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TENSOR PRODUCTS OF W*-ALGEBRAS

DoNALD BURES

This paper deals primarily with a characterization of the
tensor products of a family of W *-algebras (abstract von
Neumann algebras). It is especially concerned with infinite
tensor products; the results, however, apply and have interest
in the finite case.

A tensor product for a family (.%%) of W *-algebras is
defined to be a W *-algebra .7 together with injections «; of
&7 into 7 satisfying four conditions: the first two are
that the «;(-%%) commute and generate .97"; the last two are
conditions on the set of positive normal functionals of &7
which are products with respect to the «;(.%%4). A local
tensor product is defined to be a tensor product satisfying a
fifth condition—that its tail reduce to the scalars, It is shown
that the local tensor products of (.%7°;) are precisely the in-
complete direct products Q(.&7;, u;), and that every tensor
product is a direct sum of local tensor products which are
not product isomorphic.

Suppose that (.o4);.; is a family of W*-algebras. We cal
(7 (a,);e;) a product for the family (.94);.; if o7 is a W *-algebra
if, for each i1e I, «; is an injection of .o4 into .o with a;1) =1
and if the following conditions hold:

(I). ay(.o%) commutes with a;(.o7) for all 7,jel with 7 # j.

D). Ala(.7):1el} = .57 that is, .o~ is the smallest W*
subalgebra of .o~ which contains all .o/ for 7 ¢ I.

By a product functional for (.7, (@;)) we mean a nonzero norma
positive functional ¢ on .o for which there exist normal positive
functionals p; on .o for each 4 eI such that:

y(iI:II a,-(Ai)> = 11 m(4)

whenever each A;¢.o7 and A, =1 for a.a. ie€l. (a.a. ©€l means—
here and throughout the paper—all but a finite number of 1€l)
Because of (II), it is evident that the p; determine g uniquely, anc
we write ¢ = @;.; ;. We will denote the set of product functional
for (.7 (.4)) by 3,

We call (%7 («;)) a tensor product for (.o7) if it is a produc
for (.o4) (i.e., if (I) and (II) hold) and if the following conditions hold

(III). XY, is separating: i.e., if Ae.or* and p(A4) =0 for al
pe, then A =0.
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(IV). For all e, (IV-z) holds.

AV-). ¢ = @icrtt:€2,, and, if y; is a nonzero normal positive
functional on .o with v; = p; for a.a. ¢ € I, then ®;.;v; exists in 5,.

We define the tail .7~ of a product (.7 («;)) to be the intersec-
tion over all finite subsets F' of I of the algebras

p = FZla(g):vel — F} .

We call (.7 (a;)) a local tensor product if it is a tensor product and
the following condition holds:

(V). The tail .~ of the product (.87 («;)) consists of the scalars
only.
A local tensor product will be called a (g;)-local tensor product if
® e,

We show (Theorem 4.7) that, for every family (.7, tt,);.; with
#t; 2 normal positive functional on the W *-algebra .o and

O<zlzs—[[#1(1)< o,

a (u;)-local tensor product exists and is unique up to isomorphism.
(An isomorphism of a product (.o7 («;)) with a product (.o (8;)) is
an isomorphism + of .o onto <% such that yoa; = B; for all 1el.)
In fact, a (u;)-local tensor product for (.o%) can be constructed as
follows. For each tel let ¢, be an isomorphism of .97 onto a von
Neumann algebra on the Hilbert space H; and let x; e H; induce p;:

(A = ((8:(A))w; | @) for all A;e.7.

Let .o be @ic; (9:(.4), z), i.e.,

von Neumann’s incomplete direct product of (¢(.8%));.; with respect
to the C,-sequence (z;) (see [7], [1], [2], or §2 below); and for each
1e1 let a; = v;09;, where v, is the natural injection of ¢;,(_5%) into
7 Then (.7 («;)) is a (w;)-local tensor product for (%), A
special consequence of the uniqueness of (y;)-local tensor products is,
then, roughly that the tensor product of a family of von Neumann
algebras depends on their algebraic structure only (see Corollary 3.5,
below, for a proper statement). This is an easy result which can be
proved also from |9] or directly (see remark in [2, § 3]). For finite
I, it is a result due to Misonou [4].

If I is finite, all tensor products of (.o%);.; are local and all are
isomorphic. Thus properties (I), (II), (III), and (IV) characterize the
finite tensor product. A special case of this result was proved by
Nakamura [6]: he showed that (I) and (II) characterize the finite
tensor product of finite factors. A stronger result of this kind was
proved by Takesaki [10]: he showed that (I), (II) and the existence
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of a nonzero ultraweakly continuous (not necessarily positive) product
functional characterize the finite tensor product of factors (c.f. Lemma
6.2, below).

In §5, we determine all possible tensor products for (.9%)c;.
Let 4 be the set of all families (g;);.; where each p; is a normal
positive functional on .o and 0 < [];.; (1) < . Define an equi-
valence relation R on 4 by writing () ~ (v;) when a (g;)-local tensor
product is necessarily a (v;)-local tensor product. Denote 4/R by 4
and the natural quotient map 4— 4 = 4/R by @. If I' is a subset
of 4, we call (&7, (a;)) a I'-tensor product for (.7%);.; if (&7 (@) is
a tensor product for (.9%);.; and if

{(¢:) e 4: @ p; exists on 7'} = @7 '() .

Then:

1. Every tensor product for (.84);.; is a I'-tensor product for
some subset I of 4.

2. For every nonempty subset I of 4 a ['-tensor product exists
for (f%)iel-

3. A I'-tensor product is isomorphic (as a product) to a I',-tensor
product if and only if I, = I,.

4. A I'-tensor product is a local tensor product if and only if I
consists of only one point.

5. A I'-tensor product is the direct sum of {a}-tensor products
as « runs through I".

In case each .o/ is semi-finite, the equivalence relation R may be
defined explicitly by using the Kakutani product theorem for W *-
algebras [2]. We obtain (g;) ~ (v;) if and only if

[l 2IF < oo
where d(y, v) is roughly the infinum of || — y|| over all representa-
tions of .o/ as a von Neumann algebra and all «, y inducing z and v
respectively.

It is not difficult to see that Takeda’s infinite direct product of
(% )ier (see [9]) is a 4d-tensor product for (.o7%);.;.

Section 6 contains some special results on tensor products of
factors. Section 7 contains a few simple counterexamples which de-
monstrate that conditions (III) and (IV) are necessary.

1. Products and factorizations. If zis a normal positive func-
tional on a W *-algebra .o/, we denote the support of p by S(),
and the central support (the smallest projection of the center of .o/
larger than S(z)) by Z(y).

