
PACIFIC JOURNAL OF MATHEMATICS
Vol. 27, No. 1, 1968

TENSOR PRODUCTS OF W *-ALGEBRAS

DONALD BURES

This paper deals primarily with a characterization of the
tensor products of a family of ΫP*-algebras (abstract von
Neumann algebras). It is especially concerned with infinite
tensor products; the results, however, apply and have interest
in the finite case.

A tensor product for a family (J^f) of IF*-algebras is
defined to be a T7*-algebra S/ together with injections α* of
Stfi into Sf satisfying four conditions: the first two are
that the α^J^f) commute and generate S/\ the last two are
conditions on the set of positive normal functionals of S/
which are products with respect to the α (J^) . A local
tensor product is defined to be a tensor product satisfying a
fifth condition—that its tail reduce to the scalars. It is shown
that the local tensor products of (S/ϊ) are precisely the in-
complete direct products ®{S/i, μi), and that every tensor
product is a direct sum of local tensor products which are
not product isomorphic.

Suppose that (j^J) ί e/ is a family of TF*-algebras. We cal
tf»)iez) a product for the family (s^)ieI if Szf is a ΫF*-algebra

if, for each iel, (Xi is an injection of j^J into j y with a^l) = 1
and if the following conditions hold:

( I ) . a^j& ) commutes with as(j^) for all i,jel with i φj.
(II). ^{αr^j^j): i el} = j y : that is, j y is the smallest W*

subalgebra of stf which contains all s^Ί for i e I.

By a product functional for ( j ^ («<)) we mean a nonzero norma

positive functional μ on j y for which there exist normal positive

functionals μt on j^J for each i e l such that:

whenever each A{ e j^ and A{ = 1 for a.a. i e l . (a.a. i e l means-

here and throughout the paper—all but a finite number of iel)

Because of (II), it is evident that the μι determine μ uniquely, an(

we write μ = ®ieI μ{. We will denote the set of product functional

for (^ (j*ί)) by Σp.

We call ( j ^ («<)) a tensor product for (j^J) if it is a produc

for (j^J) (i.e., if (I) and (II) hold) and if the following conditions hold

(III). Σp is separating: i.e., if i e j / + and μ(A) = 0 for a]

μ e Σp, then A = 0.
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(IV). For all μeΣ9, (IV-μ) holds.
(IV-μ). μ = ®iei μi£Σp1 and, if i^ is a nonzero normal positive

functional on j ^ with v{ = ^ for a.a. i el, then ® { e z v{ exists in Σp.
We define the tail J7~ of a product ( j ^ (α<)) to be the intersec-

tion over all finite subsets F of / of the algebras

j ^ _ , . = ^ { t f ( j ^ ) : i e l - F} .

We call (jy; (αj) a iocαί tensor product if it is a tensor product and
the following condition holds:

(V). The tail a?~ of the product (jy; (α )̂) consists of the scalars
only.
A local tensor product will be called a (μij-local tensor product if

We show (Theorem 4.7) that, for every family (j^J, μ^iBl with
/*i a normal positive functional on the W*-algebra j ^ and

0 < Π μάl) < - ,
iel

a (^)-local tensor product exists and is unique up to isomorphism.
(An isomorphism of a product (jy; (α )̂) with a product (jy; (&)) is
an isomorphism ψ of j ^ onto ^ such that + o ^ = ^ for all iel.)
In fact, a (/^-local tensor product for ( j^) can be constructed as
follows. For each iel let φ{ be an isomorphism of j^J onto a von
Neumann algebra on the Hubert space Hi and let xt e Hi induce μ{:

μi(Ai) = ((φi(Ai))Xi I Xi) for all A^sA .

Let j ^ be ®iei(Φi(<M),Xi), i.e.,
von Neumann's incomplete direct product of (φ(j&i))iei with respect
to the Co-sequence fa) (see [7], [1], [2], or §2 below); and for each
i e l let a{ = 7*°̂ *, where 7* is the natural injection of ^<(ĵ J) into
j ^ Then (jy; (ofi)) is a (/î -local tensor product for (j^J)ί6/. A
special consequence of the uniqueness of (^)-local tensor products is,
then, roughly that the tensor product of a family of von Neumann
algebras depends on their algebraic structure only (see Corollary 3.5,
below, for a proper statement). This is an easy result which can be
proved also from [9] or directly (see remark in [2, §3]). For finite
J, it is a result due to Misonou [41.

If / is finite, all tensor products of (j^)iei are local and all are
isomorphic. Thus properties (I), (II), (III), and (IV) characterize the
finite tensor product. A special case of this result was proved by
Nakamura [6]: he showed that (I) and (II) characterize the finite
tensor product of finite factors. A stronger result of this kind was
proved by Takesaki [10]: he showed that (I), (II) and the existence
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of a nonzero ultraweakly continuous (not necessarily positive) product
functional characterize the finite tensor product of factors (c.f. Lemma
6.2, below).

In §5, we determine all possible tensor products for (j^ί) ί e I.
Let A be the set of all families (μi)ieI where each μi is a normal
positive functional on j ^ and 0 < ΐ[iBI μ^l) < oo. Define an equi-
valence relation R on A by writing (μ{) ~ (î ) when a (/^)-local tensor
product is necessarily a (î )-local tensor product. Denote A/R by Δ
and the natural quotient map A —> J = Λ/i? by <p. If Γ is a subset
of J, we call (jy; («<)) a Γ-tensor product for (j# ) i e I if ( J ^ («<)) is
a tensor product for (j^)ieI and if

{(μt) eA:φ μt exists on j / } = ^~'(Γ) .

Then:
1. Every tensor product for (j^i)iei is a Γ-tensor product for

some subset Γ of Δ.
2. For every nonempty subset Γ of Δ a Z"1-tensor product exists

for (j*ί) ί e z.
3. A /Vtensor product is isomorphic (as a product) to a /Ytensor

product if and only if Γλ = Γ2.
4. A Γ-tensor product is a local tensor product if and only if Γ

consists of only one point.
5. A Γ-tensor product is the direct sum of {α}-tensor products

as a runs through Γ.
In case each j^J is semi-finite, the equivalence relation R may be

defined explicitly by using the Kakutani product theorem for W*-
algebras [2]. We obtain (μt) ~ (vj if and only if

Σ [d(μi9 Vi)Y < - ,
16/

where d(μ,v) is roughly the infinum of \\x — y\\ over all representa-
tions of j y as a von Neumann algebra and all x,y inducing μ and v
respectively.

It is not difficult to see that Takeda's infinite direct product of
(*M)iei (see [9]) is a J-tensor product for (j^f)<e/

Section 6 contains some special results on tensor products of
factors. Section 7 contains a few simple counterexamples which de-
monstrate that conditions (III) and (IV) are necessary.

1* Products and factorizations* If μ is a normal positive func-
tional on a W* -algebra jy; we denote the support of μ by S(μ),
and the central support (the smallest projection of the center of j y
larger than S(μ)) by Z(μ).

