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CONTINUOUS DEPENDENCE FOR TWO-POINT
BOUNDARY VALUE PROBLEMS

ROBERT GAINES

Suppose the boundary value problem

(1.1) y"=Λt,y,y')
(1.2) y(a) = a , y(b) = β ,

where f(t, y, y') is defined on D ̂  [a, b] X R2

f has a unique solu-
tion y(t; a, β) which belongs to C2[a, b], for each (a, β) in some
set S C R2, This paper gives sufficient conditions for y(t; a, β)y

y'it) a, β), and y"(t\ a, β) to be continuous on [a, b] X S.

In § 2 it is shown that if /(£, y, yr) is continuous on D and y(t;
a, β) is continuous on [a, b] x S, then y'(t; a, β) and y"(t; a, β) are
continuous on [α, 6] x S. In § 3 it is shown that y(t; a, β) is con-
tinuous under the assumption that solutions to boundary value pro-
blems for (1.1) exist and are unique in a certain strong sense. In
§ 4 the continuity of y(t; a, β) is established under the assumption
that solutions to (1.1) satisfy a maximum principle.

Bebernes [1], Fountain and Jackson [3], and others have given
sufficient conditions for the problem (1.1), (1.2) to have a unique solu-
tion, but the question of continuous dependence has not been given
extensive attention.

2* Derivatives of convergent sequences* In this section we
establish that if f(t, y, yr) is continuous on D, the continuity of
y(t; a, β) is enough to guarantee the continuity of y'(t; a, β) and
y"(t; a, β). The proof makes use of a lemma concerning derivatives
of uniformly convergent sequences of solutions. First we prove a
variation of a well-known result for initial value problems; e.g., see
[4], P. 11.

LEMMA 2.1. Let f(t, y, y') be continuous on D. Given T > 0 there
exists a(T) > 0 such that if y(t) is a solution to (1.1) on [α, b] and
I V(to) I + I y'(t0) \^T for some ί0 e [a, 6], then \ y(t) \ + | y\t) \ ̂  2T for

t e J(ί0, a(T)) == [α, 6] Π [t0 - oc{T), t0 + a(T)] .

Proof. Let

K={(t,y,y')eD:\y\ + \y'\^
and let

/,2/')l + 2 Γ .
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Choose a(T) < T/C.
Suppose for contradiction that y(t) is a solution to (1.1) on [α, b]

with \y(to)\ + \y'(tQ)\ ^ T and there exists tte 4(t0, a(T)) such t h a t

I »(ίi) I + I y'(Q I > 2Γ .

For definiteness assume ίx > ί0. There exists t2e d(t0, cc(T)) such that

*0 \ *2 " \ 1̂>

(2.1) I ι/(ί2) I + I y'(ί2) I = 2T

and

(2.2) |y( ί ) | + | y ' ( ί ) | ^ 2 Γ

for ίe[to, t,].
By the Mean Value Theorem

I»(*i) - »(«.) I + I y'(Q - y'(Q I

= (i y'(Q I + I y"(Q l)(ί, - ί.)

for some ζ t and ζ2 in [t0, Q. By (2.2), | y'iζ,) \ ^ 2Γ. Moreover, (2.2)
yields that (ζ, 2/(ζ2), 2/'(ζ2)) e JK" and we have

I V"(ζύ I = l/(ζ, » ( « , ί/'(C2)) I ^ max \f(t, y, y') \ .
K

Thus

I y(U) - y(t0) I + I y'(t2) - y'(ί0) | ^ (2Γ + max |/(ί, y, »') |)(ί, - ί0)
K

hence,

I » ( ί . ) i + I y'(t2) \ < T + \ y(t0) I + I y'(t0) I ^ 2 Γ .

This contradicts (2.1).

