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AN EXTENSION OF HAIMO'S FORM OF
HANKEL CONVOLUTIONS

J. N. PANDEY

The real inversion formula for Hankel convolutions which
is due to D. T. Haimo, is extended to certain generalized
functions. That is accomplished by transferring the real in-
version formula of D. T. Haimo onto the testing function
space for the generalized function under consideration and
then showing that the limiting process in the resulting formula
converges with respect to the topology of the testing function
space.

The Hirschman-Widder convolution transformation [3] has recently
been extended to certain classes of generalized functions [7], [4] and
their inversion formulae [3; pp. 127-132 and Theorems 7.1b, p. 231]
have been shown to be still valid when the limiting operation in those
formulae is understood as weak convergence in the space D' of Schwartz
distributions [5]. The purpose of the present work is to extend the
inversion formula of D. T. Haimo for Hankel convolutions [1, p. 332]
in a similar way to a certain space of generalized functions.

The notation and terminology of this work follows that of [7], [4].
/denotes the open interval (0, oo) and all testing functions herein are
defined on I. Throughout this work x and y are variables over /
unless otherwise mentioned. Finally, D(I) is the space of smooth
functions defined on / having compact supports. The topology of D(I)
is that which makes its dual the space D'(I) of Schwartz distributions
[5; Vol. I, p. 65] [8] on I. Thus, a sequence of functions {̂ }Γ=i is said
to converge in D(I) if and only if the supports of φv are all contained
within a fixed compact subset of / and for each k, {φlk)}~=ι converges
uniformly on I.

2* The testing function space ^(1). Let Δx stand for the
operator (Όl + (2y/x)Dx) where Dx is the differentiation operator and
T is a positive number. We say that a smooth function φ(x) defined
over I belongs to 5f(I) if

(1) Ύk(Φ) = s u p I ec*A{

x

k)φ{x) [ < oo
0<a;<<χ>

for all k assuming values 0,1, 2, . Here, c is a fixed real number;
but in our later discussion we will choose c to be a fixed real number
less than α1# The topology in gf (I) is generated by the collection of
seminorms {Ύk}V=o. Since γ0 is a norm the collection of seminorms

641



642 J. N. PANDEY

{yk}ΐ=0 is separating. We say that a sequence {φj}?=1 converges to φ
in gf (I) if for each φu e &(I) and for every fixed k, Ίk(φv — φ) goes to
zero as v goes to oo. &(I) is a locally convex Hausdorίf topological
linear space. D{I) is a subspace of &(I) and the topology of D(I) is
stronger than the topology induced on D(I) by Sf (/). Consequently
the restriction of any member of &"(I) to D(I) is in D'(I).

DEFINITION: We say that a sequence {φu(x)}?=1 where each
^(aj)eG(I) is a Cauchy sequence in G(J) if 7k(φu — Φμ) —*0 as y and
// both go to oo independently where k assumes values 0,1,2,3, •••.

LEMMA 1. *&(!) is sequentially complete.

Proof. By hypothesis the sequences

and i\ I [Λ$Mί)]dί̂ 2/f converge uniformly with respect to x over
any compact subset of /. We assume that a is a fixed positive quantity.
All these combined together mean that the sequence {φ[k)(x)}VLι for all
k converges uniformly over any compact subset of / where k assumes
values 0,1, 2. Proceeding in the same way we can prove by induction
that the sequence {Φίk)(x)}7=1 for all Jc, where k assumes values 0, 1,
2, 3, 4, converges uniformly over any compact subset of I. Here,
uniformity is assumed with respect to the variable x and not with
respect to k. Therefore, by a classic result it follows that there
exists a smooth function φ(x) such that the sequence {φlk)(x)}~=1 con-
verges uniformly to φ{k)(x) on every compact subset of / for k = 0, 1,
2, •••. Our object is now to show that φ(x)e&(I). By hypothesis
for ε > 0 IN.

( 2 ) Ίk{φv - φμ)< e for all v > N, μ > N .

As μ —> oo (2) reduces to

( 3 ) Ίk{Φ, - Φ) <s for all v > N .

Now,

( 4 ) yk(Φ) = Ίk(Φ - Φ> + ΦJ) ^ Ύk(Φ, -Φ) + Ίk{φv) .

By fixing a value of v greater than N, (4) reduces to

( 5) Ίk{φ) < e + 7*(&) = β < -
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This completes the proof of our lemma.

