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THE SUPPORT OF REPRESENTING
MEASURES FOR R(X)

DONALD R. WILKEN

There are a couple of recent results about algebras of
rational functions in the plane with essentially the same
method of proof. One result states that the nontrivial Gleason
parts of the function algebra R(X) have positive Lebesgue
planar measure. A second asserts the lack of completely
singular annihilating measures. In this note it is shown how
with little extra effort the same method of proof provides
even more information about R(X). Specifically it is shown
that representing measures for R(X) actually represent for
uniform limits of rational functions whose poles lie off the
closure of a part. The most noteworthy corollary establishes
that the closure of a part must be connected.

Also included is a brief summary of the proofs of the two pre-

viously known results mentioned above.

2* Notat ion, basic lemmas* The starting points for all of the

proofs contained in this note are two lemmas about measures with
compact support in the plane (Lemmas 2.1 and 2.2). Bishop [1] noted
the importance of these lemmas in working with the algebra R(X)
and the proofs of all of the results described in the introduction rely
to a great extent on his initial work.

Let X be a compact set in the complex plane C. By R(X) we
mean the function algebra which consists of functions uniformly ap-
proximable on X by rational functions whose poles lie outside of X.
Let λ denote Lebesgue planar measure. If μ is any measure on X set

= \
W — Z\

W — Z

LEMMA 2.1. μ(z) < oo a.e. - dx.

For the proof it suffices to note that μ is a convolution of a locally
integrable function and a measure with compact support.

LEMMA 2.2. Let U be an open set in C. If μ(z) = 0 a.e. — dx

on U, then \μ\(U) = 0.
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An elegant proof due to Beurling [7] merely relies on integration
around squares and an application of Fubini's theorem.

For an arbitrary function algebra A let M denote its space of
maximal ideals.

DEFINITION 2.3. A representing measure for a point x in M is

a positive measure on M which satisfies (*)/(#) = \fdm, a l l/e A. A

complex representing measure is a complex measure which satisfies (*).

LEMMA 2.4. Let μ be a complex representing measure for a
point x in M. Then x has a (positive) representing measure m,
absolutely continuous with respect to | μ |.

Proof. Let H be the closure of the algebra A in the space
L\\ μ I), and let Ho be the closure of Ao = {feA: f(x) = 0} in L\\ μ |).
If h is closen in U{\ μ |) so that h is orthogonal to Ho and with norm
1, it is easy to check that m = | h |21 μ | is the desired measure.

The lemma was first stated in the above form by Hoffman and
Rossi [5], although the above proof is credited to Sarason. It was
found earlier by Konig [6].

Gleason introduced an equivalence relation on M which, for our
purposes when applied to R(X), can best be described by x ~ y if x
and y have representing measures which are not singular.

The equivalence classes under this relation are called the (Gleason)
parts of M. For the original ideas about parts see [4]. For a general
treatment of all the notions discussed above refer to the expository
paper [7]. The connection between parts and representing measures
is contained in [2]. For specific applications of Lemmas 2.1 and 2.2
see [3], [1], [8] and for more about Lemma 2.4 see [5].

Now let μ be a measure on X which annihilates R(X), i.e.

\fdμ = 0 for all feR(X). The measure μ is said to be completely
singular if \μ\ is singular with respect to every representing measure
for R{X). For an arbitrary annihilating measure we have the follow-
ing lemmas.

LEMMA 2.5. If μ(y) < oo and μ(y) Φ 0, then vy = l/β(y) μ/(z — y)
is a complex representing measure for y.

Proof. Let / be a rational function in R(X). Then the function

- f(y)W - v) i s i n

0 = ί /(*) ~ f(v) dμ(z) = \-Ά-dμ(z) - f(y)β(y) ,
J z - y J z - y
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or

f(y) = \f{z)dvy{z) .

Taking uniform limits we obtain the lemma.

LEMMA 2.6. // μ(y) < oo and μ(y) = 0 a.e. — dλ on an open set
U in C, then μ is an annihilating measure for R(X\U).

Proof. By Lemma 2.2 μ is supported on X\U. Any function in
R(X\U) is uniformly approximate on X\U by functions of the form
Σ cj(z - yn) with yn $ X\U, μ{yn) < oo, μ(yn) = 0 and each cn a complex
constant. But I Σ CJ(Z — 2/»)ώμ = Σ cnβ(yn) — 0. Hence taking uni-
form limits μ annihilates R(X\U).

3* Something old, someting new* We now are in a position
to quickly prove the three results referred to in the introduction, two
of which, as we have mentioned above, are already known and appear
in [8] and [9] respectively.

THEOREM 3.1. If x is not a peak point of R(X) then the part
P containing x has positive X-measure.

