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HARMONIC ANALYSIS ON GROUPOIDS

JOEL J. WESTMAN

This paper generalizes harmonic analysis on groups to
obtain a theory of harmonic analysis on groupoids. A system
of measures is obtained for a locally compact locally trivial
groupoid, Z, analogous to left Haar measure for a locally
compact group, Then a convolution and involution are defined
on C,(Z) = the continuous complex valued functions on Z with
compact support. Strongly continuous unitary representations
of Z on certain fiber bundles, called representation bundles,
are lifted to C.(Z), yielding * representations of C.(Z). A
norm, || ||;2, is defined on C.,(Z), and the convolution, involu-
tion, and representations all extend to _Z7,(Z)= the || ||:2
completion of C.(Z), The main example given is that of the
groupoid Z = Z(G, H) that arises naturally from a Lie group
G and a closed subgroup H. In this example, the representa-
tions of Z are related to induced representations of G. Final-
ly, if Z.. (=the group of elements in Z with left unit=right
unit = ¢) is compact then we canonically represent .¥3(Z) as a
direct sum of certain simple H *-algebras.

We use extensively the notation and results of [8], except that
[8] assumes a C” manifold structure on the groupoid Z, and we want
to consider groupoids with just topological structure. There is no es-
sential difficulty in developing the main results of [8] for locally
trivial topological groupoids. In particular, a C” coordinate (resp. C~
fiber) bundle in [8] becomes a coordinate (resp. fiber) bundle as defin-
ed in [7].

Reviewing [8, §1], the algebraic structure of a (transitive) grou-
poid, Z (over M), consists of a subset M of Z (called the units of Z),
a projection I X r of Z onto M X M sending ®,, € Z into (left unit
®,,, right unit of ®,) = (¢, »), and a law of composition defined for
pairs ®,,, ¥, such that p =r. For B&S M x M, Z, is defined as
(¢ x r*(B), and Z,, = (I X r)""(¢q, p). The composition @,,-¥,, € Z,,,
and (@,,°¥,.) "y = Ppp* (¥ - [",). The unit ¢ € M may be written 1,,
and 1,,-9,, = 9,,-1,, = @,,. Also, @,, has an inverse, @,,7*, such that
P,y 0pp = 1,, and @,,-0,,7" = 1.

A coordinate groupoid (Z, ¥,) over M consists of the following:

(1.1) An (algebraic, transitive) groupoid Z over M and a Haus-
dorff topological structure for M.

(1.2) A distinguished point ee M and a Hausdorff topological
group structure for the group Z,,.

(1.3) A set of functions %, = {a: U,— Z, ..} such that U, is
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open in M and [-«a = identity map, satisfying
13.1) U U, =M.

aeY,

(1.3.2) For a and BeX,, the map g.,: U, NUs— Z,,; 9.4(q) =
a(q)'o B(q), is continuous.

Then the constructions of [8] lead to a topological structure for
Z, making Z a locally trivial topological groupoid as defined by
Ehresmann in [3]. Conversely, any such groupoid arises from a coor-
dinate groupoid.

Finally, we stipulate that the letter “Z” will always represent a
locally compact locally trivial groupoid. Note Z is locally compact if
and only if both Z,, and M are locally compact.

2. We first consider systems of measures on a groupoid, Z over
M.

DEFINTION 2.1. A (continuous) system of measures on Z is an
indexed set A = {\,:(q,p)e M x M}, where A, is a regular Borel

measure on Z,. We will write \,(f) = S f[(@,,)dND,,, where f is
zZ

an integrable function on Z,,, and will require that the function \(k):
M x M— C; Mh)(g, D) = Ngp(h | 2,,) bein C, (M x M) whenever he C,(Z).

The concepts of “left and right invariance” are easily applied to
systems of measures.

