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COMMUTATIVITY THEOREMS FOR NONASSOCIATIVE
RINGS WITH A FINITE DIVISION RING

HOMOMORPHIC IMAGE

E. C. JOHNSEN, D. L. OϋTCALT, AND AϋlL YAQUB

Wedderburn's Theorem, asserting that a finite associative
division ring is necessarily commutative, has been extended to

THEOREM 1. Let R be a noncommutative Jordan ring of
characteristic not 2, and let I be an ideal in R such that
R/I is a finite division ring of characteristic p > 5 with exactly
q elements. Suppose that (i) I is commutative and every
associator contained in the ideal generated by I 2 vanishes,
and (ii) x = y (mod I) implies xq — yq or both x and y commute
with all elements of J. Then R is commutative.

The object of this paper is to extend Theorem 1 in two
directions. First we replace the assumption that R is a non-
commutative Jordan ring by the weaker assumption that R is
power-associative. Next we assume that R is a flexible power-
associative ring but replace the hypothesis that every associator
in the ideal generated by I 2 vanishes with the weaker assump-
tion that I is associative. In each case we drop the assumption
that R is of characteristic not 2.

The proof of Theorem 1 appears in [2],

By a noncommutative Jordan ring is meant a ring in which the

associative law is replaced by the weaker identities

(1.1) (x, y, x) = o ,

and

(1.2) (x\ y,x) = 0 ;

where the associator (α, 6, c) is defined by (α, 6, c) = (ab)c — a(bc). A

ring is flexible in case only (1.1) is assumed, and a ring is power-

associative provided

(1.3) xmxn = xm+n

holds in the ring for all positive integers m, n. It is known that a

noncommutative Jordan ring of characteristic not 2 is power-associative

[4], but there are flexible rings which are not power-associative. A

ring R is said to be of characteristic not 2 if 2x — 0 implies x = 0 in R.

2. Main results*
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THEOREM 2. Let R be a power-associative ring and let I be an
ideal in R such that R/I is a finite division ring of characteristic
p > 5 with exactly q elements. Suppose that (i) I is commutative
and every associator in the ideal generated by P vanishes, and (ii)
x = y (mod I) implies xq = y9 or both x and y commute with all
elements of I. Then R is commutative.

Proof. We first note that since R/I is a finite power-associative
division ring of characteristic p > 5, R/I is a finite field [1; Th. 5],
Hence for every x e R/I, xq = x, whence for every x e R, xq == x (mod I).
Now let aoel, beR. We first wish to show that aob = ba0. Suppose
not. Let a el. Since b + a ~b (modi) and aob Φ 6α0, we have that

(2.1) (b + aY = bq .

Now by the power-associativity of R

(2.2) ((6 + a)ql, (b + a)qm, (b + a)) = 0, l,m positive integers.

Hence, by (2.1), (bql, bqm, b + a) = 0, whence

(2.3) (69Z,6*m,α) = 0 .

Similarly

(2.4) (bql, a, bqm) = (α, bql, bqm) = 0 .

Since bql = bι (mod I) and bqm = bm (mod /) , (2.3) and the vanishing of
every associator in the ideal generated by P imply

(2.5) (&', 6-, α) = 0 .

Similarly, from (2.4),

(2.6) (α, δ1, 6m) = (b\ a, bm) = 0 .

We now show that the subring RaQ>b of R generated by a0 and b
is associative. It is sufficient to show that

(2.7) «α0, 6X<α0, 6>2)<α0, 6>3 = <α0, fe^Oo, 6>2<α0, &>3)

where <αo,&X denotes a finite product of αo's and &'s. If no α0 appears
in the left side of (2.7), then the equation holds by the power-associ-
ativity of R. If exactly one α0 appears in the left side then it holds
by either (2.5) or (2.6). Finally, if more then one α« appears in the
left side, then (2.7) holds since every associator in the ideal generated
by P vanishes (also by (2.5) or (2.6) in some cases).

Now by the associativity of RaQ>b and the commutativity of I, we.
easily compute that
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(aob + by = δ« + aj>« + Σ b%b"-1 + Σ ( f W ,

and

(δα0 + b)q = bq + δ«α0 + Σ^Ooδ -' + Σ f ? W

By the commutativity of I and αoδ ̂  6α0, (αoδ + b) a0 Φ ao(aϋb + 6).
Then, since αoδ + b == δα0 + δ (mod I), we have by (ii) that

<2.8) 0 = (αoδ + b)q - (δα0 + b)q = α0δ
9 - δ*α0 .

Now bq = b (mod 7), hence by the commutativity of I

<2.9) αoδ* - bqa0 = αoδ - δα0 .