3* The testing function space έ%f(l). We say that a smooth
function ψ(x) defined on /, e Sίf(l) if {rf{x)lμr{x)}ε<^(I) where μ(x) is
the same as will be defined in (7). The topology in £%f(I) is generated
by a sequence of seminorms {/3JΓ=o where,

,6, ft,,*,, _ 7.{±gL}.

The concept of convergence and completeness in £έf(I) is defined in
a way similar to that in &(I). 3(f{ϊ) is also a sequentially complete,
Hausdorff, locally convex, topological linear space. D{I) is a subspace
of Sίf(I) and restriction of any member of 3ΐf'(I) to D(I) is in D'(I).
The mapping ψ{x) —• ψ(x)/μ'(x) in (6) is an isomorphism from 3(f(X)
onto 5f(/). It can be further proved that if fe j^f(I) then μ'fe 5f'(/)
and vice-versa [9, p. 28].

4* The generalized Hankel convolution of Haimo's type* Let
us first specify the type of kernel for which our Hankel convolution
has been constructed. We assume 7 to be a fixed positive number,
and set as in [1],

μ(x) =

(8 ) J(x) - 2r~

where Jr_i/2(^) is the ordinary Bessel function of order (7 — 1/2).

( 9 ) Gfr, y) =

at

the ak's being real, satisfying 0 < ax <̂  α2 <Ξ α3 with

(10) GN(x, y) •-

Π (1 + -V
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G(x, y) will be the kernel of Haimo's type of generalized Hankel con-
volutions. We briefly review some of the paramount properties of the
kernel G(x, y).

(11) A. dl+\G(x,y), m,rc = 0 , 1 , 2 , . . .
dxmdyn

is bounded and continuous for 0 ^ x, y < °° [1, p. 344].

(12) B. [°G(x, y)dμ(y) = 1 , 0 £ x < oo [i, p. 344] .
Jo

(13) C. lim \GN(%, v)dμ(y) = 1 , 0^
iV—oβ J α

= 0 0 ^ α ^ 6 < α ; < c o
- 0 0 < a? < α ̂  6 ̂  oo [i, p, 345] .

(14) D. With x fixed, in 0 ^ x < oo

where C > 0, [1, p. 348], mι and A (a;) are defined in a way similar

to that defined by D. T. Haimo. When N is fixed, (11), (12) and (14)

also hold for GN(x, y).

LEMMA 2. With x fixed in 0 ^ x < oo

(15) dG(x, 7/) = ce-wy^-'alp'ia&^l + θ(i-)] , y -+ oo

r = 0, 1, 2, 3, . . . .

Proof. For r = 0 see (14); we will deal exclusively with the case
where r > 0. Let a be a positive quantity such that aL < α < α2. One
can readily show by a techique similar to that of D. T. Haimo that

G(x, y) = ^ 1 / 2 ~ { ( ^

^-ai E(Z)

1 + mx is the multiplicity of the zero of 2?(2) at z — ± ati [1, pp.
347-349]. Therefore,

r
(17)
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Differentiation within the integral sign in (17) is justified by virtue
of [6, pp. 197-203] and it is also proved thereby that the aforesaid
integral is 0[y~ll2e~~ay], y —> °o uniformly for x lying in any compact
subset of /. This result coupled with [1, Corollary 2.2, p. 347] estab-
lishes (15). This asymptotic order can also be established for GN(x, y)
with fixed N where aγ will be replaced by aN.

LEMMA 3. Let ΔX9 G(x, y) and GN{x, y) be defined precisely in a
way similar to that of D. T. Haimo. Then;

(18) Δ(

k

n)G(x, y) = AQG(x, y) + A&ix, y) + A2G2(x, y) + . . AnGn(x, y) .

where Ao, Alf A2, •• An are all polynomials of degree 2n each in
α 0, a19 α 2, an.

Proof.

jMx, y) = \- (- VJWJtomt) [ l t p. 334]

Γ-ζ- + 1 - l\aU(xt)J(yt)dμ(t)
'Lai J

E{t)

or

(19) 4xG(x, y) = a*[G(x, y) - G&, y)] .

In the same way we can show that

(20) AxGm(x, y) = aUάG^x, y) - Gm+ι(x, y)] .

Using the technique of induction and operating by Δx repeatedly on
G(x, y), (18) follows readily in view of (19) and (20).

THEOREM 1. Let f^Sίf\T) and define F(x) by

(21) F(x) = <β'(y)f(y), G(x, y)> = <f(y), μr{y)G{x, y)> .

Then,

(22) F^(x) - ζμ\y)f(y), j^G(χ> V)} > m = 1, 2, 3, .