DEFINITION 2.2. A system of measures, )\, is said to be left in-
variant if and only if

S f(qu@m)dk’@m
(2.2.1) o

=S f(rqp)dhrqp ’

forall ¥,,e Zand pe M and feC,Z,,). Similarly, for right invariance
the condition is (with fe C,(Z,,)):

S f(@pq * grqr)dk’@m
(2.2.2) e

-| AL )N

If Z,, is unimodular, it is easy to obtain a left and right invariant
system of measures for Z from a Haar measure on Z,, (use (2.6.1)
with 4 =1). In the general case, we extend the modular function
for Z,, to Z, and then obtain a left invariant system of measures for
Z (depending on the extension).
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DEeFINITION 2.3. A function 4: Z— R* is called a modular func-
tion for Z if and only if:

(2.3.1) 4 is a continuous homomorphism (multiplicative structure
for R+ = real numbers > 0.)

(2.3.2) 4], is the modular function for Z,,.

THEOERM 2.4. If M s paracompact, then there exists a modular
Sunction for Z. Given two modular functions, 4 and 4', on Z, we
have 4(®,,) = h(q, D)4(D,,), h: M X M— R* is a continuous homomor-
phism (with the trivial groupoid structure on M x M, see (3.5b)).

Proof. Let X, be a set of local sections in Z,,, such that {U, =
dom a: a € X} is a locally finite cover of M (using the paracompactness
of M) and let {f.} be a partition of 1 such that support (f,) S U,-4,,
is the modular function for Z,.. We define 4 = ¢°, where

0(2y;) = 3 ful)f(p) log (4,(a(q)™"+ D, 5(p)))

Then 4 is a modular function for Z. Given a continuous homomor-
phism h: M x M — R+, then 4’ defined by 4'(9,,) = h(q, p)4(D,,) is a
modular function for Z. Conversely, given two modular functions 4
and 4’ on Z, we find that h(q,p) = 4(9,,)/4(®,,) is independent of
®,, for the given units, and that h: M x M — R* is a continuous
homomorphism.

THEOREM 2.5. If M\ is a left (resp. right) invariant system of
measures on Z, then N, 18 a left (resp. right) Haar measure on Z,,
for each qe M.

From here on we assume \,, is a fized left Haar measure on Z,,,

and will write ), (f) =g f(@,)dD,, .

THEOREM 2.6. There is a natural one-to-one correspondence be-
tween the left imvariant systems of measures on Z and the modular
functions on Z.

Proof. Given a modular function, 4, on Z, we define the system
of measures, \, by

nolf) = |

=|, arar@art,.

f(@,,)d0,,

(2.6.1)
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Ay is independent of the choice of ¥, and I",, with the indicated
units, and ) is left invariant. Conversely if A\ is a left invariant
system of measures the above equation defines 4 on Z,.,. Then 4
may be extended to a continuous homomorphism of Z into R*, and
4] 4,, is the modular function of Z,,.

THEOREM 2.7. If Z, is unimodular, then there is a unique left

and right system of measures on Z (recall \,, 1s a fixed left Haar
measure).

Proof. Just choose 4 = 1.

From here on we will assume that a fixed modular function 4
has been given for Z, and the corresponding left invariant system of
measures is A as defined in (2.6.1). A fixed regular Borel measure,

Y, is specified for M, and p(f) will be written S f(g)dq, for any in-

3

tegrable function f on M. We require support of g = M.

3. DEgFINITION 3.1. Given f and g € C,(Z) we define the convolu-
tion of f and g, *g, by F*90) = | | f@,)e@, 0,47, dr.
¥ Jzg,

THEOREM 3.2. C,(Z) forms an algebra over C with convolution

as the law of multiplication, and the usual addition and scalar mul-
tiplication.

Proof. The main points to verify are:

(a) f*¢9eC,(Z) and

©) (f*9)*h = f*(g*h) .