Throughout this section (.84);.; will be a factorization of the
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W*-algebra .o, By this we mean that each .o7 is a W *-subalgebra
of .o and that, if \; denotes the inclusion mapping of .94 into .7
(7 (\;)) is a product for (.o%);.;. 2 will denote the center of .o/
and 2; the center of .o4. For J a subset of I we let o7 =
PB(1ed). We call an element of .o tatl if it is in 7 =
Nr -_r. For pe,, T(r) will denote the smallest tail projection
larger than S(y).

LeEmMMA 1.1. (i). If pe X, and >0, then xpc X, where (xp)(4)=
x(p(A4)) for all Ae v

(ii). Suppose that p is a mormal positive functional on o7
with (1) =1. Then peX, if and only if the family (%), 8
independent with respect to p: t.e., tf and only if

1.1) u<ﬂ Ai> = 11 m(4)
1€ F ieF
for all A;e . o7 and all finite subsets F of I.

Proof. (i) is obvious. Suppose that z is a normal positive func-
tional on .o with p(1) = 1. If (1.1) holds let x; be the restriction
of p to .o4; then y = @, p:€2,. Suppose, on the other hand, that
pre’,. Then p = @, for normal positive functionals z; on .o7.
We have p(1) = J];e; pt:(1), so that g = @;.; 1; where ) = (p:(1))'1;
and 2(1) = 1. Evidently z is the restriction of g to .07, and (1.1)
follows.

LemmA 1.2, (1) 9 c £
(i) Z(p) = T(p) for all pez,.

Proof. 7 commutes with each .o because 9~ < .o/_;; there
fore .7~ commutes with .o = Z{ o5 1el}.

LEmmA 1.3. (i) 2 D 2% for each 1€l
(il) If o7 is a factor then each o7 is a factor.

LEMMA 1.4. For all ¢t = @ics i€ 2,

(1.2) S(p) = 11611 S(rs)
and
(1.3) 2 = 11 2 -

Proof.
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A(ILS() = I pn(S(e) = T () = (D) -

Therefore (1.2) holds. (1.8) holds because [I;.; Z(y;) is a projection
of 2 larger than [J;., S(¢;) and, hence, by (1.2), larger than S(y).

REMARK. The two propositions which follow are stated now for
convenience in referring to them later. For the moment, we need
only parts (i) and (ii) of Proposition 1.6.

PropPoOSITION 1.5. Suppose that J is a subset of I. Then:

(1). (%);e; is a factorization of .o7.

(ii). If ¢t = @icspts€2,, then the restriction z/ of ¢ to .o is
a product functional on .27 for the factorization (.%%);.,, and g is a
scalar multiple of ¢, = @, .

(iii). If 3 is a separating subset of ¥,, then {¢;,: @..; ;e 2} is
separating on ..

(iv). If (III) holds for (.8%);.; then (III) holds for (.o%);.,.

(v). If (III) and (IV) hold for (.o%):.;,, then (IV-z) holds for
(.%);e; for p in a separating subset of product functionals on .o/
for (.%)icy.

(vi). If (V) holds for (.o%);., then (V) holds for (.o%):.,.

Proof. (i) and (ii) are obvious, (iii) follows from (ii) and (iv)
from (iii). To prove (v) observe that (IV-y;) clearly holds for all
rel,. To prove (vi) let .7, be the tail of the factorization (.o%);.,.
For every finite subset F of I:

N s C N_p .

Taking the intersection as F' runs over all finite subsets of I, since
F N J runs over all finite subsets of J, we obtain .9, 7.

ProposiTION 1.6. Suppose that (I(5));.; is a mutually disjoint
family of subsets of I whose union is I. Then:

(i). ())jes 18 a factorization of .o

(ii). If ¢t = @i €2, then g is a product functional for the
factorization (.97 ;);es and ¢ = @jecs (icris t4)- ~

(iii). If (III) holds for the factorization (.o%);.; then (III) holds
for the factorization (.97;);ecs.

@iv). If (V) holds for the factorization (.9%);.; then (V) holds
for the factorization (.9%:));cs-

REMARK. (IV) holding for (.9%);., does not necessarily mean that
(IV) holds for (.o7;);.,: see Example 7.3.
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PROPOSITION 1.7. (Zero-one law). For all peX, with p1) =1
and all tail projections T:

w(T)=0 or 1.

Proof. Let F' be a finite subset of I. Then g is a product func-
tional for the factorization {o7,.o7 ,} of .o (Proposition 1.6. (i)
and T €.%7_p; therefore (Lemma 1.1), for all Aec .o

(1.4) MAT) = (A)T) .

Now Ur.o% is ultraweakly dense in .o/ so (1.4) holds for all 4.9/
Putting A = T e.>/, we obtain:

M(T) = (7)) .

COROLLARY 1.8. If pel, and T ts a tail projection:

w(T)+=0 tmplies S(u)=T.

ProposiTiON 1.9. For every peX, T(x) is an atomic projection
of 7.

Proof. Suppose that T is a projection of &~ with 0 < T < T(y).
Then either p(T) =0 or S(x) < T, by Corollary 1.8. If S(¢) < T
then T = T(y) by definition. If (T) =0 then T <1 — S(x¢) and
T(y) — T = S(p); that implies T = 0.

COROLLARY 1.10. For all p,vel,:

either T(p) = T) or [T(WITE)]=0.

COROLLARY 1.11. If condition (III) holds, then & is an atomic
W *-algebra.

LemMMA 1.12. Suppose that conditions (III) and (IV) hold and
that 1el. For all A;e o4 and all Te 7 *:

AT =0 implies A;,=0 or T=0.

Proof. Suppose that T = 0. Then because of (III), there exists
prel, with ¢(T) = 0. By Proposition 1.6, {.o4, .o4_} is a factoriza-
tion for .o~ and ¢ = ;@ ¢’ is a product functional for this factoriza-
tion. We have Te.o/_; and p/'(T) = 0. Now for every nonzero
normal positive functional vy; on .o, v, ® ¢/ exists on o7 by (IV).
Hence A;T = 0 implies that (v; ® ¢')(4;T) = 0 or that v,(4;) = 0 for
each y;. Therefore A;T = 0 implies 4; = 0.
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DEFINITION 1.13. Suppose that (.o («;)) is a product for (.%);.;
and that ¢t = @i, pt:€2,. Let E(y) =sup{S(»):vel,and v = @, ¥;
with vy, = p; for a.a. 1eI}.

REMARK. It is clear that FE(y¢) is well defined: i.e., E(x) does
not depend on how g is expressed as @ f.

DEFINITION 1.14. A product (&7 («;)) for (.%);., will be said to
satisfy (VI-(z;)), where each ; is a normal positive functional on .7,
if the following conditions hold:

(i). o= @ic; 1 exists on .o/

(ii). (IV-z) holds.

(iii). E(p) = 1.

ProposITION 1.15. For all pre ¥, :
E(p) < T() .