But (2.8) and (2.9) imply that αoδ = δα0, a contradiction. Hence αδ — ba
for all α e / , δei2.

To complete the proof of the theorem, let x,y eR. Since all
elements of I commute with all elements of R we may assume that
x,y&I. Since R/I is a finite field, the multiplicative group of nonzero
elements of R/I is cyclic. Let ξ be a generator of this group and
I = ξ + J, feiZ. Then, for some integers ί,j and some alfa2el,
x = ξ* + a,! and 7/ = f + α2. By an easy computation we get xy = ?/#.
Hence i2 is commutative.

THEOREM 3. Let R be a flexible power-associative ring and let
I be an ideal in R such that R/I is a finite division ring of char-
acteristic p > 5 with exactly q elements. Suppose that (i) / is com-
mutative and associative, and (ii) x = y (mod I) implies xQ = yq or
both x and y commute with all elements of I. Then R is commutative.

Proof. Assume that aQb Φ ba0 for some a0 e 7, δ eR. Let ael
be arbitrary. We note that the proof of Theorem 2 is still valid
through equation (2.4). Now since δ does not commute with all
elements of 7, we have by (ii), #ΞΞδ(mod7) implies xq = bq = η
where η is the common gth power of all the elements x ~ b (mod 7).
We observe that since ηq = η = bq = b (mod I),η9 — bq — η. Equations
(2.3) and (2.4) become

(2.10) (η\ ψ, a) = {η\ a, ψ) = (α, η\ ηm) = 0, l>0,m> 0, integers.

Now

(2.11) {η + α, η + α, (η + a)ql) = 0, I > 0 an integer.

Since η + a = η (mod 7), (η + α)g = ηq = )?, hence by (2.10), (2.11)
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becomes

(2.12) (α, α, ηι) = 0 .

Similarly

(2.13) (α, η\ a) = (η\ α, α) = 0 .

Linearizing (2.12) and (2.13) we get

(al9 α2, J?
1) + (α2, α ly )?') = (alf rj\ a2) + (α2, η

ι, α j

(2.14) - ()?z, α l f α2) + ()?', α2, αx)

= 0 , α l f α2 e I .

We now wish to show by induction that

(2.15) (αw, α, ηι) = (α, αm, ̂ ) = 0, m > 0, I > 0 integers.

For m = 1 (2.15) is true by (2.12). Assume (2.15) is true for m = k.
Now it is readily verified that in an arbitrary nonassociative ring,
the Teichmuller identity holds:

0 = h(w, x, y, z)

= (wx, y, z) - (w, xy, z) + (w, x, yz) - w(x, y, z) - (w, x, y)z .

Expanding 0 = h(a, ak, α, rf) we obtain by induction and the associ-
ativity of / that

0 = (α*+1, α, rf) - (α, α*+1, ηι)

whence by (2.14), 0 == 2(ak+\ a, ηι). But then since pηι e / and / is
associative,

0 - (α*+ 1, α, pηι) = p(ak+1, a, rf) .

Therefore, since p > 2, 0 = (ak+\ α, ηι). Hence (2.15) follows using
(2.14).

Linearizing (1.1) yields

(2.16) 0 - (x, y, z) + (z, y, x) .

Hence by (2.16), (2.15) yields

(2.17) {η\ α, am) = (η\ am, a) = 0 , m > 0, I > 0 integers.

The Jacobi identity

On/, «) + (yz, x) + (sα, 2/) = (x, y, z) + (y, z, x) + (̂ ?, x, y)

can easily be shown to hold in an arbitrary nonassociative ring, where
(u, v) = uv — vu. Now, in the Jacobi identity let x — y — α, z = rjι
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and use (2.12), (2.13), and the commutativity of I to obtain

(2.18) (α2,7f) = 0 .

We now show by induction that

(2.19) (αw, ηι) = 0 , m ^ 2, I > 0 integers.

By (2.18), (2.19) is true for m = 2. Assume (2.19) is true for m = k.
Now, by (2.15), the induction assumption, the commutativity of /, and
(2.17) we obtain

ak+1ηι = (aak)ηι = a{akηι) = α(?/α*) = 0/α fc)α = Ύ]\aka) = j / α * + 1 .

Hence (2.19) follows.

By (2.15), (2.10) and (2.14), we easily obtain

(2.20) (a, amψ, rf) = (amηn, a,r)1) = 0 , m > 0, π > 0, I > 0 integers.

Hence by (2.16)

(2.21) ()?*, amηn, a) - (9?1, α, amψ) - 0 , m > 0, n > 0, ί > 0 integers.