LEMMA 2.2. Let f{t, y, y') be continuous on D and let {yn(t)} be
a sequence of solutions to (1.1) on [α, 6] such that yn(t) —* yo(t) uniform-
ly on [α, 6] and yQ(t) has a continuous derivative on [a, b]. If there
exists a sequence {tn} in [α, b] such that tn —> tQ and y'n(tn) —»z0, then
there exists a subsequence {yk^)(t)} such that i/*(n,(i) —• yΌ(t) uniformly
on [a, 6],

Proof. Let To = \ yo(to) | + | z01 + 1. There exists N > 0 such that

I »,(«•) I + I y'n(t«) 1 ^ Γo

for n^ N. By Lemma 2.1, there exists a(T0) > 0 such that for n^N
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on Δ(tn, a(T0)). Since tn—>t0, there exists JV0 ^ iVsuch that for n^

I vΛt) I + I y'Λt) I ^ 2T 0

on Δ(to,a(TQ)/2).
Let

#o ΞE {(«,j,, y'): t e Δ(t0, a(T0)/2), | y | + | yf\ £ 2T0} .

For n^ No and ί e J(ί0, cc(TQ)/2) we have

I »;'(«) 1 - |/(ί, »•(«), »;(«)) I ̂  max |/(t, y, i/') I .

It follows from the Mean Value Theorem that {y'n(t)} is equicontinuous
on Δ(t0, a(T0)/2). Since {#;(<)} is bounded by 2Γ0 on J(ί0, a(T0)/2) for
w ^ JVoi Ascoli's Theorem implies that {y'n(t)} has a subsequence {ί/ll(Λ,}
which converges uniformly on Δ{tQ, a(T0)/2) to some zo(t). But since
y^oίί)"*yo(ί) on J(ί0, α(Γ0)2) we must have zo(t) == yj(ί) on J(ί0, a(T0)/2).

If J(ί0, α(Γ0)/2) = [α, 6] we are through. If not, at least one end
point of J(ί0> a(T0)/2) is in (α, 6). Denote such an end point by tx.

Let T = max[α,6] (| yo(t) \ + | y[{t) |) + 1.
There exists iVΊ such that for n^> N±

I y*ι( ,(ti) I + I yίι( ,(ίi) I ̂  I %(ίi) I + I yί(ίi) I + l

^ r.
By Lemma 2.1 there exists a{T) such that

for ί G Δ(tu a(T)) and w ^ Nx. By the same arguments used for the
interval J(ί0, α(T0)/2), {^l(%)(ί)} has a subsequence {yki{n){t)} such that
y'k2{n){t)-+y',{t) uniformly on J(tua(T)). Thus y'Hin){t)-+y',{t) uniformly
on Δ{tιya{T))ΌΔ(tQia{T0)l2).

If J(^, α(Γ)) U Δ(t0, a(T0)/2) = [α, 6] we are through. If not, there
is an end point t2 of Δ{tu ct(T)) U 4(£0, α(Γ0)/2) in (α, 6) and the above
procedure may be repeated with T unchanged. Since a(T) is also
unchanged, this process will terminate in a finite number of steps
with a subsequence {ykm{n)(t)} such that y'km{n)(t) —• yί(ί) uniformly on

J(ί0, α(Γ0)/2) U { U J(ί ί f α(Γ))} - [α, b].

LEMMA 2.3. Lβί /(£, ̂ /, ?/') δβ continuous on D. If {yn(t)} is a
sequence of solutions to (1.1) on [α, δ] sucΛ, that yn(t) —• yo(*) uniform-
ly on [α, 6] where yQ(t) has a continuous derivative on [α, δ],
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Vn(t) —* yr

Q(t) uniformly on [α, δ].

Proof. By the Mean Value Theorem, for each n there exists
tn e [α, b] such that

1 V«(b) - y n ( a ) I - I y ' n ( t n ) \ ( b - a ) .

Since there exists B > 0 such that | yn(t) | ^ B on [α, 6] for all %, we
have

I y'n(tn) I £ 2£/(δ - α) .

