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AN APPLICATION OF A NEWTON-LIKE METHOD
TO THE EULER-LAGRANGE EQUATION

RICHARD A. TAPIA

It is known that any function which minimizes a func-

S b

f(%, V, Vf) and satisfies prescribed
a

boundary values must be a solution of the corresponding Euler-

S x

Mxy V, y1) = c. Let us call
α

Γx

any equation of the form : g(x, y, y') — 1 h(x, y, yr) = c a ge-
Ja

neralized Euler-Lagrange equation.
In this paper we propose a Newton-like method and show

that this proposed method is general enough to enable us to
construct solutions of the generalized Euler-Lagrange equa-
tion.

Let X and Y be Banach spaces, Ω an open subset of X and
P: Ω—+Y. By [X, Y] we mean the Banach space of all bounded linear
operators with the usual operator norm, by P ' the first derivative of
P and by P" the second derivative of P. The class of all functions de-
fined on Ω which have continuous derivatives up to and including order
n at each point of Ω is denoted by Cn(Ω). Distinct elements of Cn(Ω)
may have totally distinct ranges depending on the application. The
distinction between Gateaux and Frechet is unnecessary since the de-
rivatives will be continuous.

2. The weak Newton sequence* Let H and Y be Banach
spaces, Ω a nonempty open subset of H and P: Ω—> Y.

DEFINITION. Given x0 e Ω the sequence {xn}7,

xn+ι = xn - [P'(xn)]~Ψ(xn) ,

is called the Newton sequence for x0 (with respect to P ) .

D E F I N I T I O N . Given x0, xeΩ t h e sequence {xn}~,

is called the modified Newton sequence for xQ at x (with respect to
P). When x0 = x we say simply the modified Newton sequence for x0.

REMARK. The Newton sequences exist if and only if P\x) and
P'(xn) exist and are invertible and xn e Ω for all n.
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Let X and Y be Banach spaces, H a closed linear subspace of
I , i 3 a nonempty open subset of H and P:Ω-*Y.

REMARK. It is easy to verify that Ω is open in X if and only if

Let D be the set of all xeΩ for which there exists an operator
Γ(x) satisfying the following conditions:

( i ) Γ(x) e [Bx, X], where Bx is a closed linear

/Q i\ subspace of Y containing P(Ω);

(ii) Γ(x)P(Ω)dH;

(iii) Γ(x)P'(x) = LH-+H .

REMARK. The fact that Γ(x) is defined on P'(x)(H) and Γ(x)P'(x)
is defined from H into H is a consequence of conditions ( i ) and (ii).
The following lemma shows this to be true.

LEMMA 2.1. If there exists an operator Γo satisfying the follow-
ing conditions:

(a) Γoe[Bo,X], where BQ is a closed linear subspace of Y con-
taining P(Ω)

(b) Γ0P(Ω)aH;
then for all xe Ω we have the following:

( i ) P'(x)(H)cB0;
(ii) Γ0P'(x)(H) c H.

Proof. Assume xe Ω and he H. It follows from (a) since Ω is
open in H that for small t

P(x + th) - P(x) o
c £>0 .

v

Therefore P'(x)(h) e Bo and P'(x)(H) c Bo. Similarly (a), (b) and the
fact that H is closed imply

Γ0P'(x)(h) = lim [Γ0P(x + th)-T0P(x)Ί g R _
ί-»o L t J

DEFINITION. If X G D , then Γ(x) is called a left inverse for P'(x).

REMARK. If H = X and 2?,. = Γ", then this is the usual notion
of a left inverse.

Let Γ(x) denote a left inverse for P'(x).
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DEFINITION. Given x0 e Ω the sequence {xn}~,

a»+i = &» - Γ(xn)P(xn) ,

is called the weak Newton sequence for x0 (with respect to P ) .

DEFINITION. Given xo,xeΩ the sequence {xn}~,

is called the weak modified Newton sequence for x0 at x (with respect
to P ) . When x0 — x we say simply the weak modified Newton sequ-
ence for xQ.

REMARK. The weak Newton sequences exist if and only if Γ(x)
and Γ(xn) exist and xn e Ω for all n.