Throughout this section ( j ^ ) ί e 7 wτill be a factorization of the
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TΓ*-algebra j y By this we mean that each j^J is a TF*-subalgebra
of j y and that, if λ* denotes the inclusion mapping of j ^ into
(jyj (λi)) is a product for (JKW %* will denote the center of
and ^ the center of j ^ . For J a subset of 7 we let

eJ). We call an element of j y tail if it is in
#1-F For μeΣp,T(μ) will denote the smallest tail projection

larger than S(μ).

LEMMA 1.1. (i). // μ e Σp and x>0, then xμeΣp, where (xμ)(A) =
x(μ(A)) for all A e Szf.

(ii). Suppose that μ is a normal positive functional on j y
with μ(l) = 1. Then μeΣp if and only if the family (j^)iBI is
independent with respect to μ: i.e., if and only if

(l l) u(n A) = Π μ(Ad
\ίeF / ίeF

for all At e j ^ and all finite subsets F of I.

Proof, (i) is obvious. Suppose that μ is a normal positive func-
tional on sf with μ(l) = 1. If (1.1) holds let μ{ be the restriction
of μ to j^J; then μ = <g)ίβz μ^Σ^ Suppose, on the other hand, that
μeΣp. Then μ = ®ίe//^i for normal positive functionals μ{ on j ^ .
We have μ(l) = Π. e/j"<(l), so that μ = ® ί e / ^ where μ\ = (^(l))-1^,-
and / '̂(l) = 1. Evidently ^J is the restriction of μ to j^J, and (1.1)
follows.

LEMMA 1.2. (i) ^~ a ^ .

(ii) Z(μ) ^ Γ(^) /or αZί / / e 2 r

Proof. J7~ commutes with each j ^ because J7~ c J^/^{i! there-
fore J7~ commutes with j y =

LEMMA 1.3. (i) %? ~D ^ /or βαcA i e /
(ii) // s/ is a factor then each j ^ is a factor.

LEMMA 1.4. For all μ = (g) ί e J //< eΣp:

(1.2) S(//) ^ Π

(1.3) Z(JM) ^ Π

Proof.
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μ(ll S(μS) = Π μmμd) = Π #(1) = μ(i).
\ίel / iel iel

Therefore (1.2) holds. (1.3) holds because HieiZ(μi) is a projection
of %: larger than ILe/S(/^) and, hence, by (1.2), larger than S(μ).

REMARK. The two propositions which follow are stated now for
convenience in referring to them later. For the moment, we need
only parts (i) and (ii) of Proposition 1.6.

PROPOSITION 1.5. Suppose that / is a subset of /. Then:
( i ). (J^l)iei is a factorization of j ^ .
(ii). If μ = ®ieI μι£Σp, then the restriction μf of μ to s^j is

a product functional on ,s&j for the factorization (j&Z)ieJ, and μf is a
scalar multiple of μj = ®ieJ μι-

(iii). If Σ is a separating subset of ΣP1 then {μy ® ί e / μ{ eΣ} is
separating on s$?j.

(iv). If (III) holds for (j^)ίeI then (III) holds for (j^)iej.
(v). If (III) and (IV) hold for ( j^) i e 7 , then (IV-μ) holds foi

(s^)ίej for μ in a separating subset of product functionals on
for (j*J) i β J.

(vi). If (V) holds for ( j ^ ) i e Γ then (V) holds for

Proof, (i) and (ii) are obvious, (iii) follows from (ii) and (iv)
from (iii). To prove (v) observe that (IV-μj) clearly holds for al]
μeΣp. To prove (vi) let ^~j be the tail of the factorization (j^J) ί6j.
For every finite subset F of /:

Taking the intersection as F runs over all finite subsets of /, since
F Π J runs over all finite subsets of J, we obtain S"j c

PROPOSITION 1.6. Suppose that (I(j))jeJ is a mutually disjoint
family of subsets of / whose union is /. Then:

( i ). (J^nj))j6j is a factorization of s$f.
(ii). If μ — (&iei μi^Σp then μ is a product functional for the

factorization ( j^ ( i ,) i e j and /̂  = ® i e J «g>ίe/(;) ̂ ) .
(iii). If (III) holds for the factorization (<M)ieI then (III) holds

for the factorization ( J ^ / ^ ej.
(iv). If (V) holds for the factorization (j^f)ί6i then (V) holds

for the factorization

REMARK. (IV) holding for (j^J)ie/ does not necessarily mean that
(IV) holds for (S>/I{j))^j\ see Example 7.3.
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PROPOSITION 1.7. (Zero-one law). For all μeΣp with μ(l) = 1
and all tail projections T:

μ(T) = 0 or 1 .

Proof. Let F be a finite subset of /. Then μ is a product func-
tional for the factorization {ssfF, j^_F} of s^ (Proposition 1.6. (i))
and Te,s&ί-F; therefore (Lemma 1.1), for all 4

(1.4) μ(AT) = μ(A)μ{T) .

Now \JF.SϊfF is ultraweakly dense in jy; so (1.4) holds for all
Putting A = Tejy, we obtain:

μ(T) = (μ(T)f .

COROLLARY 1.8. If μeΣp and T is a tail projection:

μ(T) Φ 0 implies S(μ) g T .

PROPOSITION 1.9. For every μ e ΣPJ T(μ) is an atomic projection
of

Proof. Suppose that T is a projection of ^~ with 0 ̂  T ̂  T(μ).
Then either μ(T) = 0 or S(μ) ̂  Γ, by Corollary 1.8. If S(μ) ̂  T
then T = T(μ) by definition. If μ(T) = 0 then T^l-S(μ) and

); that implies T = 0.

COROLLARY 1.10. For αiϊ μ,veΣp:

either T(μ) = T{v) or [T(μ)][T(ι>)] = 0 .

COROLLARY 1.11. If condition (III) fcoίcZs, then ^ is an atomic
W*-algebra.

LEMMA 1.12. Suppose that conditions (III) and (IV) hold and
that iel. For all ^ e jy^+ and all T

AiT = 0 implies A< = 0 or Γ = 0 .

Proof. Suppose that T Φ 0. Then because of (III), there exists
μeΣp with μ(T) Φ 0. By Proposition 1.6, {ĵ J, J^_{ί}} is a factoriza-
tion for j y and μ = μt 0 /i' is a product functional for this factoriza-
tion. We have Γ e j / H ί ) and μ\T) Φ 0. Now for every nonzero
normal positive functional i^ on j^J, ̂  (g) //' exists on jzf by (IV).
Hence AiT = 0 implies that (^ (g) ̂ ( ^ Γ ) = 0 or that ^(AJ = 0 for
each v{. Therefore A{T = 0 implies A4 = 0.
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DEFINITION 1.13. Suppose that (jy; (α )̂) is a product for (jtf ) i e I

and that μ = ® ί e / μ< eJ?p. Let 2£(μ) = sup {S(i>): v e 2 p and v = (&ieI vt

with Vi = /^ for a.a. i e /}.

REMARK. It is clear that E(μ) is well defined: i.e., E(μ) does
not depend on how μ is expressed as ® μ{.

DEFINITION 1.14. A product (s^, (α<)) for ( j^) ί e / will be said to
satisfy (VI-(/^)), where each μi is a normal positive functional on j#l,
if the following conditions hold:

( i ). μ = ® ί e / μ» exists on jy:
(ii). (IV-μ) holds.
(iii). E(μ) = 1.