{2/feo(?l)(£)} denote an arbitrary subsequence of {yn(t)}. Since
{2/ίo(»)(**o(»))} * s bounded we may extract a further subsequence {ykli%)(t)}
such that 2/ίl(»)(ίΛl(w,) —*20 and ίAl(Λ) —>£0 e [α, δ]. By Lemma 2.2, there
exists a further subsequence {yk2(n)(t)} such that yk2{n)(t) —> ?/ό(0 uniform-
ly on [α, δ].

Thus any subsequence of {yn(t)} has a further subsequence which
has its derivatives converging uniformly to yf

ϋ(t) on [α, δ]. It follows
that y'n(t)-+yΌ(t) uniformly on [α, δ].

The conclusion of Lemma 2.3 does not hold if the hypothesis that
yo(t) has a continuous derivative on [α, b] is removed. The function
yn(t) = i/6 + 1/n — t is a solution to y" = 2(τ/')3 on [o, δ] for each n.
Moreover, {yn(t)} converges to yo(t) = Vb — t uniformly on [o, 6]. But
{y'n(t)} does not converge to yf

0(t) uniformly on [o, δ].

THEOREM 2.4. Let f(t, y, y') be continuous on D. Suppose (1.1)
has a unique solution y(t; a, β) on [α, δ] satisfying (1.2) for (a, β) e S cz
R2. If y(t; a, β) is continuous on [a, b] x S, then y'(t; <x, β) and
y"(t; a, β) are continuous on [α, δ] x S.

Proof. Since y'(t; a, β) and y"(t\ a, β) are continuous for fixed

(α, β),

I y'(t; a, β) - y'(t0; aQ, βQ)\£\ y'(t; a, β) - y\t\ a0, β0) |

+ I y'(t\ a0, βQ) - y'(tQ; a0, β0) \ ,

a n d

I y"(t; a, β) - y"(t0; a0, βo)\£\ y"(t; a, β) - y"(t; a0, β0) \

+ I y"(t; a0, β0) - y"(t0; a0, β0) \ ,

it is sufficient to show that y'{t\ α, β) and y'\t\ a, β) are continuous
functions of a and β uniformly with respect to t.

Let (ani βn) be a sequence in S such that (any βn)—y(a0, βQ)e S.
Since y(t; a, β) is continuous on [α, δ] x S, y(t, aM βn) ~> y(t; α0, β0)
uniformly on [α, δ]; hence, Lemma 2.3 yields the uniform convergence
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of {y'(t; an, βn)} to y'(t; a0, βQ). Since

y"(t; an, βn) = /(ί, y(t; aΛ, βn), y'(t; an, βn))

and f(t; y, yr) is continuous, it follows that y"(t\ anj βn) —• y"(t\ a0, β0)
uniformly on [α, &].

3* Strong existence and uniqueness* In this section we show
that y(t; a, β) is continuous on [a, b] x R2 if solutions to (1.1) exist
and are unique in the sense described in the following definitions.

DEFINITION. Solutions to boundary value problems for (1.1) will
said to be unique in the strong sense on [α, b] if for any solutions
Φ(t) and f{t) to (1.1) on [c, d] c [α, 5], φ(c) = f(c) and 0(eZ) = ψ(d) imply
that φ(t) = ψ(t) on [c, d].

DEFINITION. Solutions to boundary value problems for (1.1) are
be said to exist in the strong sense on [α, b] if for any real numbers
a and β and any [c, ώ] c [α, 6] there is a solution #(£) to (1.1) on an
interval I D [C, eZ] such that 2/(c) = α, j/(d) = /3 and either

( i ) / = [α, 6], or
(ii) y(t) is unbounded.