LEMMA 2.2. If xeΩ and [P^x^e [F, H], then for any Γ(x)
satisfying (2.1) we have:

( i ) Bx= Y;
(ii) Γ(x)(Y) = H;
(iii) Γ(x) - [P'(x)y\

Proof Since P'{x) is onto, Y = P'(x)(H). By Lemma 2.1
P'(x)(H)cBx, therefore Y = Bx. Also Γ(x)y = Γ(x)P\x)[P\x)-1y] =
P'{x)-ιy for all yeY, therefore Γ(x) = [

REMARK. In general there are many weak (modified) Newton
sequences for a particular point however, by Lemma 2.2 if the
(modified) Newton sequence exists, then any weak (modified) Newton
sequence coincides with it.

EXAMPLE. Let P: Rι —• R2 be given by P(x) = (3x - 3/2, 2x - 1)
hence P'(x) = (3, 2). If Γo: R2-+ R1 is given by

1 - 3α

for any real α, then Γ0P(x) = a? — 1/2, Γ0P'(x) = 1, the identity map
in J?1, and the weak (modified) Newton sequence for #0 is given by

Δ

for all w. Notice that P(l/2) = (0, 0).

REMARK. In this example there are an uncountable number of
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left inverses for P'(x); also the (modified) Newton sequence for xQ does
not exist.

3* Convergence theorems* As before let X and Y be Banach
spaces, H a closed linear subspace of X,fl a nonempty open subset
of H and P: Ω —> Y. If for each xeΩ there exists an operator Γ(x)
satisfying conditions 2.1 and we let Bo = f)xesBx, where Bx is the do-
main of Γ(x), then Bo is a closed linear subspace of Y containing
P(Ω); consequently by restricting Γ(x) to BQ we may consider Γ:Ω—+
[Bo, X].

THEOREM 3.1. / /

( i ) there exists x* e Ω such that P(x*) = 0,
(ii) for each xeΩ there exists Γ(x) satisfying conditions (2.1)

and Γ:Ω~>[B0,X]eC°(Ω)
then, if Pe C\Ω), given 0 < a < 1 there exists a neighborhood of x*
contained in Ω such that for any 2 points x0 and x in this neigh-
borhood the weak modified Newton sequence for x0 at x exists and
converges to $*; we also have

I I 10 I I = _ | | | — 1 W I I

Furthermore, if PeC2(Ω), then there exists a neighborhood of x*
contained in Ω such that if x0 is any point in this neighborhood a
weak Newton sequence for x0 exists and converges quadratically to
x*, i.e., there exists a constant M such that

M r * — Ύ II < M II T * — Ύ II2

II ^ ^n+i II = 1V1 II •*' & n || .

Proof. For α; e /2 let T(x) = I- Γ(x)P'{x*). Given 0 < α < l there
exists δ > 0 such that {# | || x — x* \\ ^ δ) c β and

|| T(x)\\ = || T(x) - Γ(a;*)|| < a

w h e n e v e r || x - x* \\ ^ δ . N o w i f \\x - x * \ \ ^ δ a n d S = I - Γ(x)Pf

then
( i ) S(&*) = x* and
(ii) || S'(a5*) || < a.

Let || S'(x*) || = α0, then there exists 0 < δ0 ^ δ such that

whenever x e Ωo = {x | || .τ — #* || ^ δ0}. Clearly ί?0 is closed, convex and
contained in Ω. Also

( i )' || S'(x) \\ ^ cc whenever xeΩ0 and
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( i i ) ' S(Ω0)<zΩQ;
since if x e Ωo,

\\S(x)-x*\\ = \\S(x)-S(x*)\\

^ || S'(x + θ(x* - x)) || || x - x* || 0 < θ < 1

^ a\\x - cc* || ^ <?0 .

The first part of this theorem now follows from a well-known fixed
point theorem [4, 661]. The latter part of the theorem is a consequ-
ence of the following Banach space inequality [3, pp. 162-163],

(3.1) || P(x + Δx). - P(x) - P'{x){Δx) || ^ i || P"{x + ΘΔx) \\ \\ Δx ||2 ,

0 < θ < 1. There clearly exists K and δ > 0 such t h a t || P"{x) \\^K
and || Γ(x) || ^ K, whenever || x* - x || g δ. If || x* - x || ^ δ, then
from (3.1) with zte = x* — x we obtain

(3.2) || α* - [a? - Γ(a?)P(α?)]|| ^ M | | x * - x | | 2

where ikf = iK\ Choose 0 < δ0 < min (M" 1 , δ) and such t h a t

Ωo = {x\ \\x* - x\\ ^ S 0 } c f l .