PROPOSITION 1.15. For all μeΣp:

E(μ) ^ T(μ) .

Proof. Suppose that v = ®iei^i^Σv with ẑ  = μi for a.a. iel.
Let F = {i e I: v{ = μ4}. Then ί1 is finite so that T(μ) e s^Ί-F. By
Proposition 1.6, {j>Λ, J¥Ί-.F} is a factorization of j ^ for which μ and
i; are product functionals: μ — μF 0 μ' and v = vF (g) v'. Clearly
^' = i;'. We have 0 Φ μ(T(μ)) = μF(ΐ)μ'(T(μ)), so that v'(T(μ)) Φ 0.
Hence v(T(μ)) = vF(l)v'(T(μ)) Φ 0 and by Corollary 1.8, S(v) ^ T(μ).
Since ^(j«) is the supremum of such S(v), E(μ) ^ T(μ).

PROPOSITION 1.16. Condition (VI-(/O) implies conditions (III), (V)
and (IV-v) for v in a separating subset of Σp.

Proof. Evidently (VΙ-(μi)) implies (IV-v) for y in a separating
subset of Σp, and hence (III). That it implies (V) is a consequence
of Proposition 1.9 and Proposition 1.15.

LEMMA 1.17. Suppose that Z is a projection of %?. Let
a{: j>fi~+ Zsf be defined, for each iel, by:

a.iA,) = ZA, for all A, e

Let Z{ be the support of a{. Then (Zj^ (α:-)) is a product for
where α denotes the restriction of a{ to Zits^l. Suppose that μ' —
® μ'i is a product functional for (Zjzf,(aβ). Define μ on s^ and
μι on j^l by:

μ(A) = μ\ZA) for all A e j /

for all A{
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Then μ is in Σp, S(μ) = S(μ'), and μ = ® μim

Proof. Obviously, since a\(Zi%M) = a^j^ί) = Zs/{, (Zs^, « ) ) is
a product for (ZiJ&l). Suppose μ', μ\, μ, and μt are as in the lemma.
Then whenever each A{ e j^J and A, = 1 for a.a. ie I:

,el
μ( Π A) = μ'^ZJl Aή =

- μ'(jl aXZiAt)) = Π tfί^A*) - Π

PROPOSITION 1.18. Suppose that the factorization ( j^ ) ί e / satisfies
(III) and (IV), and suppose that T is a nonzero tail projection. Let
a{\ j&i —• T j ^ be defined, for each ίel, by:

a^Ai) = ΓAi for all A4 € J ^ .

Then:
( i ). Each at is an isomorphism and (Ts?/, (α<)) is a tensor

product for (j^J): i.e., ( Γ j ^ («<)) is a product for (ja<) satisfying
(III) and (IV).

(ii). (Tj^ieXi)) is a local tensor product if and only if T is
atomic in ̂ " .

(iii). There is a one-to-one correspondence // <-> μ between product
functionals ^ ' for ( T j ^ (a^) and product functionals μ on j y for

^ί) with S(μ) ̂  ϊ7, where μf is the restriction of μ to Tj^r and
- μ'{TA) for all A e J>X We have S(^) = S(^') and /i = <g> μi if

and only if μ' = <g) /^.

Proof. Lemma 1.12 shows that each a:; is an isomorphism. Then
Lemma 1.17 shows both that (Tjy, (a{)) is a product for (j^f), and
also that, if ^' = ® μt is a product functional for (Γj^; («:<)), then
the /i corresponding to μ' is in Σp, μ = ® ̂ , and S(μ) = S(μ'). Sup-
pose that μ = (& μi is in i?p with S(/i) ̂  Γ, and let /ί' be the restric-
tion of μ to T,s$f. Suppose A{ e j^f and A{ = 1 for all iel — F for
a finite subset i*7 of /. Then:

(1.5)

because Tes^_F. Now μ(T) = μF(l)μi-F(T), and, since S(μ) <^ Tr

μ(T) = μ(l) = μF(ϊ)μi-F(l) Therefore:

(1.6) &-F(T) = fr-F(l) = Π ^(1) .
iel—F

Combining (1.5) and (1.6), we conclude that μ = ® μiβΣp. That
completes the proof of (iii).
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Since (III) holds for the factorization (j^ί), evidently Corollary
1.8 and (iii) demonstrate that (III) holds for (Tssf, («<)). To prove
(IV) for (Ts^f, (#»)), let us assume that μ' = ® μι is a product func-
tional for (Tszf, (a{)) and that i^ is a non-zero normal positive func-
tional on sfi with v{ = μi for a.a. iel. Let μ correspond to μf as
in (iii) so that μ = ® ^ for (j^j) and S(μ) ^ T. Now (IV) holds
for (j^J), so that v = ® v< exists on j ^ We have S(v) ^ i?(μ) ^
T(μ) ^ Γ by Propositions 1.15 and 1.9. vr = ® V; exists as a product
functional for ( T j ^ (α )̂) by (iii). That demonstrates (IV) and thus (i).

Since T is in %? and each J^/_F, a direct calculation shows that
the tail of the product (Tj^9(at)) ί s precisely T^~. Hence (V) holds
for (Tjzf, (ati)) if and only if T is atomic in ^7~. That proves (ii).

2* Direct products of von Neumann algebras* We summarize
here the definition and same basic properties of the direct product of
a family of von Neumann algebras. For details and omitted proofs,
see [7] or [1].

Let / be an arbitrary indexing set. Suppose that (Hi)ieI is a
family of Hubert spaces and that, for each i e /, x{ is in Hi with
0 < ILe/ II #* II < °°. Then we denote by <g)ίe7 (Hif xt) von Neumann's
incomplete direct product of the family (Hi) with respect to the Co-
sequence fa), (see [7]). Let A = {(^): each yt e Hu Σ 11 - (»»I Vi) I < °°
and Σ l l — l l^ i l l l^ 0 0 } ' Then there is a natural multilinear mapping
(yd -+®Vi from J into a dense subset of H with:

(® !fc I ® *•) = Π (!/< I *•) for all (^), (zJeΛ.

LEMMA 2.1. Suppose that xiy y{ e H{ with 0 < Π 11 #< 11, Π 11 V% 11 < °°
a?i) = ® (Hiy y,).

LEMMA 2.2. Suppose that, for each iel, Li is a dense linear
subset of Hi with x{e L{, and suppose that

0 < Π l l » i l l < °°

= {®ίe / Vϊ y% e ^ i for all iel and y{ = ^ / o r a.a. ΐ e /}

L is dense in ® ί e / ( i ϊ i , #,)•

LEMMA 2.3. Lei ί ί = ® ί 6/ (Hif xt). Then, for each jel, there
exists a normal isomorphism aά of J^f(Hj) into £f(H) such that,
for all Aj e j ^ and all (yi) e A:

where y\ — yi for i φ j and y) = Asys. We call aό the natural in-
jection of Jέf(Hj) into Jίf(H).
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DEFINITION 2.4. Suppose that, for each iel, j ^ is a von Neumann
algebra on Ht and XtβHi, and suppose that 0 < Π II x% II < °° Then
by ®iei{s^,Xi) we will mean &(a^j^): i e I), where a{ is the
natural injection of Sf(H^ into J2^(® (Hiy a?f )).