THEOREM 3.1. Suppose solutions to boundary value problems for
(1.1) exist and are unique in the strong sense on [α, 6]. If y(t; a, β)
denotes the unique solution to (1.1) on [a, b] satisfying (1.2), then
y(t; a, β) is continuous on [a, b] x R\

Proof. Let ε > 0 be given.
Let t0 e (α, b). Let yλ(t) denote a solution to (1.1) on an interval

Jx ZD [tOy b] such that

(3.1) ytfo) = y(t0; a0, β0) + ε, ^(6) = y(b; a0, β0) = β0

and either yy(t) is unbounded or Iλ = [a, b\. Let y2(t) denote a solution
on I2 3 [α, t0] such that

ί!/i(α)» if I\ — [̂ » δl
(3.2) yz(a) - lV

 o ' ., r ( „ 2/2(ίo) - !/(*<>; «o, A) + 2ε
[y(a;a0, β0) + ε, if / : c ( α , 6 ] ,

and either ?/2(ί) is unbounded or I2 — [α, b].
Let τ/3(ί) and y4(t) denote similar solutions on J s Z) [ί0, 6] and

I4 Z) [α, ί0] with

(3.3) y3(t0) = y(tQ; a0, β0) - ε , ^(6) - τ/(6; α0, A) = A
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(3.4) Vi(a) =
2/3(α), if 73 = [α, b]

y(a; a0, β0) - ε, if 73 c (α, 6] ,

Assume for definiteness that Iλ = [a, b], 72 c [α, 6), 73 c (α, 6], and
/4 — [α, &]. The other cases may be treated with arguments similar
to those below.

Uniqueness in the strong sense and (3.1) imply that

Viiβ) = Vz(a) > oi, = y(a; a0, β0) .

Since y2(t0) > y^Q follows from (3.2), uniqueness in the strong sense
also implies that y2(t) ^ yx(t) on 72; hence, y2(t) must become unbound-
ed positively to the right of t0.

Uniqueness in the strong sense and (3.3) imply that yz(t) ^ y(t; aOJ βQ)
on 73; hence, yz{t) must become unbounded negatively to the left of
t0. Since y4(t0) < y3(t0), there exists a < t, < t0 such that y^t,) = y3{tj);
hence, uniqueness in the strong sense implies that yt(t) < y^t) on
[ί0, &]. In particular, y4(b) < y3(b) = β0 = y(b; a0, β0).

Let δ&o) Ξ min [?/2(α) - α0, a0 - y4(a), β0 - yt(b)]. If | α - aQ | +
^ — β01 < δtfo), then yA{a) < a < τ/2(α) and /5 > ?/4(6). By uniqueness

in the strong sense we must have yJJ) ^ y(t; a, β) on [α, b] and since
y2(t) becomes unbounded positively to the right of t0 we must also
have y(t; a, β) £ y2(t) on 72.

There exists δ2(tQ) such that for

δ2(ί0), ί e 72,

and

- t0

- 2/4(ί0) | < ε. Thus, for | a - aQ \ + | β - βQ | < and
— £01 < δ2(ί0) we have

I y(t; a, β) - y(t; a0, β0)

^ I yz(t) - y*(tQ) I + y2(tQ) - y,(tQ)

+ I Vi(t) - Vt(t0) I

<̂  ε + 4ε + ε = 6ε .

Uniqueness in the strong sense implies that for

I a - aQ I + I β - β01< δt(a) = Ξ ε ,

2/(£; a0 - ε, /90 - ε) £ y(t; a, β) ^ y(t; a0 + ε, βQ + ε)

on [α, 6]. There exists δ2(α) such t h a t for 11 — a\ < S2(α)

ί; a0 + ε, /30 + ε) - τ/(α; α:0 + ε, β0 + ε) | < ε

α:0 - ε, β0 - ε) | < ε .

and | £ - α | < δ2(α)

and

y(t; a0 - ε, β0 - ε) -

Thus for I a - aQ | + | β - βQ \ < i
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I V(t; a, β) - y(t; a0, β0) | ^ 6e .

A <52(δ) may be defined in a similar manner.
By the Heine-Borel Theorem there exist tlyt2, •••,** such that

the intervals defined by 11 — t1 \ < d2(ti) cover [α, δ]. Let δ = min ^ ( ί j .
Then for any t e [α, 6] | a — a01 + \β — βo\ < δ implies that

I y(t; a, β) - y(t; aQ, β0) | ^ 6ε .

Since y(t; a, β) is continuous for fixed a and β, it follows that y(t; a, β)
is continuous on [α, b] x R2.

