now let $B = \{b_k\} \in M_a$ and $d(B) = b \ge a > 0$. Also, let $A = \{a_k\}$, where $a_k = 1 + [k - 1/a]$, and define $B_k = \{b_1, \dots, b_k, a_{k+1}, a_{k+2}, \dots\}$. Then $an \le A(n) < an + 1$ and it follows that d(A) = a. Also, $k = B(b_k) \ge bb_k$ and $b_k \le k/b < [k/b] + 1 \le [k/a] + 1 = a_{k+1}$. Hence, B_k is an increasing sequence, and $B_k(n)/n \ge a$ for all n and k. Thus $d(B_k) = \lim B_k(n)/n = a$ and $B_k \in L_a$ for all k. Since $\lim \rho(B_k, B) = 0$, we have $M_a \subset \overline{L}_a$ for a > 0.

Finally, if a = 0 we define $B_k = \{b_1, \dots, b_k, b_{k+1}^2, b_{k+2}^2, \dots\}$. Then it is obvious that $B_k \in L_0$ and $\lim \rho(B_k, B) = 0$. Hence $M_0 \subset \overline{L}_0$ and $\overline{L}_a = M_a$ for $0 \leq a \leq 1$.

Corollary. $\bar{L}_0 = S$.

It follows from the above corollary and Theorem 1 that d(A) is continuous at A if and only if d(A) = 0. It also follows from Theorem

2 that L_a is closed if and only if a = 1 and it is easily shown that L_a is never open. However, it is a consequence of the following theorem that L_a is a G_{δ} set and that a description of the graph of d(A) can be given [3].

THEOREM 3. d(A) is a function of Baire class one.

Proof. Let

$$d_n(A) = \inf_{1 \leq k \leq n} rac{A(k)}{k}$$
 .

Then $d_n(A) = d_n(B)$ if $\rho(A, B) < 1/n$ and it follows that $d_n(A)$ is continuous (uniformly) on S. It remains to be shown that $\lim d_n(A) = d(A)$ for all $A \in S$.

Now let k_n be the smallest value of k for which $d_n(A) = A(k)/k$. Then $\lim d_n(A)$ exists since $d_n(A) \ge d_{n+1}(A) \ge 0$ for all n. Also, $d_n(A) = A(k_n)/k_n \ge d(A)$ for all n. Hence $\lim d_n(A) \ge d(A)$. Since the sequence $\{k_n\}$ is nondecreasing and these numbers are integers, we have either $k_n = k$ for all $n \ge N$ or $k_n \to \infty$. In the first case it is clear that $d_n(A) = d(A)$ for all $n \ge N$ and $\lim d_n(A) = d(A)$ Suppose that $k_n \to \infty$. Then $A(k)/k \ge A(k_n)/k_n = d_n(A)$ for all $k \le k_n$. Hence $A(k)/k \ge \lim d_n(A)$ for all k and $\lim d_n(A) \le d(A)$ since the sequence $\{d_n(A)\}$ is nonincreasing. Thus $\lim d_n(A) = d(A)$ in this case also.

References

1. R.L. Duncan, A topology for sequences of integers I, Amer. Math. Monthly 66 (1959), 34-39.

2. ____, A topology for sequences of integers II, Amer. Math. Monthly 67 (1960), 537-539.

3. E.S. Thomas, Jr., Some characterizations of functions of Baire class 1, Proc. Amer. Math. Soc. 17 (1966), 456-461.

Received July 18, 1967.

LOCK HAVEN STATE COLLEGE AND PENNSYLVANIA STATE UNIVERSITY