Proof. Suppose that v = @,.,v;€¥, with v; = g, for a.a. tel.
Let F={iel:v; =}. Then F is finite so that T(#)e.o;_r. By
Proposition 1.6, {.9%, .7 _r} is a factorization of .o~ for which g and
v are product functionals: g = p, Q¢ and v =y, RvV. Clearly
¢ =v'. We have 0 = p(T(1) = pe(L)/(T(1)), so that v'(T(p)) =+ 0.
Hence v(T(p)) = ve(1)Y'(T(x)) = 0 and by Corollary 1.8, S(v) < T(p).
Since E(y) is the supremum of such S(v), E(x) < T(p).

ProposITION 1.16. Condition (VI-(z;)) implies conditions (III), (V)
and (IV-y) for v in a separating subset of X,.

Proof. Evidently (VI-(y;)) implies (IV-y) for v in a separating
subset of ¥,, and hence (III). That it implies (V) is a consequence
of Proposition 1.9 and Proposition 1.15.

LemMMA 1.17. Suppose that Z is a projection of 2. Let
;74— 2.5 be defined, for each 1¢el, by:

a,(A) = ZA,; Jor all A;e 7.

Let Z; be the support of ;. Then (Z. 57, (&) is a product for (Z;.57%),
where o denotes the restriction of «; to Z, 7. Suppose that ' =
@ v is a product functional for (Z.o7, (a)). Define p on & and
M on 7 by:

MA) = (' (ZA) for all Ae. v
ti(4;) = pi(Z:A) Sfor all A;e o7 .
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Then e is in X,, S() = S(¢), and ¢ = @ f.

Proof. Obviously, since ai(Z;, o7) = a(.o7) = Z.57, (Z.o7, (&) is
a product for (Z;%7). Suppose ¢, t4, pt, and p; are as in the lemma.
Then whenever each A;c.57 and A, =1 for a.a. 1e1l:

(1 4) = (2 0 A) = (11 (A

iel

- ”(H “5<ZiAi>> = T (ZA) = TT 1A -

ProprosiTION 1.18. Suppose that the factorization (.o7);.; satisfies
(IIT) and (IV), and suppose that T is a nonzero tail projection. Let
o;: 7 — T.o7 be defined, for each 7¢I, by:

Then:

(i). Each «; is an isomorphism and (7. («;)) is a tensor
product for (.o7%): i.e., (T.o7 («;)) is a product for (.o7) satisfying
(III) and (IV).

(ii). (T.o7, («;)) is a local tensor product if and only if T is
atomic in 7.

(iii). There is a one-to-one correspondence /¢ «— ¢+ between product
functionals g’ for (T.o7 («;)) and product functionals g on .o for
(%) with S(p) < T, where g is the restriction of g to 7.2 and
MA) = /(TA) for all Ae.oz We have S(¢) = S(¢) and pt = @ 1 if
and only if ¢ = @ r¢.

Proof. Lemma 1.12 shows that each «; is an isomorphism. Then
Lemma 1.17 shows both that (7.%7 («;)) is a product for (.o%), and
also that, if g/ =@ 1 is a product functional for (7.7 («;)), then
the x¢ corresponding to # is in ¥, = @ pt;, and S(z) = S(#). Sup-
pose that 7 = @, isin ¥, with S(¢) < T, and let p' be the restric-
tion of p to T.o7 Suppose A;€.o7 and A, =1 for all 1el — F for
a finite subset F' of I. Then:

@5 (I ed) = (T TA) = [ 11 A0 |1 (T

because T'c.o . Now p(T) = p,(1)p,_(T), and, since S(y) < T,
w(T) = pd) = p(1)pt,_r(1). Therefore:

(1.6) tr-n(T) = pp1) = J1 (1)

Combining (1.5) and (1.6), we conclude that p¢ = @ p;e¢3,. That
completes the proof of (iii).
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Since (III) holds for the factorization (&), evidently Corollary
1.8 and (iii) demonstrate that (III) holds for (7. («;)). To prove
(V) for (T« («;)), let us assume that g = @ p; is a product func-
tional for (7T.¢7 (a;)) and that v, is a non-zero normal positive func-
tional on .o/ with v; = p; for a.a. 7el. Let p correspond to y as
in (iii) so that p =@ & for (%) and S(#) = T. Now (IV) holds
for (&%), so that v = Qv; exists on .o, We have S(v) < E(p) <
T(¢) < T by Propositions 1.15 and 1.9. v = @ v, exists as a product
functional for (T.o7; («;)) by (iii). That demonstrates (IV) and thus (i).

Since T is in 2 and each .97 _,, a direct calculation shows that
the tail of the product (7T.¢7 (a;)) is precisely T.Z. Hence (V) holds
for (T.7, (a;)) if and only if T is atomic in .. That proves (ii).

2. Direct products of von Neumann algebras. We summarize
here the definition and same basic properties of the direct product of
a family of von Neumann algebras. For details and omitted proofs,
see [7] or [1].

Let I be an arbitrary indexing set. Suppose that (H;);.; is a
family of Hilbert spaces and that, for each 7¢I, x; is in H; with
0 < Iierll2s]] < oo. Then we denote by .., (H;, ;) von Neumann’s
incomplete direct product of the family (H;) with respect to the C,-
sequence (x;), (see [7]). Let 4 = {(y;): each y; e H;, 3|1 — (x;]|y:) | < o0
and 3|1 —||¥;]|| < e}. Then there is a natural multilinear mapping
(¥;) — @ y; from 4 into a dense subset of H with:

@u:I®=z) =11 (y:12:) for all (), (z)e4.
LEMMA 2.1. Suppose that x;, y; € H; with 0 < IT |||, IT [lv:l| < =0
and that >, |1 — (% |y) | < . Then @ (H;, ;) = @ (H;, ¥.).

LEMMA 2.2. Suppose that, for each 1el,L; is a dense linear
subset of H; with x;€ L;, and suppose that

0<TIle:ll < o. Let L
={@®ic:¥::¥:€L; for all el and y, = x; for a.a. iel}
Then L is dense in @;e; (H;, x;).
LEmMA 2.3. Let H=@Q;.;(H;, x;). Then, for each jecl, there

exists a mormal isomorphism «; of F(H;) into <~ (H) such that,
for all A;e o7 and all (y;) € 4:

(@;(A4) @ v:) = @ ¥;

where y; = y; for 1 # j and y; = Ayy;. We call «; the natural in-
jection of F(H;) into <~ (H).
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DEFINITION 2.4. Suppose that, for each 7 € I, &7 is a von Neumann
algebra on H; and ;¢ H;, and suppose that 0 < [[ || ;|| < «. Then
by @ic: (.84, x;) we will mean & (a;(.9%):1e€l), where «; is the
natural injection of o7 (H;) into .~ (® (H;, x.)).