In regard to (a), if support (f)< A and support (¢) = B then it
is easy to show that support (f*¢g)SA-B. A-B is the image of
(A X ByN DZ Z x Z under composition, where D is the (closed) sub-
set of Z x Z where composition is defined. Hence A-B is compact if
A and B are compact.

In regard to (b), we compute (f*g)*n(D,,)

:S S (S S f(i”qr)g(?lf.,f‘-I‘qs)dwq,dr> W, ®,,)dl,ds .
MHIZg \IMJZg,

Substitute 4,, = ¥,~'-I",,, and interchange the order of integration
to obtain

MJ)Z

= fHg*h)(Dy) -

=15 s (1], sanidr,0,0i.d5) ar dr

Next, we define an involution for C,(Z).
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DeriniTION 3.3. Given feC,(Z), we define f* by
f*(@qp) = f—(@qp_l)d(@qp_l)

(where f is the complex conjugate of f).

THEOREM 3.4. The map f— f*:C(Z)— C.(Z) 1s an involution
(see [6]).

Proof. The only difficult part is to show (fx9)* = g*xf*. We
compute

(f*9)*(D,,) = Ssz F )G ™ Dy, 4D, AT
= (substituting I",, = @,,-¥,,)

SMSZ g([’qr_l)f—(@qpul'qu)A(@qp—l)drqrd’r‘ = (g**f*)(@qp) .

ExampLES 3.56. (a) Suppose M = {e} and (1) = 1. Then Z = Z,,
is a locally compact group, f*g¢g is the ordinary convolution, and
f— f* is the usual involution.

(b) Suppose Z = M’ x M’ and M = diagonal of M’ x M’'. We
define the trivial groupoid structure for Z over M as follows:

g, p) =(q,¢9) and (g, p) = (p, D),

composition is given by (q, p)-(p,r) = (¢, r), and (q, q) — (q, e) gives
a global section of I: Z,,,, — M.

If M’ is discrete, then f and g€ C,(Z) are matrices indexed by
M', with a finite number of nonzero entries. If z({¢g}) =1 for all
ge M, and A, (1) = 1, then f*g is the matrix composition of f and g.

(¢) Suppose G is a Lie group and H is a closed subgroup of G.
We define the homogeneous space groupoid for G and H, Z(G, H) =
Z={q,?,p):0cG,p and qeG/H, and @p = ¢}. The groupoid struc-
ture for Z is given as follows: M = {(q,1, q):qe G/H} is the set of
units, and ¢ — (g, 1, ¢) identifies M with G/H to give M the required
topology; I(q, @, ) = (q,1,q) and 7(q, @, p) = (p, 1, p). Composition
is defined by (q,@,p)-(»,¥,7) = (q,®-¥,r); the local sections of
l: Zyy.— M come from local sections of G — G/H (identifying G/H
with M as above, and taking ¢ = 1H.): (¢, @, ¢) — @ is a group isomor-
phism sending Z,, onto H, giving Z,, the required topology.

We note that Z,,., is essentially the usual principal bundle obtain-
ed from G and H.

For simplicity we only consider in this paper the case where 4,
(the modular function for H) = 4, (the modular function for G), re-
stricted to H. Then, by a theorem in [5, Chapter 10], there is a G
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invariant measure on M, which we take for g#. There is a canonical
(continuous) homomorphism {: Z — G, defined by {(q, @, p) = @. Note
that ¢ maps Z onto G, and that {|,,, is an isomorphism mapping Z,
onto H. The above consideration leads to the following:

THEOREM 3.5.1. 4,-{ 18 a modular function for Z. Unless other-
wise mentioned we will always use 4 = 4,-C for Z(G, H).

If M is compact and p(l) =1, then (*(f) = f:{eC(Z) for
feC/(Z), and we obtain the

THEOREM 3.5.2. (*:C,(G)— C,(Z) is a one-to-one* homomorphism
(with the usual convolution and tnvolution on C.(G), using a suitable
left Haar measure on G).