We now show if Xn e ΩΌ, then

J l f l l r * — T II2

ML W* Xn\\
II r * — T II /'/If I< II r * T II /'/If II r * — r | h 2 % + 1 - i

consequently xn+ί e ΩQ. For n = 0 inequality (3.3) is just (3.2) with
x = x0. If we assume (3.3) holds for n <k, then a direct application
of (3.2) shows (3.3) holds for n = k, and consequently for all n. This
proves the theorem.

Consider Γo: Bo—>X, where Bo is a closed linear subspace of Y
containing P(Ω), satisfying:

( i ) Γoe[Bo,X];

(ii) Γ0P(Ω)czH.

COROLLARY 3.1. Given x0 e Ω, if there exists
( i ) x* e Ω such that P(x*) — 0, and
(ii) Γo satisfying (3.4) and such that ΓQPr{xQ): H—>H is inver-

tible,
then if x0 is sufficiently near x* and PeC2(Ω) a weak (modified)
Newton sequence for x0 exists and converges to x*. Furthermore a
left inverse for P'(x) is given by Γ{x) = [ΓQP'{x)YιΓ*.

Proof. Use Theorem 3.1 on Q .= Γ0P.
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4. A general problem. Given an interval [a, b] let

X={yeC°[a,b]\y:[a,b]-*Rί},

H= bιeX\\"h = θ\ ,

(4.1) K = {y 6 YI y(a) = μ, and y(b) = μ2} ,

B = [a, b] x R2 ,

\\y\\x = sup{| y(t) 111 e [a, b]} for yeX, and

| |l/||y = sup{ | i /( ί ) | f | i / ' ( ί ) | | ί e [o f δ]} for yeY.

REMARK. If X, Y and H are given by (4.1), then X and Y are
Banach spaces and H is a closed linear subspace of X.

Given continuous φ: B —> R1 and yoe K define

Q:Y-^X, and Q:X-^X

as follows

(4.2) Q(y)(x) = φ ( x , y ( x ) , y ' ( x ) ) f o r y e Γ ;

(4.3) Q(y) = Q(y, + jV) for yeX.

yeY. Assume Q satisfies the
α

following two conditions:

(4 4)
( ϋ )

Define P H^X by

(4.5) P(Λ) = Q(Λ) - ~^-t f o r heH ,

where Γo = [Q'(0)]-1 and 1 is the constant function 1.

LEMMA 4.1. If Q is given by (4.2) and P by (4.5), then the fol-
lowing two problems are equivalent:

i* n\ Problem I. Find y e K such that Q(y) is constant

Problem II. Find heH such that P(h) = 0 .

Proof. If y e K and Q(y) is constant, then h = y' — y'Qe H and
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Q(h) = Q(yo + \*(y' - yΌ)) is constant; therefore P(h) = 0. Now if
V Jα /

_ / Cx \

he H and P(λ) = 0, then Q(k) = Q(yo + \ h) is constant; therefore y =
V Jo /

yo + \ he K and Q(y) is constant.
J

LEMMA 4.2. // Po cmώ P are given by (4.5), ίfcβw Γo is a left
inverse for P'(0).

Proof. We show Γ(0) = Γo satisfies (2.1) for x - 0. If 5 0 = X
and fl = H, then (i) of (2.1) holds. If h e H, then from (4.5) we ob-
tain,

\bΓ0P(h) - 0
Ja

and (ii) of (2.1) holds. By differentiating (4.5) at the origin we see
that

Γ 0 P ' ( 0 ) ( h ) = h f o r h e H .

Therefore Γ0P'(Q) = I;H—*H and the lemma is proved.
Let y* e Y be a solution of Problem I and /&* e X the correspond-

ing solution of Problem II.

LEMMA 4.3. For given yQ in (4.3)

Proof. The proof follows from (4.1) and Lemma 4.1.