LEmMMA 2.5. (1). Qic: (L (H), %) = Z(Qie:r (H;, ).
(i1). @iecr (.7, ) is a factor if and only if each .7 is a factor.

ProposITION 2.6. Suppose that, for each 7el,. o4 is a von
Neumann algebra on H; and «; € H;, and suppose that 0 < [T || #;|| < oo.
Let p,(4;) = (Az;|2z;). Let &7 be @ic; (4, %), and let «; be the
natural injection of .94 into .o for each 7el. Then (.7 (o)) is a
product for (.9%);., which satisfies (VI-(z)). Furthermore, if p =

®:e: i, then
2.1 S() = T1 a(S(1) .

REMARK. (IV) also holds, of course, and is easily proved directly.
See Proposition 4.2.

Proof. Obviously (. («;)) is a product for (.o%) and g = @.c; 4
exists in X,: in fact, if v = @, «; then p(4) = (Ax|x) for all Ae.o~
By Lemma 1.4,

(2.2) S() = T e(S(rs) -

Now S(z) = pr|.o7'z] (By [L] we mean the closure of L; by pr[L]
we mean the orthogonal projection onto [L]). Because .o’ containg
each a,(.o%"), |.o7'x] contains the closure of

{® Alx;: each Ale.o;’ and A, =1 for a.a. 1el}.

Thus (Lemma 2.2) |.o7'z] contains @ ([.o%'w;], «;). The projection
onto this last subspace of H = @ (H,, x;) is TI a:(S(x)). Hence S(y) =
1T a:(S(1)) and (2.1) follows from (2.2).

To prove (VI-(z4)), let us assume first that every normal positive
functional on .97 is induced by a vector of H;. Let

L={Qy:vy:cH;,y; = for a.a. tel}.

Then L is dense in H by Lemma 2.2. For each nonzero ye L, let
y, be the functional induced by ¥:

v,(A) = (Ay|v) for all Ae. .o .

Then a direct calculation shows that v, = @ v; where v; is induced
by v; and v; = p; for a.a. 1eI. We have (S(v,))y = y. Since every
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normal positive functional on .o is induced by a vector, as y runs
through L, v, runs through

F={@uv:: v, =, for a.a. 1el}.
Thus (IV-z) holds, and
E(¢) =sup {S(v): vel}=zpr[L]=1.

To prove (VI-(x;)) in the general case we will show that there exist
von Neumann algebras <z, on G; and vectors z;cG;, and that there
exists an isomorphism ¥ of .o onto & = @ (&7, 2;) such that:

(2.3) Every normal positive functional on <z, is induced by a vector.

(2.4) Y(a(.o%)) = Bi(<Z,) where B; is the natural injection of & (G,)
into &~(G) and G = @ (G, ).

(2.5) If z = @ z; then
(V(A)z|2) = p(A) for all Ae. .o .

Then by the preceding paragraph (VI-(z;)) will hold for the product
(&7, (B;)) and thus for the product (.27 («)).

For each 7¢I, let H. be a Hilbert space of infinite dimension,
let ;e H, with ||2}|| =1, and let &, be the algebra of scalars on
Hi. Let & =.%Q %, on G,=H,Q@H, and let 2z, = x; @ x.. Let
G=QG,z)=QRQH;,QH,x,Qx) and let H = @ (H},x}). Then
[7] it is easy to construct a natural isometry ¢ from H & H’ onto
G such that:

$(a(Ty) ® 1)~ = BT Q 1)
for all T;e &¥(H;) and all 1. Define +: o — < (G) by:
P(A) = s(A R 1,)97" for all Ae. o,
Then (2.4), (2.5), and (.o) = <& follow immediately.

COROLLARY 2.7. Suppose that (.27 );.r s a finite family of von
Neumann algebras. Let o7 = @Q;cr Y and let «; be the natural
injection of o7 into .o7. Then (7, (a;)) s a temsor product for
(%)icr which satisfies (V). In particular @ p; exists in X, for
every nonzero mormal positive functional p; of ..

LEMMA 2.8. Suppose that (H;);.; is a family of Hilbert spaces
and that, for each ie€l, H; = @;cre H where 0eJ(z) (by H; =
®;.;0 Hi we mean that the Hi are mutually orthogonal subspaces
of H; which span H;). Suppose that, for each iel and jeJ(3), x!



24 DONALD BURES

is a mnonzero wector of Hi, and suppose that 0 < [T:c;|la?|| < .
Denote by J the set of families (7(3));c; with each j(i)e€ J(i) and
j(@) =0 for a.a. tel. If j=@G@)eJ let H = Q;c, (HIY, xi?),
Then each H is a subspace of H = .., (H;, x?) and H = @;., H'.
Furthermore, if af denotes, for each j = (j(1))eJ, the natural in-
jection of & (HI) into << (HY), then:

(2.6) @i@jcsi) T = Bi—iiines [@i(TI)] for all (Ti);csq with each
Tie #(Hi). (Here @ Ti: @®xi — @ Tixi).

Proof. The H? are clearly mutually orthogonal, and |[H?:j € J]
is H by Lemma 2.2. Formula (2.6) can be confirmed by a direct
calculation.

3. The basic isomorphism theorems. By a representation o
of a W*-algebra .o~ on a Hilbert space H we mean a normal homo-
morphism .o~ onto a von Neumann algebra on H (Notice that (1)
is the identity on H). If + is a representation of .o~ on H and p
is a normal positive functional on .7 a vector x ¢ H will be called a
p-cyclic vector for + if [y (o7 )x] = H and

H1(A) = (v(A)z | ) for all Ae o7,

Given .o and g it is well known (see [3, p. 51], for example)
that a representation 4 with a g-cyclic vector exists (and is essenti-
ally unique), and that such a 4 acts isomorphically on (Z(x)).o” and
takes (1 — Z(y)).o7 into 0.

ProposSITION 3.1. Suppose that (.9%);.; is a factorization of the
W *-algebra .o~ and that ¢ = @..; ¢; is a product functional for this
factorization. Suppose that + is a representation of .o~ on H with
p-cyclic vector x. Suppose that, for each 7€, 4; is a representation
of .o on H; with p:-cyclic vector x;. Then there exists an isometry
¢ of H onto @..;(H;, ;) such that:

(1). 8(®) = @sesr e

(i), s(P())g™" = @ier (Vi( %), @.).

(iii). For all A; €. and each 7¢I

d(v(4:))g™" = ai(vri(4)))
where «; denotes the natural injection of &7 (H;) into Z(Q;.; (H;, x;)).

Proof. Let 2 denote the set of families (4,);c; with each
A;e o7 and A; =1 for a.a. tel. Let

= {[o( ) hre )
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and
N ={@lCr(Anail: (4) e 57} .