Proof. In this theorem and from now on c is assumed to be < αx.
In view of (1), (15) and (18), G(x, y) e &(I) for a fixed x. Therefore,
by (6) μ'(y)G(x, y) e Sίfil), and as such (21) is meaningful. For a
similar reason (22) also has meaning. Now,
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( 2 8 ) F(x

where

J * ' »> ~ G ( x ' y) - ^-(x, V) .
ox

Uy) ^
Ax ox

We will prove the result only for m = 1, but the proof for any positive
integral values of m can be given very simply by induction. Our
objective will therefore, be achieved if we can show that

7*[0jβO/)l —> 0 a s Δ& —* 0 for a fixed y

where & = 0, 1, 2, 3, •••.
In view of (18), it is enough to show that

(24) sup yYGJx + Ax, y) - Gn(x, y) _ J_G (x y)Λ
L Ax dx n ' J

0

as Ax —* 0

for a fixed x and n where n assumes values 0, 1, 2, . Again using
(15), (24) can be readily proved by the technique precisely similar to
followed by Zemanian in [7, Th. 4.1]. This completes the proof of
Theorem 7.

LEMMA 4. Let ψ{x) e D(I) and assume that

(25) A(

x

k]φ(x) = ψk(x) .

Then

(26) e°λ~GN(x, V)[fk(y) ~ ψk(x)¥μ(x) = I— 0
Jo

uniformly on 0 < i/ < ^ αsiV—>co.

Proof. We break up the integration in (26) into integrations on
0 < x <y - <?, y - δ < x <y + δ and y + 3 <x < oo (δ > 0), and
denote the corresponding quantities by Iu I2 and 73 respectively. By
(25) ψk(x)eD(I). Now

(27) I2 = ecy\yGN(%, y)[ψk(y) ~
J y-δ

By virtue of (12) and (27)

I U I ^ sup I ββy(^A(2/) - ψk(x)) I
δ < < + 5

sup I ψί1](τ) I .
y-δ<z<y+δ
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Since ψk(x)eD(I), the last quantity is bounded by δB where B is a
constant with respect to δ and y when δ is restricted to 0 < δ < 1.
Therefore, given an ε > 0, | / 2 | is bounded by ε for δ = min (1, ε/B).
Fix δ this way. Next consider,

GN{x, y)[ψk(y) - ψk(x)]dμ(x)

(28) = ec"\VδGN(x, y)ψk(v)dμ(x)
Jo

δGN(x, y)fk(x)dμ(x) .

Let the support of φ(x) be contained in [A, B] where 0 < A < B.
Therefore, the support of ψk(x) will be also contained in [A, B].
Suppose that,

and

sup I ecxψk{x)\ = M ,
0<X<oo

sup I ψk(x) I = ra ,
0<X<oo

then

11,1 ^ M[~°GN(X, y)dμ{x) + e°«\y~°GN{x, y) \ ψk(x) \ dμ(x)
Jo Jo

^ M\~GAu)dμ(u) + e°λy~δGy(x, y) \ ψk{x) \ dμ(x) .
Jδ Jθ

I t is a fact that

[°Gw(u)dμ(u) = 2 Σ α^ 2->0 as N-> oo [i, p p . 345-46] .

Again, in a way similar to what is done in (14) one can show that

(29) GN(x, y) = Cβ-^V*1

Since c < αx ̂  αiV, we can choose a fixed quantity k > B so large that
the asymptotic estimate (29) is valid for y > k. Therefore, ecyGN(x, y)—>
0 as N—>oo uniformly with respect to x lying in any compact subset
of / and y > k. Now,

eeλy~δGN(%, V) I ψk(x) I dμ(x) g μ'(B)m¥ee"GN(x, V)dx
Jo }A

—>0 uniformly for all

?/ > & a s iV—> oo .
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When 0 < y ^ k we have

^ m[ sup^]f GN(x, y)dμ(x)
0<y<k JO

—•> 0 as N—+OO uniformly

for all 0<y<:k, [1, p. 346]. Therefore, | Jx | —> 0 as N->oo uni-
formly for all y > 0. Again

(30) I3 = ee

If y > £ then /3 = 0 .

Therefore, we will now consider the case

= ecλ" GN{x, vHu(y)dμ{x) - ecλ°° GN{x, y)fk(x)dμ(x)
Jy+d iy+δ

" GN{X, y)dμ(x) + m[ sup e°»][~ GN(x, y)dμ{x)
y+δ 0<y<B Jy+δ

^ [M + m sup βC2/] ( G ^ ί w ) ^ ^ ) [1, p. 346]
0<y^B Jδ

—> 0 as ΛΓ—• oo uniformly for all 0 < y ^ β .