LEMMA 2.5. (i). ® ί e 7 (-Sf (fl*), O = .Sf (® ίβ/ (fl*, a*)).
(ϋ). ®iei (J&ί, Xi) is a factor if and only if each j ^ is a factor.

PROPOSITION 2.6. Suppose that, for each iel, j ^ j is a von
Neumann algebra on H{ and #* e Hi9 and suppose that 0 < Π II x% II < °°
Let μi(Ai) = (AiXi\Xi). Let stf be (g) ί ei(X, Xi), and let α:< be the
natural injection of s^\ into jzf for each i e I. Then ( j ^ (α )̂) is a
product for ( j ^ ) ί e / which satisfies (VI-(//, )). Furthermore, if μ —
®ίe/j"i, then

(2.1) S(μ) - Π

REMARK. (IV) also holds, of course, and is easily proved directly.
See Proposition 4.2.

Proof. Obviously ( j ^ (a{)) is a product for (J^J) and μ = ® i e z

exists in Σp: in fact, if x — ®i&IXi then /̂ (A) = (Ax \ x) for all A e
By Lemma 1.4,

(2.2) S(μ) £ Π ^

Now S(μ) = pr[j^'.τ] (By [L] we mean the closure of L; by pr [L]
we mean the orthogonal projection onto [L]). Because s$f' contains
each a^j>4r), \s^/rx\ contains the closure of

{® AiXi'. each A\ e j^f/ and A'i = 1 for a.a. i e /} .

Thus (Lemma 2.2) [j#"x] contains ® ([J&l'Xi], »<). The projection
onto this last subspace of i ϊ = (g) (ίί^, -̂) is Π &i(S(μi)). Hence S(^) ̂
Π ca(S(μi)) and (2.1) follows from (2.2).

To prove (VI-(/^)), let us assume first that every normal positive
functional on j>/^ is induced by a vector of H^ Let

L = {® 2/<: 2/i G Hi9 Vi = ̂  for a.a. i G /} .

Then L is dense in H by Lemma 2.2. For each nonzero yeL, let
i\ be the functional induced by y:

vy(A) = (Ay I y) for all Aej^f .

Then a direct calculation shows that vy = ® ̂  where î  is induced
by yt and ̂  = //< for a.a. iel. We have (S(vy))y = y. Since every
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normal positive functional on j ^ is induced by a vector, as y runs
through L, vy runs through

Σ = {® i;<: y< = ^ for a.a. i e /} .

Thus (IV-μ) holds, and

E(μ) = sup {S(v): v e Σ} ^ pr [L] = 1 .

To prove (VI-(/^)) in the general case we will show that there exist
von Neumann algebras ^ on G; and vectors 2* e G;, and that there
exists an isomorphism ψ of jzf onto & — ® ( ^ , ^) such that:

(2.3) Every normal positive functional on ^ is induced by a vector.

(2.4) fia^j^)) = βi(&i) where & is the natural injection of
into .S^(G) and G = ® (G<, z, ).

(2.5) If 2 = <g) ̂  then

I z) = μ(A) for all A e

Then by the preceding paragraph (VI-(^)) will hold for the product
(A)) and thus for the product ( j ^ (α^)).
For each i e /, let ί ί ' be a Hubert space of infinite dimension,

let α e i ί with | | ^ | | = 1, and let <ĝ  be the algebra of scalars on
H\. Let ^ = J^?® ^ on G{ = H^ H[ and let s< = ^ ® a?J. Let
G = ®(G;, zt) = ® (fl* ® if -, a?* ® a?5) and let H' = ® (iϊ^, a?5). Then
[7] it is easy to construct a natural isometry φ from H(&Hr onto
G such that:

H,)φ-' = ^(T, (g) U )

for all Tiβ^iHi) and all iel. Define f: J ^ - + J 2 ^ ( G ) by:

ψ(A) = φ(A 0 l^,)^"1 for all A G J / .

Then (2.4), (2.5), and ψ(s^) = & follow immediately.

COROLLARY 2.7. Suppose that (j^DieF is a finite family of von
Neumann algebras. Let jzf = ®i&F^fi and let a{ be the natural
infection of Stfi into szf. Then {s$f, {a^) is a tensor product for
(^S^l)ieF which satisfies (V). In particular ® ^ exists in Σp for
every nonzero normal positive functional μt of

LEMMA 2.8. Suppose that (Hi)ieI is a family of Hilbert spaces
and that, for each i e /, Hi = (Bjeju) H( where OeJ(i) (by Hi =
(Bjej(i)H( we mean that the H\ are mutually orthogonal subspaces
of Hi which span H^. Suppose that, for each iel and jeJ(i),x(
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is a nonzero vector of H{, and suppose that 0 < Π<e/||̂ SII < °°.
Denote by J the set of families (j(i))ieI with each j(i)eJ(i) and
i(ΐ) = 0 for a.a. iel. If j = (j(i))eJ let W = ® ί 6 i (H({i\ x{{%
Then each Hj is a subspace of H — <S$iei(Hi, %*) and H= ®jeJH

j.
Furthermore, if a{ denotes, for each j = (j(i))eJ, the natural in-
jection of S^(Hi{i)) into ^f(Hj), then:

(2.6) *<[©,«,«, T(] = θ^uii))ej[ai(Ti{i))] for all (Ti)jeJ{i) with each
T\ e ^f(Hi). (Here 0 T{: ®x{ — φ T(xi).

Proof. The Hj are clearly mutually orthogonal, and [Hj:jeJ]
is H by Lemma 2.2. Formula (2.6) can be confirmed by a direct
calculation.

3. The basic isomorphism theorems* By a representation ψ
of a W* -algebra s^ on a Hubert space H we mean a normal homo-
morphism sz? onto a von Neumann algebra on H (Notice that ψ(l)
is the identity on H). If ψ is a representation of j ^ on i ί and μ
is a normal positive functional on jzf, a vector x e H will be called a
μ-cyclic vector for ^ if [ψ*(ĵ )as] = ί ί and

μ(A) = (^(A)a | a) for all A € sf .

Given j ^ and μ it is well known (see [3, p. 51], for example)
that a representation ψ with a μ-cyclic vector exists (and is essenti-
ally unique), and that such a ψ acts isomorphically on (Z(μ))s^ and
takes (1 - Z(μ))j^f into 0.