First we claim that M is a dense subset of H. For .& the *-
algebra {I[;.; A:: (4;) € 5¢7}, is ultrastrongly dense in .o (a corollary
of the double-commutant theorem); hence +(<5”) is strongly dense in
(o) and [(S)x] = [y (7 )x] = H because z is a cyclic vector for
P(7).

Secondly, N is a dense subset of @;.;(H;, ;) by Lemma 2.2,
since w; € [v(%)x;] = H; for each tel.

Fix (4;) € 227 Then:

(o1 4:))e

2

® [(v:i(A)):]

iel

“= (T ArA) = T1pard)

1el iel

= ILI Az [P = 11 (A7 A

iel

Therefore, since M is dense in H and N is dense in @;.; (H;, ),
there exists a (unique) isometry ¢ of H onto @..;(H;, =;) such that,
for all (4;) e o

o (+(1L 40} ] = @rAnad

Now (i) follows immediately, (iii) by a direct calculation, and (ii)
from (iii).

THEOREM 3.2. Suppose that (.);.; ts a factorization of the
W *-algebra o7 Suppose that pt = @i tt: ts a product functional
for this factorization, and suppose that (IV-y) holds. Then there
exist, for each 1€l, a faithful representation 4, of &7 on H, and
a vector x;€ H;, and there exists a representation +» of 7 on H =
®i.: (H;, ©;) such that:

(i) + maps (1 — E{p)).sr into 0 and maps (E(1)).7 isomor-
phically onto () = @icr (4:(.%), x).

(ii) For each i€l and all A; e . :

Y(4) = ai(4(4)) ,

where a; denotes the natural injection of <~ (H;) into <~ (H).
(iii). For each 1eI and all A; e .57%:

((4:(A))x: | ;) = pa(4s) .
(iv). If = denotes @..;x;, then, for all Ae .o
(p(A))x | @) = 1(A) .
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Proof. For each ic I, select (by Zorn’s lemma) a family (24);c,u
of normal nonzero positive functionals on .o/ such that >}, Z(¢f) =1
and 0eJ(;) with ¢! = p,. Let J be the subset of [];.;J(;) consisting
of (j(2)) with j(z) = 0 for a.a. ¢el. Since (IV-z) holds, each j =
(§(?)) € J the product functional g = @,.; pi'? exists on .oz We have
Z(1) < Tlier Z(p1) by Lemma 1.4, so that (Z(y?));e, is a mutually
orthogonal family of central projections of .oz Let Z = 3., Z(¥).

For each jeJ let I'V be a representation of .o on G’ with a p’-
cyclic vector /. Let I" be the direct sum representation @;., 7 of
& on G =@;.;G:

3.1) r'A) = @®;., " A) for all Ae.o7.

Then I" maps (1 — Z).or into 0 and maps Z.o7 isomorphically onto
'),

For each 7¢I and each je J(i), let 4/ be a representation of .o
on H{ with pf-cyclic vector xi. Let 4, be the direct sum representa-
tion @;c, i) 4i of oF on H; = @jey Hi:

(3.2) 4(A;) = Bjecsy 41(A) for all 4;e.97 .

Then each 4, is faithful.

Fix j = (j(¢)) in J. We know that g = @, pi”, that IV is a
representation of .o~ on G’ with pf-cyclic vector y’, and that 47,
for each 7¢I, is a representation of .o/ on Hi“-cyclic vector xi?,
Therefore Proposition 3.1 demonstrates the existence of an isometry
¢7 from G’ onto H = @;.; (Hi?, 2{) such that:

(3.3) ¢'(y’) = ®1 xi®
and
(3.4) I (I (A))¢)) ™ = ai(4i(A;))  for all A;e o,

where af denotes the natural injection of <~ (H{') into &~ (HY).
Let x; denote 27 for each 1e€1. Let H = @,.; (H;, «;), and denote

by «; the natural injection of <~(H;) into <#(H). Then (Lemma

2.8), H=@;.; H’, and, for each eI and all operators T;e & (H))

with T; = @;.,u Ti and with each Tie &~ (HI):

(3.5) a(T)= @ (a(Ti?).

Jj=(j@)ed

Define the isometry ¢ of G onto H by:
(@)= @s(r) forall fice.
jed jed

Let ++ be the representation of .o on H defined by:
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Y(A) = ¢(I"(A))p™ for all Ae. o7 .

Evidently v has the same kernel as I": 4» maps (1 — Z).o7 into 0 and
Z.s7 isomorphically onto +(.o7).

Now fix 7€l and A;e.%4. In view of (3.2), applying (3.5) to
4,(A;) we obtain:
(3.6) a(4(4)) = @ J[af(df“’(Ai))] .

J=(jli))e

Using (3.1), the definitions of + and ¢, and (3.4), we get:

(3.7) WA = o @ M) | = @ (AN
= -8, AN

We conclude, from (3.6) and (3.7), that:
(3.8) (4;) = a(4,(4))) for all A;e.o/ and all 11,
Hence +» maps .o = & (.94: v €I) onto

F (o)) ie ) = @ (4(.7), )

Assertion (ii) of the theorem is precisely (3.8). (iii) holds because
x; = a) is a p-cyclic vector for 4;. (iv) holds because of (3.4) and
the choice of %° to be a p-cyclic vector for I™. To complete the
proof of the theorem, then, we need to show only that Z = E(y).

Evidently Z < E(y¢). Let Bi: &% — Z.o7 be defined by Bi(A4;) =
ZA; for all A;e.o4. Then we have just proved that (Z.o7 (8))) is
isomorphic to the product (@ (4:(.8%), ), («;-4;)), which satisfies (VI-
(#:)) by Proposition 2.6. Hence (Z.o7 (8;)) is a product for (o)
which satisfies (VI-(%)). Now suppose that each y; is a nonzero
normal positive functional on .97 and that vy, = g, for a.a. 1€ I. Then
Y = @ v, exists as a product functional for (Z.%7 (8;)). Hence, by
Lemma 1.17, v = @ v, exists in 3, with S(v) = S(V') = Z. Since E(y)
is the supremum of such S(v), E(¢) < Z. This completes the proof.

COROLLARY 3.3. Suppose that (.57%);.; is a factorization of the

W*-algebra o7, that p = @i, tt: ts a product functional for this
factorization, and that (IV-y) holds. Then

S(p) = [E(pW] HI S(ps) .

Proof. Use Theorem 3.2 and (2.1) of Proposition 2.6.

COROLLARY 3.4. Suppose that (.%5);.; 18 a family of W *-algebras,
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and that, for each tve€l, y; is a normal positive functional of 7.
Suppose that (o, (a)) and (£, (B;)) are products for (.57%) which
satisfy (VI-(¢)). Then (=7 (o)) and (B, (B:) are isomorphic: i.e.,
there exists an isomorphism + of 7 onto <F such that {yroa; = B;
for all vel.