Proof. The first point is that f -—»S g C)ND,p)dD,,dp (writing
M Zq
(q, 9, p) = @,,) defines a left invariant measure on G which we take as

the desired left Haar measure on G. Note, this measure on G is in-
dependent of the choice of ¢ e M. Next, we compute

)+ T (9)(Pyy) = g MC*(f)(Tqr)C*(g)(qul-@qp)di”qrdr

— SG @) g O)dW
= (f*9)(P) = C*(f*9)(P,,), as required.
Finally, for feC,G),
C N (Dep) = (NP, APy, ™) = AP 4a(P7) = T (N Ds) s
as required.

4. DEeFINITION 4.1. A (unitary) representation bundle, E, is a
fiber bundle with a Hilbert space structure for the fiber Y, and group
U(Y) = the unitary operators on Y with the strong operator topology.

We note that there is a natural <mmer product field, < , >, on
E. Forqe M, <, »,is an inner product on E, defined via any admis-
sable map from the fiber Y. Then { , >, makes E, a Hilbert space
and the unitary maps from Y to E, are the admissable maps from
Y to E,.

Using the given regular Borel measure, z, on M, we obtain an
inner product on I',(E), the continuous sections in K with compact
support. For v and de ', (E),

(v, 0% = EM<7€,, 5. da .
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The completion of I',(E) with respect to this inner product is then a
Hilbert space, to be called I'y(E).

DEFINITION 4.2. A (strongly continuous) unitary representation
o of Z on a representation bundle E is a continuous homomorphism
0: Z— A(E) = the (locally trivial) groupoid of admissable maps be-
tween the fibers of E, such that o is the identity map on the units
of Z (see [8]).

The main results listed below are obtained essentially as in [8,

§ 4].

THEOREMS 4.3. (a) If o is given as in (4.2) then 0| 5, = p, de-
fines a unitary representation of Z,, on E,.

(b) Given a unitary representation p, of Z,, on a Hilbert space
E,, there is a representation bundle E’ and representation o of Z
on E' such that 0| 4, = 0, (@ unitary equivalence).

(¢) Two representations p and o' of Z on E and E' respective-
ly are equivalent (as in [8]) if and only if 0] 2, = 0| 2.

A groupoid representation, o, of Z on E* defines a representa-
tion of the algebra C,(Z); p: C.(Z) — < (I "(E°*)) = the bounded linear
maps of I",(E*) into itself.

DEeFINITION 4.4, Given feC,(Z) and veI',(E*), we define o(f)r
by (e = | | F0,)0(0.),40,dp.  Alternatively,

oy 3y = | | A0u)Xo@), 0 d0,,dadp .
THEOREM 4.5. [[o(f)7 [l = |[ £ [l Il 7 [l:, where
1= ( 1/0,)]d0,) dedp .

Proof. See (5.4). Accordingly o(f) extends to a bounded operator
on I'y(E*) of norm = || f ||,. <A ((E*)) has a natural Banach* algebra
structure.

THEOREM 4.6. The representation p: C(Z) — A ([(E*)) is a *ho-
momorphism.

Proof. For f and gec C,(Z), we compute
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oo, = (1,5, 0w, 0,008 ,dr)o@,rd0,p

= (substituting I",, = ¥,,~*-®,, and interchanging the
order of integration)

SMqu,. ST ) qr)(g MSZWg(F,,,)p(F,p)fypdr,pdp>dgp”dr

= (o(f)(o(9)7)), as desired.

Finally, we compute

<P(f*)7, 3> = SMXMSZ f*(®qp)<lo(@qp)7m Bq>qd@qupdq

= S S f_(¢qp—l)A(@qp_1)<lo(@qp_l)6qr Tp >;d@qup dq
axu )z,

(see G21) = | | F0,)K0000, 7, 7d¥ dp
= <1, ()3, 50 p(F*) = p(f)" -

The following example provides a representation analogous to the
left regular representation for groups.