PROPOSITION 3.1. Suppose that ( j^) ί e / is a factorization of the
TΓ*-algebra j y and that μ = ® ί 6 Z /^ is a product functional for this
factorization. Suppose that ψ is a representation of j y on H with
/̂ -cyclic vector a?. Suppose that, for each iel, fa is a representation
of j ^ on Hi with μrcyclic vector x{. Then there exists an isometry
ψ of H onto ®ie/(fiί, #<) such that:

( i ). φ(x) = ® ί 6 1 ^ .
(ii). ^( tUO)?- 1 = ® i e / ( ^ ( J ^ ) , »i).
(iii). For all A{e j ^ and each ί e / :

where a{ denotes the natural injection of £f(H?) into ^f(<&iei (fl»,

Proof. Let ^2Γ denote the set of families (Ai)ieI with each
GSzfi and Aέ = 1 for a.a. iel. Let

= {[V(n A,)]^: (A*
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and

N = I ® [(^(A,))**]: (A*) e J 3 τ | .
l ie/ J

First we claim that M is a dense subset of H. For ^ the *-
algebra {ILe/A.-: (A^e _%'"}, is ultrastrongly dense in j ^ (a corollary
of the double-commutant theorem); hence ψ(S^) is strongly dense in

and [ψ(S^)x\ = [^(jy)»] = fl" because x is a cyclic vector for

Secondly, N is a dense subset of ®iei(Hi, x{) by Lemma 2.2,
since xt e [ψi(J#i)Xi\ = if* for each ΐ e L

Fix (Ai) e ^T. Then:

II Vie/ / iel

Π

Therefore, since ikf is dense in H and ΛΓ is dense in ®<e/(#*,#»)>
there exists a (unique) isometry φ oί H onto <g)ίez (ίί^, x̂ ) such that,
for all (At) e

Now (i) follows immediately, (iii) by a direct calculation, and (ii)
from (iii).

THEOREM 3.2. Suppose that (j&ϊ)ieI is a factorization of the
W*-algebra j^f. Suppose that μ = ® ί 6 / μt is a product functional
for this factorization, and suppose that (IV-μ) holds. Then there
exist, for each iel, a faithful representation /}{ of j^J on Hi and
a vector xt e Hiy and there exists a representation ψ of j^f on H —
®iei(Hi9Xi) such that:

( i ) ψ maps (1 — E(μ))Ssf into 0 and maps (E(μ))s$f isomor-
phically onto f(jϊf) = <g)ί6/ (4(J^), x{).

(ii) For each iel and all Ai€j#l:

ψ(Aί) = a^MAi)) ,

where a{ denotes the natural injection of jyf(H{) into J>f(H).
(iii). For each iel and all Ai

(iv) // x denotes ®ieIXi, then, for all

((ψ(A))x I x) = μ(A) .
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Proof. For each iel, select (by Zorn's lemma) a family
of normal nonzero positive functional on j^ such that Σiej
and Oe «/"(<) with μ\ = μi# Let J be the subset of ΪLe/«/(*) consisting
of (j(ί)) with i(i) = 0 for a.a. iel. Since (IV-μ) holds, each j" =
(j(i)) e J the product functional μj = ® ί e / μ{{i) exists on j ^ : We have
Z(μj) ^ ILe/^WO by Lemma 1.4, so that (Z(μj))jeJ is a mutually
orthogonal family of central projections of s*f. Let Z = Σjej Z(μ').

For each j e J let /^ be a representation of j ^ on G5 with a μy-
cyclic vector ?/\ Let Γ be the direct sum representation (BJejΓ

j of
on G = Θ i 6 J G y :

(3.1) Γ(A) = 0 i e ^ Γ^(A) for all A e

Then Γ maps (1 — Z)jV into 0 and maps Zj^f isomorphically onto
Γ(y)

For each iel and each jeJ(ί), let z/f be a representation of j ^
on jffί" with μ{-cyclic vector x{. Let dt be the direct sum representa-
tion φ i e j ( ί , 4 of j ^ on £Γi = ©yβj(ί) H{:

(3.2) ^(AJ = © i e J ( ί ) 4(Ai) for all A, e

Then each z/, is faithful.
Fix j = (j(i)) in J . We know that μj = ® i 6 7 ^' ( < ), that Γ J is a

representation of j ^ on Gj with /^y-cyclic vector τ/y, and that Δ\{i\
for each iel, is a representation of j^J on ίsΓfί}-cyclic vector ajj(ί).
Therefore Proposition 3.1 demonstrates the existence of an isometry
φ3' from Gj onto Hj - ® ί e i (#J ( < ), aj(<)) such that:

(3.3) ^(1/0= ®^" ( ί )

and

(3.4) ^(Γ^A*))^)" 1 - "M^Ai)) for all A, e

where αf denotes the natural injection of ^f(H{{i}) into Sf(Hj).
Let a?i denote x\ for each ΐ e /. Let H = <g)ί6/ (iί^, a?i), and denote

by α; the natural injection of ^f(H^ into ^f(H). Then (Lemma
2.8), if = (BjejH*, and, for each ί e / and all operators Ύ^(ΊI>
with T, = © i ej(i) TJ and with each T{(Hi)

(3.5) ^(Γt) = θ N ( Γ ί
i = ( i ( i ) ) e j

Define the isometry φ of G onto if by:

φ /Λ = 0 φi(fi) for all p e Gj .
j e j J j e j

Let ψ be the representation of j y on H defined by
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ψ(A) = φ{Γ(A))φ-1 for all 4 G J / .

Evidently ψ> has the same kernel as Γ: ψ maps (1 — Z)s*f into 0 and
isomorphically onto ψ(j%f).

Now fix i e / and A^j^. In view of (3.2), applying (3.5) to
i) we obtain:

(3.6) oCiiMAi)) = θ [ai(Ji

Using (3.1), the definitions of ψ and ^, and (3.4), we get:

(3.7) ψ(Ai) = J0 Γ^V1 = θ Wi
Li e J J i ε j

= θ [aMw(Ai))] .
j=U(i))eJ

We conclude, from (3.6) and (3.7), that:

(3.8) ψ(Ai) = ctiViiAi)) for all ^ e j ^ and all i e I .

Hence ψ maps JV = ^(j^iiel) onto

Assertion (ii) of the theorem is precisely (3.8). (iii) holds because
xi — χ\ is a ^-cyclic vector for J{. (iv) holds because of (3.4) and
the choice of y° to be a μ-cyclic vector for Γ°. To complete the
proof of the theorem, then, we need to show only that Z = E(μ).

Evidently Z^E(μ). Let βi:jyi-+Zj>/ be defined by A(-A*) =
ZA{ for all At e j^J. Then we have just proved that (Zj^l (&)) is
isomorphic to the product (® (^<(j^J), ^ ) , (α-^)), which satisfies (VI-
(/Ji)) by Proposition 2.6. Hence (^j^; (/Ŝ )) is a product for ( j^)
which satisfies (Vl-(μi)). Now suppose that each v{ is a nonzero
normal positive functional on j ^ and that iv= ^ for a.a. i e l . Then
j / = (g) vi exists as a product functional for ( Z j ^ (A)). Hence, by
Lemma 1.17, v = ® ^ exists in Σp with S(v) = S(v') ^ ^. Since ί7(//)
is the supremum of such S(v), E(μ) ^ Z. This completes the proof.

COROLLARY 3.3. Suppose that {J^)iei is a factorization of the
W*-algebra jy; that μ = <g)ίe/ μ» is α product functional for this
factorization, and that (IV-//) holds. Then

S(μ) = [E(μ)] Π
iel

Proof. Use Theorem 3.2 and (2.1) of Proposition 2.6.

COROLLARY 3.4. Suppose that {s/l)iei is a family of W*-algebras,
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and that) for each iel, μt is a normal positive functional of
Suppose that (j^f, (α,» and {&, (β4)) are products for (j^f) which
satisfy (VI-(^)) Then (jtf, (αrj) and (^ (A)) ^re isomorphic: i.e.,
there exists an isomorphism ψ of jzf onto g£? such that ψoa^ = β€

for all ίel.