It is of interest to note that in the proof of Theorem 3.1, the fact
that the functions involved were solutions to (1.1) was used only to
assert that the functions were continuous. The arguments may be
applied to any family of continuous functions satisfying the uniqueness
and existence requirements. Theorem 3.1 is a variation of a result of
Beckenbach ([2], p. 365) concerning two-parameter families of con-
tinuous functions.

As an immediate consequence of Theorems 2.4 and 3.1 we have

COROLLARY 3.2. Let f(t, yy yf) be continuous on D and suppose
solutions to boundary value problems for (1.1) exist and are unique
in the strong sense on [α, b]. If y(t; a, β) denotes the unique solution
to (1.1) on [α, b] satisfying (1.2), then y(t; a, β), y'(t; a, β) and y"(t; a, β)
are continuous on [α, b] x R2.

4* The maximum principle* In this section we consider the
function y(t; a, β) in the presence of a maximum principle.

DEFINITION. Solutions to (1.1) will be said to satisfy the maximum
principle on [c, d] c [α, 6] if for any solutions φ(t) and ψ(t) to (1.1)
on [c, d]y I φ(t) — ψ(t) I assumes its maximum on [c, d] at either c or d.

Note that if solutions to (1.1) satisfy the maximum principle on
[α, δ], then solutions to (1.1) on [α, δ] satisfying (1.2) are unique.

THEOREM 4,1. Suppose solutions to (1.1) satisfy the maximum
principle on [a, δ]. If (1.1) has a (unique) solution y(t; a, β) on [α, δ]
satisfying (1.2) for (<x, β) e S c R2, then y(t;a,β) is continuous on
[α, δ] x S.

Proof. By the maximum principle on [a, δ], for (a, β) and (aQ, βQ)
in S we have

I y(t; a, β) - y(t; a0, βQ) \ ̂  m a x [| a - aQ \,\ β - β 0 1 ] .
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Since y(t; a, β) is continuous on [α, δ] for fixed (a, J3), it follows that
y(t; a, β) is continuous on [α, δ] x S.

COROLLARY 4.2. Let f(t, y> yr) be continuous on D. Suppose solu-
tions to (1.1) satisfy the maximum principle on [a, b]. If (1.1) has a
(unique) solution y(t; a, β) on [a, b] satisfying (1.2) for (a, β) e S czR2,
then y(t; a, β), yf(t; a, β) and y"(t; a, β) are continuous on [α, b] x S.

Various sets of hypotheses on f(t, y, yf) imply that solutions to
(1.1) satisfy the maximum principle. As an example we state

THEOREM 4.3. If f(t, y, y') is continuous on D, f(t, y, yf) is non-
decreasing in y on £>, and for any compact subset C c D there is a
positive constant K(C) such that

l/(ί, y, vl) - /(ί, v, yd I ̂  K(C) \y[-y'2\

for any (t, y, y[) and (t, y, y'2) in C, then solutions to (1.1) satisfy the
maximum principle on any [c, d] c [α, δ].

Proof. This is an immediate consequence of Theorem 2.2 in [1].

As a partial converse to Theorem 4.3, we have

THEOREM 4.4. // f(t, y, y') is continuous on D and solutions to
(1.1) satisfy the maximum principle on every [c, d] c [α, δ], then
f(t, y, yf) is nondecreasing in y on D.

Proof. Suppose for contradiction there exist (t0, ylf y'Q) and
(tOf y2, yΌ) in D such t h a t y, > y2 and f(t0, ylf yd < f(t0, y2, y[). By con-

tinuity we may assume tQ e (α, δ).

Since f(t, y, yf) is continuous on D, there exists an interval
[c0, d0] c [a, b] with t0 e (c0, d0) such that (1.1) has solutions y,(t) and
yz(t) on [cQ, d0] with yfa) = yly y[(t0) = y[, y2(t0) = y2, and y'2(tQ) = y[.

