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ON THE BOUNDARY CORRESPONDENCE OF
QUASICONFORMAL MAPPINGS OF

DOMAINS BOUNDED BY QUASICIRCLES

TERENCE J. REED

A Jordan curve £^ is a quasicircle if there exists a con-
stant C(l ^ C < oo) such that the cross ratio (zlt z2, 23, z4) of any
four points zu , z4 in order on Jzf satisfies | (zlf z2, z3, z4) | ^ C.
It is shown that the boundary correspondence / induced by a
quasiconf ormal homeomorphism of two Jordan domains bounded
by quasicircles satisfies | (wlf w2, ws, w4) | ^ A \ (zu z2, z3, z4) \a,

(A ^ 1, 0 < a ^ 1) where wk = f(zk) and the points are in order
on the boundary. A converse to this result is proved and
estimates are computed in each direction.

DEFINITION 1. A Jordan curve £? is called a C-quasicircle
(1 ^ C < oo) if

( 1 ) I (z» z2f 3s, z4) | < C

for any four points z19 , z4 in order on £f.

Since cross ratios are invariant under Mδbius transformations we
will assume without loss of generality from now on that £f contains
oo whence we may assume z4— OQ SO that (1) becomes | (zlf z2, z3) \ ̂  C
or more graphically,

( 1 ) ' \zι-z2\^C\zι-zz\ .

This definition and the observation of the importance of these
curves to the theory of quasiconf ormal mappings are due to Ahlfors [1].

DEFINITION 2. (a) We will say that a homeomorphism / of a C-
quasicircle J^ onto a Jordan curve £f is (A, α:)-upper quasisymmetric,
A ^ 1, 0 < a ^ 1 (A, a constants) if

( 2 ) I (wlf w2, w3, w4) i ^ A I (z19 z2y z3, z4) \a

for any four points zl9 z2, JS3, z4 in order on ^f and where wk = f(zk),
k = l,2, 3, 4.

(b) If we replace (2) by

( 3) B\ (z19 z2, zB, z4) |'3 ^ I w19 w29 w3, w4) \

under the same conditions and for some constants B and /3, β ^ 1,
0 < B ^ 1 then we will call f(B, α)-lower quasisymmetric.
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Again in what follows and without loss of generality we will as-
sume that oo e«Sf, =2 '̂ and that /(©o) = °° in which case (2) and (3)
may be replaced by

(2 )' I (wlf w2i w,)\SA\ (zu z2, zB) \a

a n d

( 3 ) ' B\ (zlf z2, z3) \β ^ I (wίf w2, w3) I

respectively and where (z19 z2, zz) = (zly z21 z3, oo), etc.
The term quasisymmetric is adapted from the term as applied to

real functions of a real variable. We have

DEFINITION 3. / i s called |θ-quasisymmetric or simply quasisym-
metric if

( 4) 1/p^ (f(χ + ί) - f(x))l(f(x) - f{x -t))tίp

for some constant p ^ 1 and all x and for all t Φ 0.

In Theorem 3.1 we will easily show that for the real case, (2)',
(3)' and (4) are equivalent.

REMARKS. The following statements are rather immediate con-
sequences of the above definitions.

1. If / is an (A, #)-upper quasisymmetric mapping of a C-quasi-
circle =SP then f(Sf) is an ACα-quasicircle.

2. If / is an {A, α:)-upper quasisymmetric map of Jordan curves
then f~ι is an (A~lla, l/α:)-lower quasisymmetric map of the same curves
in reverse order.

3. If f1 and f2 are (A19 αx) and (A2, α2)-upper quasisymmetric
mappings respectively then the composition f1°f2 is {A^1, a^a^-upper
quasisymmetric.

Similar remarks hold for lower quasisymmetric functions. The
following lemmas are fundamental to this paper.

The first lemma incorporates the main results of the paper of
Beurling and Ahlfors [3] where also originated Definition 3 above.

LEMMA 1. (a) The boundary correspondence f induced by a K-
quasiconformal F of the upper half plane onto itself with F(oo) = oo
is p-quasisymmetric.