REMARK. If Problem I has a solution and the given y0 in (4.3)
is sufficiently near this solution, then by Lemmas 4.1, 4.2, 4.3 and
Corollary 3.1 with ΓQ = [Q'(O)]-1, x0 = 0, Ω = H, Y = X and H, X and
P given by (4.1) and (4.5) both the weak Newton and weak modified
Newton sequences for xQ exist and can be used to obtain this solution.
In addition the weak modified Newton sequence can still be used if we
only have Q e C\H\.

5* A variation of the weak Newton sequence* If Γo and P
are given by (4.5) and hn is the nth term in the weak Newton sequ-
ence for h0 = 0, then by Corollary 3.1 a left inverse for P'(hn) is
given by

Γ(hn) = [Γ,P\hn)Y'Γ0 .

This operator may be difficult to evaluate; we therefore consider the
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following variation of the weak Newton sequence for Problem II.
For Q given by (4.3), assume the following conditions hold:

(5.1) ( ί ) Q e

( i i ) [Q'ix)]-1 e [ X , X ] f o r a l l x e X .

Inherent in the above assumption is the requirement that a procedure
for evaluating [Q'(x)]""1 is known. Let

(5.2) Γ(x) = [Q'(x)]-1 for x e X

and define hne H and Pn: H-^ X recursively by

K = 0

\bΓ(K)Q(h)
P0(h) = Q(h) - -is for heH, and

(
(5.3)

K+1 = K- Γ(K)Pn(hn),

\ Γ(hn+1)Q(k)
Pn+1(h) = Q(h) - k , for Λ =

LEMMA 5.1. // Γ(hn) and Pn(hn) are given by (5.2) and (5.3),
then Γ(hn) is a left inverse for Pή(hn).

Proof. The proof of this lemma is the same as the proof of
Lemma 4.2.

THEOREM 5.1. //(5.1) holds and the given y0 in (4.3) is sufficient-
ly close to a solution of Problem I, then the sequence {hn}~ given by
(5.3) will converge quadratically to the corresponding solution of
Problem II.

Proof. The proof of this theorem is essentially the same as the
latter part of the proof of Theorem 3.1.

LEMMA 5.2. For yQ used in (4.3) and {hn}~ given by (5.3), Problem
I is equivalent to the following problem:

Problem III. Find yQe K such that the sequence {hn}~ converges.

Proof. If y is a solution to Problem I then by Theorem 5.1 we
need only pick yoe K near y. Now assume {hn}~ converges to h, then
Γ(hn)Pn{hn) -> 0 and since Γ~\h) = Q'(h) exists we have Pn(hn) -> 0 or
Q(h) is constant, Also, since H is closed, heH; by Lemma 4,1 y —
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y0 + \ h solves Problem 1.

REMARK. We have shown that whenever the sequence {hn}~ given
by (5.3) converges, it converges quadratically to a solution of Problem
II and consequently gives a solution to Problem I.

6* The generalized Euler-Lagrange equation* Let X, H, Yf K
and B be given by (4.1). In the calculus of variations one is interest-
ed in finding y e K such that for all x e [a, b]

S x

j2\Wf y\w)i y \W)) — c t

where f: B —>R\f denotes the ith partial derivative of / and c is an
unknown constant. Historically equation (6.1) has been called the
Euler-Lagrange equation.

For g,h:B—*R\ we would like to find yeK such that for all
x G [α, b]

(6.2) g(x, y(x), y'(x)) - 1 h(x, y(x), y'(x)) = c .
Jα

We are therefore interested in solving Problem I (4.6) with Q: Y—>X
given by:

(6.3) Q(v)(χ) = g(x, y(χ), y'(χ)) - \*h(χ, y(χ), y\χ)) .
Jα

Since equation (6.1) is a special case of equation (6.2), we call (6.2)
the generalized Euler-Lagrange equation.