Since

y"(Q - y'2'(t0) = f(t0, y19 y'o) - /(ΐ0, y2, yΌ) < 0 ,

y[(U) - yί(t0) = 0, and y,(U) - y2(Q > 0, there exists [c, d] c [c0, d0] such
that ί0 G (c, d) and ^(ίo) - 2/2(ί0) > ^(ί) — τ/2(ί) :> 0 for any ί φ t0 in
[c, d]. In particular,

- y2(c) |,
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which contradicts the maximum principle being satisfied on [c, d],

5* Continuous dependence without uniqueness in the strong
sense* Though the hypotheses of Theorem 4.1 only required that
solutions satisfy the maximum principle on [α, 6], a more " n a t u r a l "
assumption is that solutions satisfy the maximum principle on every
subinterval [c, d]. If this stronger assumption is made, solutions to
(1.1) are unique in the strong sense as was assumed in the hypothesis
of Theorem 3.1.

A simple example shows that uniqueness in the strong sense is
not a necessary condition for continuous dependence. Consider the
equation

(5.1) y"= - y .

The unique solution to (5.1) on [α, 6] = [0, 3τr/2] satisfying

(5.2) 2/(0) - a, 2/(3τr/2) = β

is

y(t; a, β) = a cos t — β sin t

which is clearly a continuous function of a, β and ί. However, y^t) = 0
and y2(t) = sin t are both solutions to (5.1) on [0, π] with y^O) =
2/2(O) = 0 and y^π) = y2(π) = 0.

When strong uniqueness is not present and in other situations,
the following theorem suggested to the author by A. M. Fink is
sometimes useful.

THEOREM 5.1. Let f(t, y, yr) be continuous on D. Suppose (1.1)
has a unique solution y(t; a, β) on [α, b] satisfying (1.2) for (a, β)
in a subset S c R2. If there exists B > 0 such that \ y(t; a, β)\ <£ B
and I y'(t; a,β)\<ZB for (t, a, β) in [a, b] x S, then y(t, a, β), y'(t; a, β),
and y"(t; a, β) are continuous on [α, b] x S.

Proof. Since f(t, y, y') is continuous and

(5.3) y"(t; a, β) - f(t, y(t; a, β), y'(t; a, β))

there exists M > 0 such that | yf\t\ a, β)\ ^ M for (ΐ, a, β) e [α, b] x S.
Let {(an, βn)} be a sequence in S such that (an, βn) —> (a0, β0) e S.

Let {y(t; ak{n)J βk{n))} denote an arbitrary subsequence of {y(t; an, βn)}.
Since | y'(t; ak{n), βk(n)) \ ̂  B and \y"(t;akin), βk(n))\ ^ M, the Mean
Value Theorem implies that {y(t; ak{n), βkM)} and {y'(t; ak{n), βk{n))} are
equicontinuous. Since both sequence are also uniformly bounded, using
Ascoli's Thorem we may choose a further subsequence {y(t; ockι{n), βkl{n))}
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such that y(t; aklin), βkl{n)) ~> yQ(t) and y\t\ akl(n), βkl{n))~->yΌ(t) uniform-
ly on [α, b] for some yo(t). Since /(ί, y, yf) is continuous, it follows
from (5.3) that {y"(t; akiinh βkl(n))} converges to y'Q'(t) and yo(t) is a
solution to (1.1) on [α, 6]. Since yQ(a) = a and yo(b) = β, uniqueness
implies that yo(t) = y(t; a0, β0).

It follows that the original sequences must converge to the same
limits; i.e.,

y(t; an, βn) -* y(t; a0, β0) , y'(t; an, βn) -> y'(t; a0, β0) ,

and y"(t; any βn) -* y"{t\ a0, βQ) uniformly on [α, b]; hence, y(t; a, β),
y'(t; cc, β) and y"(t; a, β) are continuous on [α, b] x S.

If a Nagumo growth condition of the type introduced in [5] and
employed to obtain existence in [1] and [3] is imposed, then bounds
on derivatives may be obtained whenever the solutions themselves are
bounded.
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