(b) If f is p-quasisymmetric then there exists a K-quasicon-
formal mapping F of the upper half plane onto itself such that F
restricted to the real line is f.

Let ^~ denote the class of quasiconf ormal self homeomorphisms F
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of the upper half plane with JP(OO) = co. Set ρ(F) = Inf {p | the
restriction of f e ^ to the real line is lO-quasisymmetric} and Φ{K) =
Sup {p(F) \Fe ^ and F is if-quasiconf ormal}. Φ(K) is given explicitly
in [2, p. 65]; we have the convenient estimate

( 5 ) p ^ Φ(K) ̂  min {16-V*, e^1"-2284}

from [2, p. 65] and [3] for the p of (a) of Lemma 1.
Let K{f) = inf {K | there exists a K quasiconformal extension

f e ^ of /} and Ψ(p) = sup {J5Γ(/) | / is |θ-quasisymmetric}. The con-
struction of F in Lemma l(b) can be carried out so that K ^ min {p2, Sp}
(c.f. [3] and [5]). Thus we have the estimate

( 6 ) Ψ{p) ̂  min {p\ Sp} .

The exact value of Ψ{ρ) is not known.

LEMMA 2. Let & be a Jordan domain with C-quasicircular
boundary J5f and let w = g(z) be a Kg-quasiconformal mapping of
& onto the upper half plane. Then there exists a K-quasiconformal
mapping G of the plane onto itself such that G\^ = g with

( 7 ) K= KgΨ(M), M - Φ(L), L =

where Ψ and Φ are the functions defined above.

Here it is clear that if is a functions only of Kg and C and we
will denote this K sometimes by K(Kg, C) and abbreviate this by K{C)
when g is conformal (Kg — 1).

Lemma 2 is the reflection principle of Ahlfors [1], We also have
the following.

LEMMA 3. Let J?f be a C quasicircle containing co and let zlf

z2, zs be any three points in order on J*fm Further, let j y denote
the arc z19 z2 and & the arc z3, co on ^f. Then the module M of
the ring domain & consisting of the entire plane with boundaries

and £%? satisfies the inequality

(8) M< J- log24C
2π

If in addition,

z2 - z,

I z2 - zx | < J - C - 2 \z,-z2

then we have the lower estimate
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(10)
Z2~ZX

In particular if £f is the real line and J^f = ( — 1, 0), & — (r,
then the module M(r) or & = &r satisfies

(11) -i-log(l + r) ^ M(r) ^ — log 24(1 + r) .
2π 2π

Proof. The module of a ring domain & (homeomorph of an open
annulus) is (2π)~ι log {r2jr^ where rλ and r2 are the inner and outer
radii respectively of an annulus conformally equivalent to &. From
Kunzi [4, p. 7]

(12) M ^ - L log Θ \
2π VI z2 —

where (27Γ)"1 log ©(r) is the module of the ring domain &r with bounda-
ries ( — 1, 0) and (r, oo), γ > 0. From the known inequality ([4, p. 8]),

(13)

we have

Θ(r) < 16r + 8 ,

M< — 16
2π z2 -

where in the last step, quasicircularity was used twice. We have
proved (8).

Now assume (9). In this case, z e S/ implies by quasicircularity
t h a t I z — z21, I z — z11 ^ C \ z2 — zx \ whence

Let r, = C I z2 — z11. Now if 2 e
that

then z2 \ ̂  C " 1 1 zz — z2 so

C - z, - 2C2 2C - z2

where in the last step we have used (9). Set r2 = 2C"11 zz — z21, then
(9) assures us that r2 > r1# We now have an annulus Szf of center
Z~\z* + Zi) and of inner and outer radii respectively r2 and r1 contained
in the ring domain ^ ? . By the comparison theorem for modules we
have
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2π
(14)

1
2π2

2
z?. -

Zi

z

1
3 2C 2

#3 —

#2 -

# 2

2τr 2C2

where in the last step we have used the inequality

This proves (10).
This right hand side of (11) results from letting zt = - 1 , z2 = 0,

s3 = 1 and C = 1. The right hand side of (11) follows by applying
the comparison theorems for modules to the annulus of inner radius
1/2, outer radius r + 1/2 and center ( — 1/2, 0) contained in s/.