ExaMpLE 4.7. Let p, be the strongly continuous unitary repre-
sentation of Z,, on $5(Z,.x) given by (0D, )f )T ) = f(@. T ,,).
The representation bundle F' arising from p, and Z may be regard-
ed as= U QE(ZQ,XM). The map f—f';C(Z)— I, (F), defined by
() = 1| ,,x;,e is bijective, and || f]|l, = || f'|l.. Accordingly, we can
identify <4(Z) and I'(F). Given f and geC,(Z), then p(f)9 =
(f*9).

5. DEerFINITION 5.1. For feC,(Z), we define

170a= (1,1, (1, 17w 1d0,) dadp)?

[| ||z defines a norm on C,(Z); we complete C,(Z) with respect to
Il Il to form <4,(Z).
To simplify matters, we recall the map: \: C.(Z) — C.(M X M),

where Mf)(@,p) = | _f(0.)d0,,.

Zgp

THEOREM 5.2. NS *g) = MS)*N(9) and Mf*) = M[f)*, using the
trivial groupoid structure on M X M over the diagonal of M x M.
(on (M x M),, = {(e, €)} the Haar measure is taken as 1).
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Proof. We write f,, for M f)(q, p). Then

o) = | ] 0w, 0,000, rdo,
= Sygzqrf@qr)gmdwmdr
_ S Furllenr = ML)+ MO)(D,,)

Next, to show M *) = AMf)* we should show

(5.2.1) |, A0 4@, = | £0,)d0,,.

Zgp

If p = q = e this is a standard theorem. The extension to the general
case is routine, using (2.6.1).

Accordingly, f — M(f) defines a xhomomorphism. Also, || f ||, =
IN(FD s, where || ||, is the &4 norm on C, (M x M). For f and
geC,(M x M) it is easy to show that || fxg|. = |[f|l:ll¢g]|l.. Finally,
we obtain the

THEOREM 5.3. Given f and ge Cy(Z) then || f+g|lu = ||fllell 0]l
and || fIl =1 /*I

Proof.
A FxgD e = UM TgD L= (MDD Il = 1 F 1l 1l 9 1]

settles the first part, and |[A(| /*) [l = [IMISD* [l = [[MIf]]]: settles
the second part.

Accordingly, the convolution and (*) involution extend to .¢5,(Z),
making ,(Z) a Banach algebra with a natural involution. Represen-
tations also extend to &5,(Z) as shown below.

THEOREM 5.4. For feC Z)andve ' (E), || o(f)7|l: = || Flle !l ]2
Proof. o(f)v, o(f)7)
S SMS HISZ Sz f<¢4p)f(w‘qr)<lo(@q:n)7m p(wqr)yr>dwquqf”drdpdq

= el 1111 [l || drdpdg

e
I, (S lfqp!||7p|ld10><SM|fqr|||%||dr>dq
)

(L 1fallv11dp) dg

IA
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< S(g | fun dD SMII 7, IF dp)da
= £ NIE -

Accordingly, o of Z on E lifts to a *representation of &5,(Z) on
'(E).

ExAMPLE 5.5. Suppose Z = Z(G, H) as in (3.5¢), and that G/H
is compact and p(1) =1. Then (*:C(G)—C,(Z) (see (3.5.2) is a
norm increasing *homomorphism.

Furthermore, a representation o of Z on E defines a representa-
tion o’ of G on I'(E), by (0'(?)7), = 0(®,,)Y,, where p = &~'(q) and
9, =(q,?,p). P is a unitary representation since g is invariant
under G. Then o’ is the induced representation (well known in group
theory) from the representation p, of Z, . (=H) on E,. The diagram
below, relating Z and G, commutes.

C(Z) > A (IyE))

of

C(G) L= (I y(E)).

Note that the case H = @, 1(1) =\, (1) =1, is the same as the
Example 3.5a, where Z = Z,,.