The anti-isomorphic copy R' or R satisfies the hypotheses of the
theorem, hence (2.20) and (2.21) hold in R\ Therefore, in R, we have

(2 22) ° = ^9 V%am' a) = {ηl' a' ηnam)

= (α, ηnam, ηι) = {ψam, α, ηι) , m > 0, ^ > 0, I > 0 integers.

We wish to show by induction that

(2.23) (aη)m = amηm , m > 0 an integer.

Indeed, using in order (2.20), the commutativity of /, (2.15), and (2.10),
we compute

(akηk){aη) = ({akηk)a)η = {a{akηk))η = {ak+1ηk)η = a

k+1γ+1 ,

hence the result. Considering the anti-isomorphic copy Rr of R again
yields, because of (2.23),

(2.24) {7]d)m = ψam , m > 0 an integer.

Next we show by induction that

(2.25) (η + a)m = ψ + S ty'αty*-*-1 + Σ f T V ^ * " * , m ̂  2,
t=0 i=2 \ * /

where by convention °̂a? = χη° = x for all a; G ϋJ. Clearly this is true
for m = 2. Assume it is true for m = k. Then
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(η + a)k+ί = (t + Σ 0? W ' - 1 + Σ ( \ W ^ t y + a)
\ ί=0 i=2 \ * / /

(2.26) = ̂  + Σ (ft W'-1)? + Σ ( \ Vy-')?
i=0 i=2 \ * /

+ 7*α + Σ ((^α)^- ' - 1 ^ + Σ ( ? )(αi5?*-<)«
i=0 i = 2 \ ί' /

By (2.10),

{ { η i a ) η ^ ) η = (^α)?*-* , i = 0, , k - 1 ,

and

(cΛ?*-')5? = α^ fc+1-* , i = 2, , & .

Next, using in order the commutativity of /, (2.22), commutativity
of / again, (2.13), (2.18), and (2.10), we compute for i = 0, , k - 1

Finally, using the commutativity of 7 and (2.15) we compute for

i = 2, ...,fc

Therefore, (2.26) becomes

(37 + α)*+1 =

+ Ϋa + Σ aY-1 + Σ f J V+Y"* .

Hence upon collecting terms we have

(5? + a)k+i - 57t+1 + Σ ftW"' + Σ
i0 2

)*+1 = ^fe+1 = Σ ί ^ α ) ^ " * + Σ
ΐ=0 i=2

which completes the proof of (2.25).

Now, in (2.25) replace a by aη and by ηa to obtain, respectively

(2.27) {η + aη)m = ̂  + S ^ ^ ) ^ ^ " 1 + Σ
<=0 i=2

and

(2.28) (17 + ηaT - J?" + S ( ^ α ) ) ^ — ' - 1 + Σ
»=0 i=2

But by (2.19), (2.23), and (2.24), {aηf = (ηaf, i ̂  2. Moreover, by
(2.10)
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and

(Vi(ya>))VM~i~ι = (Vi+i^)Vm"i~ι f i = 0, , m - 1 .

Therefore, upon subtracting (2.28) from (2.27) we obtain

(2.29) {η + aη)m - (η + ηa)m = α^m — ̂ m α .

Now, since η-\-aη^η-\-ηa = b (mod 1) and since αoδ ̂  ba0, (97 + a??)9 =
(η + y]a)q which implies by (2.29) that aηq = >79α. However, since
bq =z7)q, bq — bel, and J is commutative,

0 = α o (δ ~ δ 9 ) - (6 - bq)aQ = aQb - baQ -aQbq + bqa0

= aob — ba0 —

a contradiction. Hence αδ = ba for all α e / , beR.
The proof of Theorem 3 is completed exactly as that of Theorem 2.

3* Remarks* The following example is a model for our theorems
which is not associative. First, we define Ru Ix by

a b

0 0
α, beGF(p)\) Ix =

0 b

0 0

p > 5 a prime.

Now, let " O " denote the Jordan product in Rt:

(a b\ ίc d\ lac -——--\

o o j ° l o o j = o o '

Since p Φ 2, αd + δc/2 e GFίp). Let R = R,( +, O), and let i = Jx( +, O)
It is readily verified that R is a Jordan ring which satisfies all the
hypotheses of our theorems. Moreover, R is not associative. Other
models for our theorems appear in [2, 3]. Also, examples are exhibited
in those papers which show that the theorems fail in case R fails to
satisfy all of the hypotheses of these theorems.

It can be shown that for the proof of Theorem 2, the condition
that every associator contained in the ideal generated by P vanishes
may be replaced by the more technical condition

(x, alf a2) = (au xf a2) = (aίt a2, x) = 0 for all x e R, aL, a2 e I.

Finally, an examination of [1, Th. 5] and the proofs of our theorems
will reveal that they also hold when the characteristic of R/I is 3 or
5 providing the center of R/I has more than five elements.
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