COROLLARY 3.5. Suppose that, for each tel, .o and <& are
von Neumann algebras on H; and G; respectively, that x,e H; and
y; € G; with

O <I@lall, ILlw:ll <o,
and that +; is an isomorphism of o7 onto &, such that:
(vl Ay | ¥:) = (Aw: ) Sfor oll Ae .

Then there exists an isomorphism v of S = @ (., x;) onto & =
® (B, y;) such that oo, = B;ovr; for each vel, where «; 15 the
natural injection of .oz into o7 and B; 1s the natural injection of
B into .

Proof. Use Corollary 3.4 and Proposition 2.6,

THEOREM 3.6, Suppose that (.57),.r s a finite family of W*-
algebras. Suppose that (.57, () s a product for (57);.r satisfying
1) and (IV-y) for same product functional tr. Then there exists
an 1somorphism  of . onto @;.r . such that:

w(ﬂ m(Ai)) —®4. for all Are.os.
ieF iel

(We write @icr A; for TLier M(4s), where \; ts the natural injection
of 4 into @ier 4.) Furthermore, for every product functional
v =Qu; for (.9, (a)):

S@) = II a(Se) .
Proof. If p=@icrtt, E(¢t) =1 because (III) holds and F is

finite. Hence (VI-(£)) holds, and Corollory 3.4 and Proposition 2.6
complete the proof.

4. Local tensor products.
LemMmAa 4.1, Suppose that (.Y, 18 a factorization of the W*-

algebra o7, and that p, is a normal positive functional on .oz, Let
3, be the set of mnormal positive functionals p, on .oF such that
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@ . exists as a product functional on o7 for the factorization
(%). Then:

(i). If e and © > 0, then xp el

(il). If prel and >, pi(1) < oo, then >, prel,.

(i), If meZ, and A e o, with p(AFA) #0, then (). €2,
()4, 18 defined by ((1£).4)(B)) = (AfB,A,) for all B, e .o7).

(iv). If v, 1s a monzero normal positive functional on oF with
Sy < Z(p) and p, e, then v, e X,

(v). If X, is separating then 3, is the set of all nonzero normal
positive functionals on .o7.

Proof. (i), (ii), and (iii) are obvious by direct calculation. To
prove (iv) suppose that vy, is a normal positive functional on .94 and
that S(v,) < Z(p,) with g, €3,. Then, by Proposition 3.1, there exists
a normal homomorphism + from .o~ onto (Z(1,)).o7 @ (Z(1.)).%% such
that:

V(A4 = (Z(w)A) @ (Z(1)4;)  for all A e o and A, €. o4 .

Now, since S(v,) < Z(p,), by Corollary 2.7 there exists a normal posi-
tive functional @ = v @ 4 on (Z()).-v; @ (Z(1.)).o% such that

O((Z(11)A) @ (Z(112) Ar)) = (V1(A)) (11 Ay))
for all A,e.o7 and A,e.94.

Evidently woq+r equals v, @ €, and v, e X,.

To prove (v) assume that X, is separating. Then, using (iii) and
Zorn’s lemma, we can choose a family (z);., with each g/ e, and
Siies Z(t) = 1. Suppose that v, is a normal state of .o4. Then
S v, (Z(14)) < e and therefore v (Z(ztf)) = 0 for all but a countable
number of jeJ. Hence a suitable countable linear combination p, of
the o satisfies S(v,) < Z(p,) and g, €3, by (ii). Then v, €3, by (iv).

REMARK. Lemma 4.1 may be proved directly (without using
Proposition 3.1 or properties of the tensor product) by using Sakai’s
Radon-Nikodym theorem [8] and the weak Radon-Nikodym type result
of [5, p. 211].

ProposiTiON 4.2. Suppose that (.9%);.; is a factorization of the
W *-algebra .oz, Let X, be the set of product functionals on .o~ for
which (IV-y¢) holds, and suppose that X, is separating. Suppose that
F is a finite subset of I. Then there exists an isomorphism ~ of .o~
onto .94 @ . _r such that:

¥(AB)=AQK B for all Ae.o% and Be .o ;.
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Proof. By Proposition 1.6 { &%, .7 -} is a factorization of .o
and each pe Xy is a product functional for this factorization: p =
e Q@ tr_p. Let 3, = {y;_p: re Xy} and let 3, be the set of product
functionals on .o for the factorization (.9%);.r. By Proposition 1.5.
(iii), ¥, is separating on .9 and X, is separating on .o/ _,. Because
(IV-) holds for all pre Xy, v @ #;_r exists on .o for all velX and
all ¢, _r€2,. Hence, by Lemma 4.1 (v), v @ w exists on .o~ for all
ve X, and all nonzero normal positive functionals ® on .o7_,; and,
from there, by the same lemma, v ® @ exists on .o~ for all nonzero
normal positive functionals v of .o and w of .o/_,. Thus (IV) holds
for the factorization { &%, .o7_r}. (III) obviously holds for (.o%) and
thus for { %, .o/ _r} (Proposition 1.6. (iii)). Now Theorem 3.6 com-
pletes the proof.

REMARK. Proposition 4.2 is false if the hypothesis that F' be
finite is omitted (see Example 7.3).

COROLLARY 4.3. If Xy is separating then (III) and (IV) hold.

Proof. That (III) holds is obvious. To prove (IV) use Proposi-
tion 4.2 and Corollary 2.7.

COROLLARY 4.4. If a product (.7, («;)) satisfies (VI-p;)), then it
satisfies (II1), (IV), and (V): i:e., it ts a (p;)-local temsor product.

Proof. Use Proposition 1.16 and Proposition 4.2.

PROPOSITION 4.5. Suppose that (.7, («;)) is a tensor product for
(84)ics: t.e., that (III) and (IV) hold. Then, for all ¢t = @.c; tt: €3,:

4.1) E(p) = T(p)
and
(4.2) S(p) = [T(m)] iIeII a(S(p)) .

Proof. E(y¢) £ T(z) by Proposition 1.15. To prove (4.1), then,
it suffices to prove that E(x) is tail. Let ¥ = {vel,:v = @y, with
v, = p; for a.a. te€I}. Then E(y) = sup {S(¥):ve2}. Suppose that
F is a finite subset of I. Then { /%, .o »} is a factorization of .o~
for which each vel is a product functional: v =v,Qv, . By
Proposition 4.2 and (2.1) of Proposition 2.6, for all ve 3

(4.3) S) = [SWAISE—r)] -
Thus:
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4.4) E(p) < sup {S(v;_p):ve3}.

Because of (IV), for fixed v, ;, v, runs through all product functionals
for (9%, (@,);cr) and therefore (Proposition 1.5. (iv)):

sup {S(vy):ve X, v, , fixed} =1,
Using (4.3), we obtain:
(4.5) E(p) =z sup {S(v;_p): veld}.