In view of (30) therefore, we have proven that | i31 —> 0 as N-+ oo.
uniformly for all /̂ > 0. Altogether we have proven that

(30a) Ί ϊ m | / | ^ ε δ< y < oo .

When y ^ δ we break up the integration in (26) into integrations on
0 < x <y + δ, y + δ <x < oo and represent the corresponding quantities,
as Ji and J2 respectively.

Clearly J2—>0 as iV—* oo uniformly for all # > 0. Now,

S 2/ + <5

GN(x, y)
0

g β «i± sup I ^ ' ( r ) I = e' (say)
B 0<Γ<oo

(30b) .-. iϊϊn I / | ^ ε' for all 0 < y £ δ .

Let η = Max [ε, ε']. Note that by virtue of the fact that ε is
arbitrary η is also arbitrary. Combining (30a) and (30b) we have proven,
the fact that

ΐ ϊ I | ^ ) 7 , 0 <y < oo .
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Since η is arbitrary, our lemma is proven.
We are now ready to prove the main theorem of this paper.

THEOREM 2. Let fe£έf'(I) and let F(x) be defined as in (21).
Then for φ(x) e D(I)

ζμ'()PN(Jx)F(x), φ(x)>-+<jι'f, φ> as N-+ oo

where

= Π (i - 4-) •
*=i V al J

Proof. The theorem will be proven by justifying steps in the
following manipulations.

(31) ζμ'(x)PN(Jx)F(x), φ(x)> = <μ'(x)PN(A)<μ'(y)f(y), G(x, y)>, φ(x)>

(32) = <μ'(%)<μ'(y)f(y), PΛ^)G(χ, y)y, φ{X)y

(33) = <μ'(x)<μ'(y)f(y), GN(x, y)>, φ{x)>

(34) = <μ'(y)f(y), <μ'(x)GN(x, V), Φ(x)»

(35) -+<μ'(v)Λv),Φ(v)> asiV->oo.

The fact that (31) is true follows at once in view of (21), and that
the expressions in (31) are each equal to (32) is an immediate con-
sequence of (21) and (22). That (32) is equal to (33) follows by [1;
Lemma 4.1, p. 360].

To prove that (33) and (34) are equal we need show the following
relation

\B<μ'(y)f(y), G^, y)yΦ(χ)dμ(x)
(36) U

As before we assume that the support of φ(x) is contained in [A, B]
where 0 < A <B.

In view of asymptotic orders of Gm(x, y)9 (m — 0,1, 2, 3, •) for
fixed x and large y as stated in (15) and using the technique of the
Riemann sum, (36) is proved in a way exactly similar to that employed
in [4, Th. 2]. Note that (18) is also to be made use of in proving
the assertion in (36).

We now proceed to prove that (34) is equal to (35). Our objective
will be fulfilled if we can show that

(37) <μ'(x)GN(x, V), Φ(Φ — Φ(V) m &{I) as N

Now,
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<μ'(x)GN(x, y), φ(x)> = j*GW«, v)Φ(x)dμ(x)

and

(38) 4»<β'(x)Gκ(«, y), Φ(Φ = \B{Δ'y
k)GN{x, y)}Φ(x)dμ(x) .

By using (15) the differentiation process within the sign of inte-
gration in (38) is easily justified. Now,

(39) AxGN{x, V) = Aβjβ, y) = Γ ( ~ f)J{χWf)dμ{t) [l;p.884Γ.
Jo J&NW

Again

(40) \{Δ,Gκ(x, V)}φ{x)dμ(x) = \SGN(x, y){Axφ(x)}dμ{x)
JA JA

[integration by parts]

- t~G*(®, y){Axφ(x)}dμ(x) .
Jo

Therefore by repeatedly using (39) and (40) one can readily show that

(41) \*{4k)GAx, y))Φ{x)dμ{x) - [°GN(x, V){^k)Φ(x)}dμ(x)
JA JO

'(x)Gκ(x, y), φ(x)> - φ(y)]

τ, y)({Δ™φ{x)} - Wk)Φ(y)})dμ(x) by (12),

—> 0 uniformly on 0 < /̂ < oo asΛΓ-^co

in view of Lemma 4. Thus the proof of Theorem 2 is complete.

The author expresses his gratitude to Professor Zeev Ditzian for
his valuable suggestions.
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