COROLLARY 3,5. Suppose that, for each i e /, j#ί and ^ are
von Neumann algebras on Hi and Gt respectively, that a?* elf* and
Vi^Gi with

and that ψ{ is an isomorphism of j^J onto ^ such that:

i I yd = (AiXi 1 xd for all A^j^.

Then there exists an isomorphism ψ of Sf — ® (J^ί, a?i) onto 0 =
0 (^i, ̂ /2 ) s^cϋ ί/̂ αί f o α ; r=: β. o ^ /or βαcA i e I, where Mi is the
natural injection of j&Ί into j ^ and βi is the natural injection of
&?i into ^

Proof. Use Corollary 3,4 and Proposition 2.6.

THEOREM 3.6. Suppose that (jtfi)UF is a finite family of W*~
algebras. Suppose that ( j ^ (#*)) is a product for (Jάfi)ieF satisfying
(III) and (IV-/̂ ) for same product functional μ. Then there exists
<m isomorphism ψ of ,s>f onto φieF*S&i SUG^ that:

t i l l aM) =- <g> Ai for all Λ* e

{We write %^PAi for Πt6j λ» (̂ ί)> where λ4 is the natural injection
of j ^ into ξ$i&FJ¥ί.) Furthermore, for every product functional
v = ® v, /or (j*ί, (a,.)):

ίeF

Proof. If μ^Qi*FμifE(μ) ~X because (III) holds and F is
finite. Hence (VΙ-(^i)) holds, and Corollory 3.4 and Proposition 2.6
complete the proof.

4* Local tensor products*

LEMMA 4,1. Suppose that (Ĵ ί)<«!,« is # factorization of the W*-
algebra j%f, and that μ% is a normal positive functional on ^/%. Let
Σι be the set of normal positive functionals μγ on jtfl such that
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2 exists as a product functional on jzf for the factorization
Then:

( i ). / / ^ G Σx and x > 0, ίfcew as/*! e Σx.
(ii). 1/ //Γ e Σ1 and Σ n μΓ(l) < oo, ίfeβw Σ« K e 2Ί.
(iii). // ^ G I Ί cmd Λ G X wiίfe ^(AfAJ ^ 0, ίftew (μ1)AleΣ1

((μi)Aι ^ defined by ((μ1)Λl)(B1) = μί(AΐB1Ai) for all Bxe j*f).
(iv). // vλ is a nonzero normal positive functional on j ^ with

S(2Λ) ^ Z(μj) and μ1 e Σu then vγ e 2Ί.
(v ). If ΣΣ is separating then Σt is the set of all nonzero normal

positive functionals on

Proof, (i), (ii), and (iii) are obvious by direct calculation. To
prove (iv) suppose that v1 is a normal positive functional on stf[ and
that S(^Ί) <; Z(μj) with μιeΣι. Then, by Proposition 3.1, there exists
a normal homomorphism ψ from jy onto (Z(μ^)j^ ® (Z(μ2))J#ζ such
that:

z) = (ZiuJA,) ® (Z(μ2)A2) for all Ax e JK and A2

Now, since S(t\) ^ ^(/^i), by Corollary 2.7 there exists a normal posi-
tive functional ω = vl (g) ̂  on (Z(μt))JV{ ® (^(^2))J^ such that

for all Ai e szfx and

Evidently ω o ψ equals v1 ® μ2 e Σp and vιeΣί.
To prove (v) assume that Σx is separating. Then, using (iii) and

Zorn's lemma, we can choose a family (μ{)jeJ with each μ{eΣι and
= l. Suppose that vγ is a normal state of j ^ . Then
< ^ and therefore v^Ziμί)) = 0 for all but a countable

number of i G J. Hence a suitable countable linear combination μt of
the μ{ satisfies S{vx) ^ Z(μt) and μ1eΣ1 by (ii). Then ^ e l Ί by (iv).

REMARK. Lemma 4.1 may be proved directly (without using
Proposition 3.1 or properties of the tensor product) by using Sakai's
Radon-Nikodym theorem [8] and the weak Radon-Nikodym type result
of [5, p. 211].

PROPOSITION 4.2. Suppose that (jtf)ieI is a factorization of the
W* -algebra s^/. Let Σ1V be the set of product functionals on Stf for
which (IV-μ) holds, and suppose that Σ1Y is separating. Suppose that
F is a finite subset of I. Then there exists an isomorphism ψ of
onto S^/F ® J^I-F such that:

ψ(AB) = A<g)B for all A e s^F and B e
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Proof. By Proposition 1.6 {j^F, J^-F} is a factorization of
and each μ e ΣIY is a product functional for this factorization: μ =
f*F<S> μ i-F Let Σ2 = {μ^F: μeΣlγ} and let Σ1 be the set of product
functionals on s^F for the factorization (j^)ί€F. By Proposition 1.5.
(iii), Σγ is separating on s>/F and Σ2 is separating on j ^ _ F . Because
(IV-μ) holds for all μ e Σιγ, v (g) μτ_F exists on j ^ for all v e Σx and
all ^ e i V Hence, by Lemma 4.1 (v), v®ω exists on s^f for all
v e Σί and all nonzero normal positive functionals o) on J^_ F ; and,
from there, by the same lemma, v §§ ω exists on j^f for all nonzero
normal positive functionals v of s^F and ω of j^?_F . Thus (IV) holds
for the factorization {s>fF, j&ϊ^F}. (Ill) obviously holds for (j&ί) and
thus for { j^, J ^ _ F } (Proposition 1.6. (iii)). Now Theorem 3.6 com-
pletes the proof.

REMARK. Proposition 4.2 is false if the hypothesis that F be
finite is omitted (see Example 7.3).

COROLLARY 4.3. // Σlv is separating then (III) and (IV) hold.

Proof. That (III) holds is obvious. To prove (IV) use Proposi-
tion 4.2 and Corollary 2.7.

COROLLARY 4.4. // a product (j^ (αj) satisfies (VI~/^)), then it
satisfies (III), (IV), and (V): i:e., it is a (μ^-local tensor product.

Proof. Use Proposition 1.16 and Proposition 4.2.

PROPOSITION 4.5. Suppose that (Ssf, (a^) is a tensor product for
i' i-e-i that (III) and (IV) hold. Then, for all μ = ® ί e 7 μi£Σp:

(4.1) E(μ) = T(μ)

and

(4.2) S(μ) = [T(μ)]Uai(S(μi)).
iel

Proof. E(μ) ̂  T(μ) by Proposition 1.15. To prove (4.1), then,
it suffices to prove that E(μ) is tail. Let Σ = {v eΣp: v = (g) v{ with
vi — μi for a.a. iel}. Then E(μ) = sup {S(v): v eΣ}. Suppose that
F is a finite subset of /. Then {s^fF, S^^F} is a factorization of szf
for which each v eΣ is a product functional: v = J^ (g) v/_F. By
Proposition 4.2 and (2.1) of Proposition 2.6, for all veΣ:

(4.3) S(v) = [S(]

Thus:
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(4.4) E(μ) ̂  sup {S(v^F): veΣ) .