Now (4.4) and (4.5) show that E(y)e€ ... Since F' was an arbitrary
finite subset of I, we have shown that E(y) is tail. That proves (4.1).
(4.2) follows from (4.1) and Corollary 3.3.

COROLLARY 4.6. A product (.7, (;)) for () is a (p;)-local
tensor product for (.o%) if and only tf (VI-(¢;)) holds.

Proof. Corollary 4.4 shows that (VI-(y;)) is sufficient. Suppose
that (o («;)) is a (g,)-local tensor product for (.o7). Let px = @ ..
Then (IV-z) holds because (IV) does, and, using Proposition 4.5 and
(V), we see that E(y) = T(¢) = 1.

THEOREM 4.7. Suppose that, for each tecl, o/ s a W*-algebra
and p; is a mormal positive functional on .o4. Suppose that
0 < Tlie; ps(1) < oo. Then a (p;)-local temsor product exists and 1is
unique up to tsomorphism.

Proof. Proposition 2.6, Corollary 3.4, and Corollary 4.6.

5. Tensor products. Throughout this section we suppose that
(% )ie;r is a family of W *-algebras. Let 4 be the set of families
(¢:)ic1, each z; a normal positive functional on .o/ and

°<£I,f"’(1)< o

Let the relation R on A be defined by writing (z;) ~ (v;) (mod R) to
mean that a (z;)-local tensor product for (.o7%);., is necessarily a (v;)-
local tensor product for (.o%);.;. R is a well defined equivalence re-
lation because a (y;)-local tensor product exists and is unique up to
isomorphism. The following lemma is a trivial consequence of the
definition of (;)-local tensor product.

LEMMA 5.1. Let (&7 («;)) be a (y;)-local tensor product and let
wi)ed. Then ()~ (v;) (modR) uf and only if @v; exists on
(7] ().
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REMARK. If 3. [d(g, vi)IP < o then (z;) ~ (v;), and the converse
holds provided each .97 is semi-finite [2].

LEmMA 5.2. If () and (c;pt;) are in A (where the c; are positive
real numbers), then (1) ~ (c:tt:).

Proof. Since TI p:(1) and TJ ¢;¢(1) both converge to a nonzero
number, so must ] ¢; converge to ¢+ 0. If ¢ = @ p; exists as a
product for (.o%), cp is a product state equal to @ (c;zt;) by direct
calculation.

REMARK. This lemma shows that we could, without loss of
generality, confine ourselves to (x;) with each p;(1) = 1.

Define 4 to be the quotient set A/R and let @ be the quotient
map A — A/R = 4.

DEFINITION 5.3. A tensor product (.o (a;)) for (.o7) will be
called a I'-tensor product for (.o7%) when:

{(1t) € 4: @ p1; exists on (.7 (@)} = 9 .

LEMMA 5.4, Let v = @((t:)). Then a (1;)-local temsor product s
a {v}-tensor product.

THEOREM 5.5. Suppose that (.o («;)) is a temsor product for
(t/(}/i)iel- Let

I' = p{(p:) € 4: @ 1 ewists on (o7 ()} .

Then:

(1). (7 () ts a -temsor product for (.o7).

(ii). If p=Q@u; and v =@Qv; are product functionals for
(. (@) then:

T(p) = T(v) of and only if (pt) ~ (v)

and
[T(WITE)] =0
otherwise.
(iii) If ¢t = @ s is a product fumctional for (.7 () then:
(5.1) S(ee) = [T(1)] I ae(S(p2))

(5.2) T(ze) = sup {S(@ va): (vs) ~ (1)} .
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(iv). (7 (@) 1s a (p)-local temsor product if and only if I' =
{p((£))}-

(v). For each velI', define T(v) to be T(y) for p=Q p: and
o((¢)) = v. Let 7 (v) = [T()]s and let a(v) be defined by:

(@ (MA) = [T()][ai(4:)] for all A;e 7 and all 1e1.

Then, for each veI', (.7 (7), (7)) 1s a (;)-local temsor product for
(%) provided that v = p((t4:))-
Furthermore:
& =@ () and a£=Qai(7) for all 7¢I,
T€

Ter

with respect to the same direct sum decomposition of .7

Proof. Suppose that ¢ = @ ; is a product functional on (% (a))).
For each 7¢I, define B;: & — .o~ by:

Bi(A) = [T(W][ai(4))]  for all A;e. 7.
Then, by Proposition 1.18:
(6.3)  (T(W].%7 (B;)) is a (y;)-local tensor product for (.o7) .

By Lemma 5.1, therefore, for all (v;) € 4, (v;) ~ (¢;) if and only if @ v;
exists on ([T()].o7 (B:)). According to Proposition 1.18. (iii), however,
this happens precisely when @ v; exists on (% (@) and S(® v, <
T(y). We have shown that, for all (v;) € 4, and for all product func-
tionals ¢ = @ p; for (&7 («;)):

(5.4) (v)) ~ () if and only if @ v, exists on (.7 (&) and S(@v,) <
T(z) .

(5.4) shows that, if (v;) ~ (#;) and if @ p: exists on (% (@),
then @v; exists on (%] («;)); (i) follows. (ii) is an immediate con-
sequence of (5.4) and the fact that .~ is atomic (Proposition 1.9).
(5.1) of (iii) is just (4.2) of Proposition 4.5, and (5.2) is a consequence
of (4.1) of Proposition 4.5 and (5.4). (iv) follows from (ii). (5.3),
together with (ii), proves (v).

THEOREM 5.6. Suppose that (.87%);c; 18 a family of W *-algebras
and that 4 is as defined above. Then:

(i). If 4 is a nonempty subset of 4, a I'-tensor product for
(%) ewxists and is unique up to isomorphism.

(ii). Suppose that (.7 () is a [-temsor product for (%) and
that (B, (B;)) is a 'ytensor product for (). Then I'y =T, if and
only if (7, («;))) and (&2, (B;) are isomorphic: i.e., if and only if
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there exists an isomorphism + of &7 onto <& such that yroa; = fB;
for all 1€ 1.

Proof. Everything but the existence of a I'-tensor product for
(&%) follows from Theorem 5.5. For each ve 4, a {v}-tensor product
exists by Theorem 4.7. Hence the existence is a result of the follow-
ing proposition.

PRroPOSITION 5.7. Suppose that I" is a subset of 4 and that, for
each ve I, (7 (7), ai(7)) is a {v}-tensor product for (.o%). Let .o =
B, .r. v (7) and a; = @,.ra;(v) for all tel. Then (7 («;)) is a I-
tensor product for (.o7%).