6. Suppose Z,, is compact, 4 =1, and \,(1) = 1 (the vertically
compact case). Then the completion of C,(Z) with respect to the
|| |l: norm forms the Hilbert space <5(Z). We will extend the “or-
thogonality relations” for compact groups to the above case, and re-
present 4(Z) as a direct sum of simple H* algebras.

DEFINITION 6.1. Given v and 6 € I'(E*), where o is a represen-
tation of Z on E°, we define T,,;: Z— C, by

TPTJ(@qp) = <7qy 40(@417)5?>q .

THEOREM 6.2. If o, and 0, are irreducible, then

LB oy
<Tpra'Tp';~a'> = dim 0. ,Lf e o

0 if o ts not equivalent to o'.

Proof. Integrating both sides of (6.2.1) over M x M yields the
desired result.
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(6.2.1) |, <o 0@, 00,000,
<7qv 7;><3;y 8p> 1 = 0
= dim p, =0

0 if o is not equivalent to o'.

For ¢q = p = e, (6.2.1) is just the orthogonality relations for compact
groups. The proof of (6.2.1) for general p and ¢ is similar to the
usual derivation of the orthogonality relations, for example see [1].

Notation. The representations p and o’ of Z on E°¢ and E* re-
spectively will be such that o, and p; are irreducible. The map 6 — 6*:
I'(E)— I'(E)* = dual of I'y(E), is defined by 6*(v) = <{v,6>. [(E)*
is the image of I',(F) under 6 — 6*. The (algebraic) tensor product
I'(E?)yQI'.(E’)* many be regarded as a (dense) subalgebra of C, =
the Schmidt operators on I',(E*¢). In particular (v Q 6*)(B) = <8, 6>7.
Conversely, a and BeC, can be regarded as elements of the (Hilbert
space) tensor product I"y(E°) ® I',(E*)*. The inner product on C, is
defined by <a, 8’ = <a, 8> dim p, where { , > is the inner product on
I'(E°) Q 'y (E°)*, making C, a simple H* algebra,

THEOREM 6.4. The canonical map T,:(E*) QI (E*)— C(Z)
defined by T,(v Q 0*) = T,,; dim p, extends to a *homomorphism ond
isometry of C, into 5(Z).

Proof. To show T, defines an isometry from C, we compute
LT,y dim p,, T,ys dim 0,> = <v ® 6%, v ® 8*>dim p, (by the orthogona-
lity relations,) = <y ® 6*, v ® B*Y in C,. In C,, (v ® *)o (¥ ® £*)()
=<, BV 6>v. To show T, is a homomorphism we need T, % T, s
= (', 6)T,;s)/dim p,. We compute

Torss Ty @) = | § <oy 0000511, 00 0) 8,000 o
= [ < 0(@,)8,0<11, 0 5drdim o, = Ty, fdim p)
as desired. Finally, it is easy to show that
T((v Q@ 0%)*) = (To(v ® 6*))*.
THEOREM 6.5. Let & be a set of irreducible representations of

Z containing exactly one member from each equivalence class. Then
>\ T, is a *isomorphism and isometry of >, C, onto H(Z).
pes

pe¥
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Proof. The main point is that the functions T,,, for pe &, v
and del,(E*), separate the points of Z, and T,,; is orthogonal to
Tors if o0 and p and p’ € &.

7. REMARKS. 7.0. The algebra C,(Z) forms a quasi-unitary al-
gebra as defined by Dixmier in [2] if we use the inner product

fj(@qp) = f(qu)/l/A(Qw) .

Then C.(Z) is essentially the same as the algebra Dixmier defines on
page 310, [2] in the special case that Z is the example of (3.5¢).
Also, in this special case, the representation defined in (4.4) is sub-
stantially the same as that defined by Glimm in Theorem 1.5, [4].

Say=\ | va@ 1w, 5@, )av, dadr, £* = 5+, and

The author is indebted to the referee for the above references
(2] and [4]).
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