We are now able to relate the types of quasisymmetry previously
defined.

THEOREM 1. (a) If the real function f is (A, a)-upper (or (B,β)-
lower) quasisymmetric on the real line with /(oo) = oo then f is p-
quasisymmetric and p depends only on A and a (or B and β).

(b) If f is p-quasisymmetrίc then f is (A, a)-upper and (B, β)-
lower quasisymmetric. A, α, B and β and depend only on p.

Proof. For (a) it is easier to suppose first that / is (B, /9)-lower
quasisymmetric. If we let zs = x + ί, z2 = x, zι — x — t and

Q = (/(α + t) - f(x))/(f(x) - f(x - t))

then from (3)', B2~β ^ 1/(1 + Q) whence Q S 2β/B - 1 and we may take

(15) p = 2ηB - 1

in Definition 3 (it is clearly sufficient to demonstrate only half of the
inequality (4)). To obtain ^-quasisymmetry from upper quasisymmetry
directly is not easy. However if / is (A, α)-upper quasisymmetric
then /-1 is (A~lla, l/α)-lower quasisymmetric which in turn is ^-quasi-
symmetric which p given in (15) and B = A~1/α, β = I/a. By Lemma
1 (b), f~ι may be extended to a ?Γ(io)-quasiconformal mapping F"1 of
the upper half plane onto itself, F is also Ψ(p) quasisymmetric ([2]
or [6]) and its restriction / by Lemma 1 (a) is ^'-quasisymmetric with
pr = Φ(Ψ(p)). p' clearly depends only on A, a and estimates on p' are
easily recovered from (5), (6) and (15).

To prove (b) we observe by Lemma 1 (b) that / has a iΓ-quasicon-
formal extension F to the upper half plane with K = Ψ(ρ). F may
be normalized by a Mδbius transformation so that F(0) = 0, F(l) = 1.
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The quasisymmetry (of any type) and the quasiconf ormality of F are un-
affected by this. Let r = (z3 — z2)/(z2 — zj, and rf = (w3 — w2)/(w2 - wx)
where wk = /(z&), fe = 1, 2, 3; then r, r' > 0. Further let Mz be the
module of the ring domain Rr and Mw the module of Rr, = F(Rr) (Rr

is defined in the proof of Lemma 3). By (11) of Lemma 3,

and

/ 1 \

I log

and by quasiconf ormality, Mz <£ KMW. Combining these three inequali-
ties and simplifying gives us

w2 - w, ^ 2 1 / z2 -

3 — z1

whence / is {A, α:)-upper quasisymmetric with A = 24 and α: = 1/ϋΓ =
1/Ψ(p). Lower quasisymmetry is established in a similar fashion.

We now state the main results of this paper. In the proofs we
will assume without loss of generality that oo e J*f, £^f and that
/(oo) =z oo (hence t h a t ^(oo) = oo).

THEOREM 2. Let F be a K-quasiconformal homeomorphism of
the plane onto itself then its restriction f to a mapping of a C-quasi-
circle £f onto a Cr-quasicircle Jzfr is (S, l/K)-upper quasisymmetric
and (T, K)-lower quasisymmetric with

S = max{24C'(4C2)1/^, (4C2 + 1)1!KC}
6 ) T = min {(4C2 + l ) - 1 ^ - 1 , 4rιC-\MCTκ) .

We will denote the right hand sides by S(C, C, K) and T(C, C", K)
respectively.