Given fitJ G l , i = l , 2 , ,w and j = 1, 2, ««, 5, define the in-
tegral operator L: X —+X as follows: for ueX let

L(u)(x) = f
(6.4)

+ AM

THEOREM 6.1. If L is given by (6.4) and λ is any constant, then
( i ) Le[X,X],
(ii) for all ue X the series

\\u\\ + | |λL(u)| | + . . . +\\\*L*(u)\\ + . . .

is convergent.
Furthermore,
(iii) for all φeX the equation
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(6.5) f=φ + λL(/) ,

has a unique solution in X which can be obtained by iterating (6.5)
beginning with an arbitrary element of X; finally

(fi fiϊ ^ v ^ ^ β °Perat°r T = I — XL has a continuous inverse

which can be evaluated by iteration.

Proof. The proof of (i) is immediate. Since (iii) proceeds direct-

ly from (ii) and (iv) follows from (i) and (iii) we will only prove (ii).

u. Then there exists a constant B such

that for x e [α, 6]

I L(u)(x) I £ B(K + K2)(\ u|)0*0 ^B\\u\\(K+ K2)(l)(x) .

Assume for 1 ̂  n ^ k

(6.7) I L*{u)(x) I ^ Bn(K + Kψ(\ u \)(x) ^ Bn \\ u \\ (K + K2)n(l)(x) ,

then

I Lk+\u){x) I - I L\L(u)){x) I g B\K + K2)k(\ L(u) \)(x)

^ Bk+1(K + K2)k+ι{\ u \)(x) < Bk+11| u\\(K+ K2)k+1(l)(x)

and by induction (6.7) holds for all n.
If we let M = max(l, \\u\\, | λ | B) and denote Kn(l)(x) by Kn,

then

oo

= Σ
o

where Aw = Σi Ξo23 ̂ '̂̂  7" ̂ ^ j and [x] denotes the largest integer less than

or equal to x. The first inequality in (6.8) follows from (6.7) and

the second inequality is a direct application of the binomial theorem.

The equality in (6.8) is justified by observing that the coefficients of

Km for arbitrary but fixed m are of the form Mn+j+1( n. j where j ίg

n and n + j = m and also that Km = (x — a)m/ml. It is not difficult

to show that Am satisfies the difference equation Am+1 = Am + Am_λ\

consequently the radius of convergence of the last series in (6.8) is

infinite. This proves (ii) and the theorem follows.

L E M M A 6.1. For g,he C°(B) let Q be given by (4.3) and (6.3).

If g,he Cn{B) then Q e Cn(X), for n = 0,l, 2.
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Proof. The proof is straightforward although somewhat lengthy

[6].

If X, K and B are given by (4.1) and y0 e K, then for continuous
g:B—>Rι define g:X—>X as follows:

for y e X and x e [α, 6].

THEOREM 6.2. For g,h:B-+ R\ if
(a) g,heC2(B), and

(b) Mv) ̂  0 for yeX
and if Q: X —+ X is given by (4.3) and (6.3) then

( i ) QeC2[X],
( i i ) [Q'(y)]~ι e [X, X] for all yeX and can be evaluated by

iteration.

Proof. Part (i) follows from Lemma 6.1. A direct calculation
shows that

Q'(y)(v) = My)v + Mv)\'y -

for y,ηeX. The subscripts on g and h denote partial derivatives.
If we let

(6.9) _UV) _ _

A = - / , /22 = h(y) and /23 = /24 = /25 = 0 , then

where y,ηeX and L : X — > X is given by (6.4) and (6.9) with n = 2
and T:X—>X is given by (6.6) with λ = - 1. Given φ,yeX cons-
tructing η = [Q'd/)]""1^) is equivalent to solving

T(v)=fφ for 5 ? e l ,

hence ^ = T~\fφ) and according to Theorem 6.1, η is given by

V=fφ- L{fφ) +

REMARKS. It follows that the theory developed in § 1 through
§5 can be used to solve the generalized Euler-Lagrange equation. In
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the calculus of variations condition (b) above is called the strengthened
Legendre condition.

Theorem 6.2 includes the problem of finding y e K such that

(6.10) y" = h(x, y, yf) where h e C\B) .

If g:B-+Rι is defined by

g(x, y, z) = z, then g3(y) = 1 =£ 0

and geC2(B), therefore Theorem 6.2 holds. Now if

h(x, y, y') = constant ,

a

then since two of the three terms in (6.11) are differentiate, the
third must also be, giving (6.10).

The author would like to thank the referee for many helpful com-
ments and suggestions.
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