Proof. Let m be a representing measure for x, distinct from the
unit point mass at x. Then μ = (z — x)m is an annihilating measure
for R(X) and Q — {y e X: μ(y) < oo and β(y) Φ 0} has positive measure
—an immediate consequence of Lemmas 2.1 and 2.2. But then Lemma
2.5 provides a complex representing measure vy for y and therefore
Lemma 2.4 a (positive) representing measure, say σv, for y which is
absolutely continuous with respect to \μ\, hence with respect to m.
That is, y ~ x and Q c P s o that λ(P) ^ λ(Q) > 0.

THEOREM 3.2. There are no nonzero completely singular an-
nihilating measures for R(X).

Proof. Let μ Φ 0 annihilate R(X). As in Theorem 3.1 each y
in the set Q = {y : μ(y) < oo, μ(y) Φ 0} has a complex representing
measure and hence a (positive) representing measure σy absolutely
continuous with resprect to \μ\. Clearly then μ is not completely
singular.

We would like to point out that although Bishop has indicated
how to avoid using Lemma 2.4 in Theorem 3.1 (cf. [8]), nevertheless
it appears to be essential in the proof of Theorem 3.2.
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THEOREM 3.3. Let m represent x for R(X) and have closed sup-
port S. Let P be the part of R(X) containing x. Then SaP and
m represents x for R(P).

Proof1. Let μ = (z — x)m so that μ annihilates R(X). As in
Theorem 3.1 the set Q = {y : μ(y) < oo, μ(y) Φ 0} c P. Hence iίyeU =
C\P and μ(y) < oo, then μ(y) = 0. Lemmas 2.1 and 2.6 then yield μ
annihilates R(P). But if / is any rational function in R{P), we have
the function z — {f(z) - f(x)}/(z - x) is in R(P) and

0 = Γ f(z) - fix) d μ = t[f{z) _ f(x)]dm{z)

J Z — X J

so

fix) = \f(z)dm(z) .

Taking uniform limits shows m represents for R(P). Clearly the closed
support S of M satisfies SaP.

COROLLARY 3.4. If P is a part of R(X) then P is connected.

Proof. If P = A U B with A and B closed and disjoint, then the
characteristic functions XA and XB of A and B respectively lie in R(P).
Hence if x e P Π A and yePf)B, then each representing measure for
x and for y on R(X), and therefore also for R(P) by the theorem,
are supported respectively on A and JS. That is, each pair of repre-
senting measures is mutually singular so that x and y lie in different
parts. This is only possible if either A = 0 or B = 0 and P is
connected.

COROLLARY 3.5. If V is an open connected subset of X contained
in a part P, then each point x in the topological boundary of V in
X is either a peak point or in P.

Proof. Let Q be the part containing x. If x is not in P and m
represents x for R(X), then m is supported on Q and represents for
R(Q). But QdX\V so that x lies in the boundary of a component
of the complement of Q. This makes x a peak point of R(Q) so that
m must a unit point mass at x. Since this must be the case for every
representing measure m for x on R(X), x is also a peak point of R(X).

There is a fourth theorem which belongs in any discussion about
the parts of R(X) and which can be viewed as a strengthening of

1 The proof as given is mostly due to T. W. Gamelin and is much simpler than
that originally constructed by the author.
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Theorem 3.1. It says, roughly, that a point which is not a peak
point is a point of density for the part containing it. The strongest
version of the theorem is due to A. Browder ([3]) and is expressed
in terms of the norm topology on the dual space of A. For a point
x in a part P, let Pε = {y e P:\\y - x\\ < ε}. Let

Δ% = iz e C: | z - x | ^ — } .

Then if 0 < ε ^ 2,

THEOREM 3.6. (Browder). P = {x} if and only if

lim sup λ<4,VP«) > 0 .

Of course if P = {x} the conclusion is obvious; the theorem only says
something for nontrivial parts. In particular when P Φ {X},

lim 1
M4.)

and x is a point of density for Pe. The author established the same
conclusion independently for ε = 2, in which case Pε = P and

lim

4* Concluding remarks* As we mentioned in the introduction
there is a link between Theorem 3.3 and its corollaries, and two of
the out-standing conjectures about R(X). One conjecture is that a
part is always connected. Corollary 3.4 eliminates certain types of
disconnectedness, most specifically isolated points and isolated com-
ponents. The second conjecture is that parts are always " separated "
by peak points. Put another way it says that if P is a part, then P\P
consists entirely of peak points. Corollary 3.5 provides for many
points in P\P to be peak points and actually proves the conjecture
for parts which have a dense open connected interior. In cases where
X has a connected dense interior, the only nontrivial part is that
which contains the interior.
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