Because of (IV), for fixed yz_F, vF runs through all product functionals
for (jyF, {θίi)ίςίF) and therefore (Proposition 1.5. (iv)):

sup {S(vF): veΣ, v7_F fixed} = 1 .

Using (4.3), we obtain:

(4.5) E(μ) ̂  sup {S(v^F): v e Σ) .

Now (4.4) and (4.5) show that E(μ) e j / Z € F . Since F was an arbitrary
finite subset of / , we have shown that E(μ) is tail. That proves (4.1).

(4.2) follows from (4.1) and Corollary 3.3.

COROLLARY 4.6. A product (jy; (α )̂) for ( j^) is a (μ{)4ocal
tensor product for (j^J) if and only if (VI-(μ, )) holds.

Proof. Corollary 4.4 shows that (VI-(μ*)) is sufficient. Suppose
that ( j ^ ((Xi)) is a (^)-local tensor product for (j& ) . Let μ = ® μim

Then (IV-μ) holds because (IV) does, and, using Proposition 4.5 and
(V), we see that E(μ) = T(μ) = 1.

THEOREM 4.7. Suppose that, for each iel, s^Ί is a W*-algebra
and μ{ is a normal positive functional on j ^ . Suppose that
0 < ΐliei μi(l) < °° Then a (μ^-local tensor product exists and is
unique up to isomorphism.

Proof. Proposition 2.6, Corollary 3.4, and Corollary 4.6.

5* Tensor products* Throughout this section we suppose that
i is a family of TF*-algebras. Let A be the set of families

each μ€ a normal positive functional on s/'i and

0 < Π μi(l) < -
iel

Let the relation R on A be defined by writing (μ^ — (ι^) (mod R) to
mean that a (μ^-local tensor product for ( j ^ ) ί e 7 is necessarily a (i^)-
local tensor product for (jyj)ί6z. R is a well defined equivalence re-
lation because a (/^)-local tensor product exists and is unique up to
isomorphism. The following lemma is a trivial consequence of the
definition of (μj-local tensor product.

LEMMA 5.1. Let (jzf, (a{)) be a (μ^-local tensor product and let
G A. Then (μ{) — (vj (mod R) if and only if <g) v< exists on
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REMARK. If Σ i e I [d(μif i^)]2 < oo then (μt) ~ fa), and the converse
holds provided each j ^ is semi-finite [2].

LEMMA 5.2. If (μ%) and (c^) are in A (where the c{ are positive
real numbers), then (/O ~ (<?»̂ i).

Proof. Since Π i"»(l) a n d Π ^^(1) both converge to a nonzero
number, so must Π c% converge to c ^ O . If μ = ® μt exists as a
product for (JK)> cμ is a product state equal to <g) (<?<//<) by direct
calculation.

REMARK. This lemma shows that we could, without loss of
generality, confine ourselves to (μ{) with each μ^l) = 1.

Define A to be the quotient set A/R and let φ be the quotient
map A-+A/R = Δ.

DEFINITION 5.3. A tensor product ( j ^ (α )̂) for (j^J) will be
called a .Γ-tensor product for (j^J) when:

{(//<) G ̂ 1: (g) ̂  exists on (jy; (α:̂ )} = ^ ( Γ ) .

LEMMA 5.4. Lβί γ = φiiμd). Then a (μ^-local tensor product is
a {y}-tensor product.

THEOREM 5.5. Suppose that (s*/y (cCi)) is a tensor product for
(j^Diez. Let

Γ = <p{(μi) e A: ® μ{ exists on (jy; (αt ))}

Then:
( i ). (jy; («i)) is a Γ-tensor product for (j^J).
(ii). If μ — ® μι and v = ® vt are product functionals for

/, (a{)) then:

T(μ) = T{v) if and only if (μt) ~ fa)

and

[T(μ)][T(v)] = 0

otherwise.

(iii) // μ = (g) μ{ is a product functional for (jzf, (a{)) then:

(5.1) S(μ) = [T(μ)]τίai(S(μi))
iel

(5.2) T(μ) = sup {S«8> υ,): (y4)
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(iv). ( j ^ (oίi)) is a {μi)-local tensor product if and only if Γ =

(v). For each γ e Γ , define T(y) to be T(μ) for μ = ® μt and
= y. Let s^(y) = [T(y)]jy and let a{(y) be defined by:

(ai(y))(Ai) = [Γ(7)][α<(Aί)] for all A,e j^? αmZ all iel.

Then, for each y eΓ, (jzf(y), (cc^y))) is a (μ^-local tensor product for
(J&i) provided that y =
Furthermore:

and a{ = φ ^(7) /or αίί i e / ,
y e Γ

respect to the same direct sum decomposition of

Proof. Suppose that μ — ® μt is a product functional on
For each iel, define A: j ^ j — > j ^ by:

for all A« e

Then, by Proposition 1.18:

(5.3) ([T(μ)]J*;(&)) is a (^)-local tensor product for

By Lemma 5.1, therefore, for all (!;<) e-4, (y<) — (μ€) if and only if ®v{

exists on ([T(μ)]j^f (&)). According to Proposition 1.18. (iii), however,
this happens precisely when ® v{ exists on ( j ^ («<)) α^d S(® y<) ^
Γ(^). We have shown that, for all (v^eΛ, and for all product func-
tionals μ — ® μt for (jy; (α:*)):

(5.4) (y{) — (/i4) if and only if ® vi exists on ( j^; (^)) and S(® ^) ^

(5.4) shows that, if (^) ~ (μt) and if ® ^ exists on (jy;
then (&Vi exists on ( j^; («<)); (i) follows, (ii) is an immediate con-
sequence of (5.4) and the fact that ^7~ is atomic (Proposition 1.9).
(5.1) of (iii) is just (4.2) of Proposition 4.5, and (5.2) is a consequence
of (4.1) of Proposition 4.5 and (5.4). (iv) follows from (ii). (5.3),
together with (ii), proves (v).

THEOREM 5.6. Suppose that ( j ^ ) ί e 7 is a family of W*-algebras
and that A is as defined above. Then:

( i ). If A is a nonempty subset of A, a Γ-tensor product for
(J^i) exists and is unique up to isomorphism.

(ii). Suppose that (jy; (a^) is a Γrtensor product for (j&ϊ) and
that (&, (βi)) is a Γ2-tensor product for (j^J). Then Γt = Γ2 if and
only if (jy; (α*)) and (&, (βi)) are isomorphic: i.e., if and only if
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there exists an isomorphism ψ of j y onto & such that ψoa{ = β{

for all ie I.

Proof. Everything but the existence of a Γ-tensor product for
(j&ί) follows from Theorem 5.5. For each T G J , a {τ}-tensor product
exists by Theorem 4.7. Hence the existence is a result of the follow-
ing proposition.

PROPOSITION 5.7. Suppose that Γ is a subset of A and that, for
each 7 € Γ , ( j^(τ), tf<(7)) is a {τ}-tensor product for (j&ί). Let s$f =
(Brer<S^(y) and at = (Brerttid) for all ΐ e J. Then (jy; (αj) is a Γ-
tensor product for (,i>O.