THEOREM 3. (a) Let f be an (A, a)-upper quasisymmetric home-
omorphism of a C-quasicircle JSf onto a Cf-quasicircle £^f then there
is an extension of f to a K-quasiconformal mapping F of the plane
onto itself (f = F\^) with

(17) K = K(C)Ψ(p(A0,a0))K(C)

where K(C) is defined in Lemma 3.2 and

A0 = s(C, l, KioyAW'i-sa, c,
aQ = a/K(C)-K(C)
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and where the function Ψ has been defined previously.
(b) Let f be a (B, β)4ower quasisymmetric homeomorphism of

a C-quasicircle £>? onto a C'-quasicircle Jίf' then there is an exten-
sion of f to a K-quasiconformal mapping F of the plane onto itself

(18)

where

= K(C)¥(σ(B0,β0))K(C)

BQ = T(C, 1, K(σ))βK{C')BK{Cf)T(l1 C, K(C)) ,

The function p(A, a) is the p of Theorem 1 (a) and σ(B, β) is
similarly defined.

Proof of Theorem 2. Let zly z2, z3 be three points in order on <&?
and wk = f(zk), k = 1, 2, 3. Let Mz be the modulus of the ring domain
&z obtained by removing the arcs z19z2 and zz, oo from ^f. Let Rw —

and Mw be the module of &v. First we note that

K~ιM, ^Mw^ KMZ .(19)

We consider the two cases
1. I w2 — wγ I <̂  1/4C"21 wz — w21. Here we use the right hand

side of (19) and (10) of Lemma 3 to discover that

1
A/^f2

—

w3 —
w2 —

wx

K
2π

< M

z

— zx

which implies that

(20)
4C/2(24C)A

z3 - zt

w2 — w1

wz —

2. \w2 - wλ\ ^ l/AC~2\w3 - w2\. Then

(21) — wί

w2 — wι

w2 - wγ 1
w2 — wι I

From quasicircularity | z3 — zλ \ ̂  (C)"11 ^2 — z1 \ so that from this and

(21),

w2 — wγ

^ ( 4 C 2
QtK

— ^ (4C2 + 1)C'K
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whence

(22)
(4C2

1

+ 1)C'K

T.

zz

J.

—

—

REED

Zι

Zι

w2 — wx

w3 — wγ

Combining (20) and (21) we have the assertion (16) for B and β. The
estimates for A and a follow in an entirely analogous manner.

Proof of Theorem 3. Let & be one of the simply connected
domains on the Riemann sphere 6^ determined by ^ and let £&' be
the simply connected domain determined by £(*' which is chosen so
that / is sense preserving with respect to £& and £^\ There is a
conformal mapping G of £& onto the upper half plane έ%f. G may
be extended by Lemma 2 to a K(C )-quasiconformal mapping of £f
onto itself and mapping j*f onto the real line j*?0. Let g = G\^.
According to Theorem 2 g~ι is (S(l, C, K{C)), iΓ(C)"1)-upper quasisym-
metric {G~ι is K(C)-quasisymmetric and ^fQ is a 1-quasicircle). Similarly
we may construct a iΓ(C")-quasiconformal mapping G' of & onto itself
which is conformal on 3tf and whose restriction g9 on ^ maps ..S^
onto .^o and gf is (S(C, 1, K(C')), ̂ (CO^-upper quasisymmetric.

According to Remarks 2 and 3 the mapping h = gf°f°g~ι is (Ao,
αo)-upper quasisymmetric with a0 = αo(α, C, C) = aKiO^KiC')*1 and

Ao - A0(A, a, C, C)

, C, ίΓ(C)) β / 1 ! : ( < 7 / ϊ

The mappings constructed above may be chosen so that h(oo) = oo; in
this case h is ^-quasisymmetric with p — ρ(AOJ a0). Now according to
Lemma 1 (b) h has a Ψ(ρ(A0, a0)) quasiconformal extension H: S^ —> ^ .
The desired extension F of f may now be set equal to Gr~~ι o Ho G which
is now K(C)¥(p(A0, α))if(C')-quasiconformal thus finishing the proof
of the theorem.

Part (b) of Theorem 3 is proved in a similar manner.
Recently, S. Rickman [6] has obtained results similar to those

proved in the last section of this paper. Here, we sacrifice the more
general considerations of Rickman to obtain the two sided extension
of Theorem 3 and the estimates exhibited in both Theorems 2 and 3.
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