Proof. Let .o~ and «; be defined as above and let E(v) be the
projection of .o7 with .o7(v) = [E(7)].o7 Let <# = 2 (a,(.o7%): i e I).
Then (&7, («;)) is a product for (.o4). If o((x;)) = vel’, then y =
@ u; exists on (.7 (7), (@,(7))), and, if p is defined by

n(B) = ¢(E(7)B) for all Be «#,
we can see by direct calculation that ¢ = @ g, on (&7, («;)) with
(5.5) S(¢) < E(v) where v = o((t)) .

It is clear that such g form a separating subset Y of the normal
positive functionals on <2, and that—since v; = y; for a.a. i €I implies
(v;) ~ (¢:)—(AV-z) holds for each peX. Therefore (Corollary 4.3),
(&2, («;)) is a tensor product for (.o%). By (5.2) of Theorem 5.5 (iii),
and by (5.5):

T(v) = E() for all verI'.

Hence each E(v)e <% and <% = .o/, Furthermore >,,., T(v) =1, so
that, if ¢ = @ x; is a product functional for (.o («;)), then T(x) =
T(v) for some veI' (Proposition 1.9) and ¢o((;)) = v €' by Theorem
5.5. (ii). Therefore (.o («;)) is a I'-tensor product for (.o%).

ProrosrTioON 5.8. Suppose that, for each <¢l, o/ is a von
Neumann algebra on H; and every normal positive functional on .o/
is induced by a vector. Let H denote von Neumann’s complete direct
product [7] of (H)..; and let «; be the natural injection of <~ (H,)
into <~ (H) for each tel. Let o7 =.2Z (a(%5):1e€l). Then
(7 (a;)) is a 4-tensor product for (.9%);.;. Furthermore, for every
nonempty subset I" of 4, there exists a projection T(I") in the tail
of (.7, («;)) such that (T(I").o7, (8,)) is a I'-tensor product for (.o%)is,
where B,(A;) = [T(I")]A; for all A4;¢.o7.
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The proof is easy and is omitted.

6. Tensor products of factors.

LEMMA 6.1. If (7, (@) is a product for (&) and tf each .
18 a factor, then (IV) holds for (.7, («;)).

Proof. Use Lemma 4.1. (iv) and mathematical induction.

LEMMA 6.2. Suppose that (7, (a;)) is a product for (.o7) and
that &7 is a factor. Then (.57, («;)) is a local temsor product for
(%) if and only if there exists a product state of (.7, (a;)).

Proof. Each .07 is a factor by Lemma 1.3, and therefore (IV)
holds by Lemma 6.1. (V) holds because .9~ < 2. If p is a product
funectional on (.7 («;)), then E(y¢) = 1, for E(y) is central by Theorem
3.2. Thus (III) holds if and only if a product state p exists.

ProprosiTION 6.3. Suppose that (.9 («;)) is a tensor product for
(%) and that each .o4 is a factor. Then 9 = 2 the tail of
(7, («;)) equals the center of .o/

Proof. By Theorem 5.5, the family (T(7)),.r of atomic projections
of 97 is such that each [T(v).&7] is a local tensor product for (.o7%).
By Lemma 2.5, each [T(v).s7] is a factor. Hence the center of
& =@B[T(M).]is £ (T(v):vel) = 7.

COROLLARY 6.4. Suppose that (.7, («;)) is a tensor product for
(%) and that each .7 is a factor. Then &7 is a factor if and
only if (o7 (a;)) s a local temsor product: t.e., 1f and only if (V)
holds.

PropoSITION 6.5. Suppose that .o~ is a finite factor and that
(% )ie;r 1s a factorization of .o Let p; be the restriction of the
normalized trace on .o to .o4. Let (<7, (a;)) be a (y;)-local tensor
product for (.o%);.;. Then there exists an isomorphism + of .o onto
<% such that, for each teI:

Proof. (c.f. [6]). If p is the normalized trace on .o a direct
calculation (see the proof of Theorem 4.3 in [2]) demonstrates that
p =@ for (7). From there Lemma 6.2, Theorem 4.7, Corollary
4.4 and Proposition 2.6 complete the proof.
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7. Some simple counterexamples.

ExampPLE 7.1. Let .o be a factor of Type II, on the Hilbert
space H. Then { o7, .o’} is a factorization of <~ (H) which satisfies
(IV) and (V), and for which no product functional exists.

See Lemmas 6.1, 6.2 and Theorem 3.6.

ExaMPLE 7.2. For ¢ =1 and 2, let & be a W*-algebra with
central projection Z; = 0 or 1. Let

Z:(Z1®Z2)+(1_Zl)®(1““z2)

in Q. and let & = Z(% Q .%). Let a;: % — .o be de-
fined by

a(A) = Z(A, Q1) for all 4, e ./
0y(4,) = Z(1 Q 4A,) for all A,e. % .

Then (%7 («;)) is a product for (.%);-,, which satisfies (III) and (V)
but not (IV).

ExampLE 7.3. Let I =1{1,2} x J where J is wnfinite, and, for
each 7¢1, let .o be an abelian W*-algebra generated by its two
atomic projection E; and 1 — E,. Let the states y; and v; of %7 be
defined by (1) =vi(1)=1 and p(E) =1 and v,(E;) =1/2. Let
I = o{(¢s), (v))} and let (&7 («;)) be a I'-tensor product for (.%). Let

N = 2 (a( ) i€ {0} X J)

and let \;: % — . be the inclusion map, for 6 =1 and 2. Then
(&7, (\s)) is a product for (.84)s—.. which satisfies (III) and (V) but
not (IV). In particular, (.7 (\;)) is not isomorphic to &4 Q .o%.

To make this clearer, let &2 = .o/ ® .o4 with \; the natural
injection of .94 into <& Let Bi: o — <% be defined for each © =
0,7)el by B; =rso;. Then (<Z (8;)) is a I’-tensor product for
() where I” contains four points. In fact

I" = o{(s), (v), (@), (0:)}
where:
w; =; and p; =y, for te{l} x J
and

w;, =y, and ©; = for 1€{2} x J.
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ExamMpLE 7.4. Let I ={1,2} x J with J infinite. For each ¢¢e 1,
let H; be a Hilbert space (of arbitrary dimension = 2) and let ¢; and
4; be orthogonal unit vectors in H;. For each jeJ, let H; =
Hiy 5 @ Hyp,jyand let @; = [90,5) @ @) + Yy @ V]V 2. Let H =
®;., (H;, ;) and let B; be the natural injection of <~ (H,) into <~ (H).
Let 7v4,; be the natural injection of <~(H,, ;) into <°(H;). Let
&) = BioYy,n for all (0,7)el. Then (¥ (H), (a;)) is a product for
(F(H)));er, and there exist mo product functionals for (7 (H), («;)).

See [2] or the remark which follows Lemma 5.1.
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