Proof. Let j y and α< be defined as above and let E(y) be the
projection of j y with j y ( τ ) = [£7(7)].J^ Let έ& = & (a^.s^): iel).
Then ( ^ , (α )̂) is a product for (j^f). If φiiμd) = Ύ G Γ , then // =
® μ{ exists on (j^(τ), («<(7))), and, if μ is defined by

μ(B) = μ'(E{Ί)B) for all B e & ,

we can see by direct calculation that μ = (g) /^ on (^ , (α^) with

(5.5) S(μ)^E(y) where Ύ =

It is clear that such ^ form a separating subset J? of the normal
positive functionals on ̂  and that—since v{ = μ{ for a.a. iel implies

QV-μ) h o l d s f o r e^ch //Gi;. Therefore (Corollary 4.3),
is a tensor product for (j^t). By (5.2) of Theorem 5.5 (iii),

and by (5.5):

Γ(7) = J5(7) for all γ e Γ .

Hence each E(Ί)e^ and ^ = jzf. Furthermore Σ r 6 Γ T{i) = 1, so
that, if /£ = (g) ^ is a product functional for (jy; (at)), then Γ(^) =
Γ(7) for some yeΓ (Proposition 1.9) and φ((μi)) = τ e Γ by Theorem
5.5. (ii). Therefore (jy; (^)) is a Γ-tensor product for

PROPOSITION 5.8. Suppose that, for each i e /, j^l is a von
Neumann algebra on Hi and every normal positive functional on j ^
is induced by a vector. Let H denote von Neumann's complete direct
product [7] of (Hi)ieI and let a€ be the natural injection of j^(Hi)
into £f{H) for each iel. Let j y = ^ (α:<(J^ί): i e/). Then
( J ^ («<)) is a J-tensor product for (j^J) i 6 /. Furthermore, for every
nonempty subset Γ of J, there exists a projection IXF) in the tail
of (J^(αi)) such that (Γ(Γ) j^ (A)) is a Γ-tensor product for
where β^Ad = [Γ(Γ)]A< for all A< e
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The proof is easy and is omitted.

6* Tensor products of factors*

LEMMA 6.1. If (jy, (a^) is a product for (jyj) and if each
is a factor, then (IV) holds for

Proof. Use Lemma 4.1. (iv) and mathematical induction.

LEMMA 6.2. Suppose that (jy; (α<)) is a product for (j&l) and
that s/ is a factor. Then (jyj (α )̂) is a local tensor product for

if and only if there exists a product state of (sf, («<)).

Proof. Each j ^ is a factor by Lemma 1.3, and therefore (IV)
holds by Lemma 6.1. (V) holds because J7~ a ^Γ. If μ is a product
functional on (jy; (<*<)), then E(μ) = 1, for E{μ) is central by Theorem
3.2. Thus (III) holds if and only if a product state μ exists.

PROPOSITION 6.3. Suppose that (jy; (αj) is a tensor product for
and that each j ^ is a factor. Then j ^ ~ = ̂ Γ: the tail of
ίi)) equals the center of

Proof. By Theorem 5.5, the family (T(7))rer of atomic projections
of jτ~ is such that each [T(y)s^] is a local tensor product for (j^ί).
By Lemma 2.5, each [Γ(7)jy] is a factor. Hence the center of

^ ] is

COROLLARY 6.4. Suppose that (jzf, (α )̂) is α tensor product for
αwcί ί/̂ αί eαc/̂  j^f is α factor. Then jzf is a factor if and

only if (jzf, (a^) is a local tensor product: i.e., if and only if (V)
holds.

PROPOSITION 6.5. Suppose that Ss? is a finite factor and that
is a factorization of Ssf. Let μ{ be the restriction of the

normalized trace on s*f to j^f. Let (.^, (a^) be a (/î -local tensor
product for (jyOίe/ Then there exists an isomorphism Ί/Γ of JV^ onto
έ%? such that, for each i e I:

a^Ai) for all i ^ j ^ .

Proof, (c.f. [6]). If μ is the normalized trace on s$f, a direct
calculation (see the proof of Theorem 4.3 in [2]) demonstrates that
μ — (g) μ. for (j^J). From there Lemma 6.2, Theorem 4.7, Corollary
4.4 and Proposition 2.6 complete the proof.
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7* Some simple counterexamples*

EXAMPLE 7.1. Let j / be a factor of Type 11, on the Hubert
space H. Then {ssf,S*ff} is a factorization of J*f(H) which satisfies
(IV) and (V), and for which no product functional exists.

See Lemmas 6.1, 6.2 and Theorem 3.6.

EXAMPLE 7.2. For i = 1 and 2, let j ^ be a ΫF*-algebra with
central projection Z{ Φ 0 or 1. Let

z = (z, <g) z2) + (l - z j (8) (i - £,)

in J*ί(g)J*J, and let s>f = Z(J*I (g) J^J). Let a^j**—*jy be de-
fined by

α̂ CAi) = Z(A, <g) 1) for all Λ e j ^

α2(A2) = Z(l (g) A2) for all A2 e

Then ( j ^ («<)) is a product for (J^)^ 1 > 2 which satisfies (III) and (V)
but not (IV).

EXAMPLE 7.3. Let I = {1, 2} x J where J is infinite, and, for
each ί e / , let J ^ be an abelian ΫF*-algebra generated by its two
atomic projection E{ and 1 — Eim Let the states μi and v{ of J ^ be
defined by ^(1) = ̂ (1) - 1 and μ^E,) = 1 and v^E,) = 1/2. Let
Γ = φ{(μi), (»i)} and let ( J ^ (a^) be a Γ-tensor product for (J^J). Let

j ^ = ̂  (α:,(j^): i e {δ} x J)

and let λθ: j ^ — > j ^ be the inclusion map, for δ = 1 and 2. Then
( J ^ (λδ)) is a product for (J^δ)δ=1)2 which satisfies (III) and (V) but
not (IV). In particular, (jy; (λδ)) is not isomorphic to j^(g)JK.

To make this clearer, let ^ = j ^ 0 j^ζ with λδ the natural
injection of j^ξ into &. Let /9̂ : j^J —> . ^ be defined for each i =
(δ, i) e / by /Si = λδ o α .̂ Then (.^, (&)) is a Γ'-tensor product for

where Γ' contains four points. In fact

Γ =

where:

ω{ = ̂ 4 and ft — ŷ  for ie{ l }x J

and

α>i = ̂ i and ft = ̂  for ie{2} x J
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EXAMPLE 7.4. Let I = {1, 2} x J with J infinite. For each i e 7,
let Hi be a Hubert space (of arbitrary dimension ;> 2) and let ψi and
ψi be orthogonal unit vectors in H{. For each j e J, let if, =
fl"Ufi) (g) Jy(2)i) and let % = [ (̂1>i) <g) ω(2>i) + ψ ( l f i ) 0 ΨM)]lVΊΪ. Let i ϊ =
<g)ieJ (iϊy, ajy) and let βy be the natural injection of Sf(Hj) into £?(H).
Let 7(β>i, be the natural injection of ^f(H{7)j)) into ^f(Hj). Let
^ ( r i ) = βjoy{r>j) for all (d,j)el. Then ( ^ ( i ϊ ) , («<)) is a product for

i, and there exist wo product functional for (j*f(H), (α<)).

See [2] or the remark which follows Lemma 5.1.
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