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INDEFINABILITY IN THE ARITHMETIC
ISOLIC INTEGERS

PHILIP OLIN

This paper is primarily concerned with the theory of the
arithmetic isolic integers. The following results are obtained:

(1) No nonfinite member of the arithmetic isolic integers
A*(A) can be defined in A* (A) even by an infinite number of
arithmetic formulas (Theorem 4).

(2) The arithmetic isols Λ(A) cannot be defined in A* (A)
even by an infinite number of arithmetic formulas (Theorem 7).

(3) We exhibit some nonstandard models of arithmetic
contained within A*(A) (Theorem 10).

The first result above follows from recent work of Nerode
in the theory of isols, while the second strengthens his results
to obtain the desired conclusion.

The ring of arithmetic isolic integers A*(A) was introduced by
Nerode in [5] where he showed that A*(A) is elementarily equivalent
to a reduced power Q of the ring of integers and where he adapted
the method of Feferman and Vaught [1] to A*(A). In [6] Nerode
gave a procedure for finding isols and isolic integers which satisfy
extensions to isols of recursively enumerable relations. The work
which follows here both uses these results and, in some cases,
strengthens them. We use the definitions and notation of [4], [5],
and [6].

It is possible that a nice structure theorem for A*(A) can be
proved Nerode has asked whether A*(A) is isomorphic to Q, the
reduced power of the integers just mentioned (see remarks following
Corollary 5 below). E. Ellentuck has obtained such a result for the
ring of Dedekind finite cardinals in the models of a particular exten-
sion of Zermelo Fraenkel set theory without the axiom of choice.
However even if such a result is obtained for Λ*(A), since A(A)
cannot be defined in A*(A) by an infinite number of arithmetic
formulas, it will still not be possible to arithmetically define in this
way the substructure corresponding to A(A).

1. We adopt the notation of [4], [5], and [6]. As in [5] and
[7], Q = Zω/D0 where Z is the ring of integers and Do the filter of
cofinite subsets of ω.

THEOREM 1. Suppose {φ%)i<ω is a collection of arithmetic formulas
in the variables v — (vOί v19 v2, •) and the collection is finitely
satisfiάble in Q. Then there exist A, B eQω such that

175



176 PHILIP OLIN

( i ) for all i, Q \= φi(A)
(ii) for all i, Q N φi(B)
(iii) for all j , if A3 eE* then As = B3 and if AjgE* then

B3 £ E* and A5 Φ B3.

We give only a sketch of the proof. In [2] it is shown that
Q is α^-saturated. Prom this we get A e Qω satisfying (i). B is
constructed from A. If AseE*, B, = As. If A, eQ-E*, B3 is
gotten from A3 by a permutation of the coordinates. The permuta-
tion is simply to ensure that B3 Φ A3 and, from the Feferman—Vaught
method of [l], the permutation of coordinates does not affect satis-
faction in Q.

LEMMA 2. Suppose φ(vx , vn) is an arithmetic formula with
n free variables, A{ e Λ*(A) for 1 <£ i <; n,

A^E* , and Λ*(A) N φ(Alf , An) .

Then there exist Bi e Λ*(A) for 1 ^ i ^ n, with

Bt Φ A, and A*(A) N <p(B19 , Bn) .

Proof. Assume the conclusion is false. Then we have

A*(A) \= (Ex,) (Exn)[φ(xly ., xn) A (yd (yn)

In [5] Nerode proved that Q = Λ*(A). Hence this statement is also
true in Q. For i = 1 to n, let A eQ be the xζ whose existence is
thus asserted. It follows from Theorem 1 that A[eE*. So the
arithmetic sentence (Ex2) (Exn)φ(A[, x2 , xn) is true in Q and
hence in Λ*(A). So by our assumption A1 = A[eE*, a contradiction.

As a consequence of the results in § 3 of Nerode [5] we obtain
almost at once the following result. Corresponding to any arithmetic
formula φ there is another formula ψ which is a disjunction of con-
junctions of equations and their negations, each such equation being
of the form fΛ*u) = 0 with / an arithmetic function whose free
variables are among those of φ, and such that for

Xe A*(AY , A*(A) \= φ(X) - A*(A) N ψ(X) .

LEMMA 3. Suppose {φ^i<ω is a collection of arithmetic formulas
with free variables among v = (v0, v19 v2, •)> and suppose any finite
subset of this collection is satisfiable in Λ*(A). Then the collection
is satisfiable in A*(A).
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Proof. To each φi there corresponds a ψ{ as above. Let us write
ψi as VsejjCj where the Cj'a are the various conjunctions of ψim Since
the φt's are finitely satisfiable in Λ*(A), so are the α/r/s. We claim there
is a & G Jo such that the collection {τ/rΐ}ίeω_{0} (j {Cl} is finitely satisfiable
in A*(A). If not then for each j e Jo there is a finite Sj Q ω — {0} such
that {^i}ίeSi U {C?} is not satisfiable in Λ*(A). Let S = U i e ^ . But
{iK h es U {^o}^ satisfiable and hence there is some disjunct Cl of ψ0

such that {ψi}ies U {C£} is satisfiable and thus {ψi}iesk U {C£} is satis-
fiable, which is a contradiction. So {C£} U {ψi}ieω-[o) is finitely satis-
fiable in A*(A). Apply the same procedure to ψx in this last collec-
tion, getting {Cl} U {Cl} U {τK }ίeβ,_{o,i} finitely satisfiable. By induction
we obtain in this way a collection {Cι}i<ω, with Cι one of the dis-
juncts of ψi9 and the collection finitely satisfiable in A*(A). Simul-
taneously satisfying this collection would clearly also simultaneously
satisfy {φ^i<ω. So the problem is now reduced to the following.
Given a collection {/j*u) = 0} ί<ω U {9Λ*U) =£ °}*<ω, variables among
v = (VQJV^VZ,

 m •), each / and g an arithmetic function, and the
collection finitely satisfiable in A*(A): show that the whole collection
is satisfiable in A*(A).

Let XωE* be the subset of i?*ω consisting of the finitely nonzero
sequences and let R\Tl) consist of those xe Xwi7* such that f\x) = 0
(g\x) — 0). We shall use Theorem 2.1 of Nerode [4], in the arithmetic
case. A first application of this theorem enables us to infer from
the finite satisfiability of {/j*U) = 0} in A*(A) that the collection
{Ri}i<ω generates a proper filter F* in the lattice L* of finitary
arithmetic relations (see [6]). So by Theorem 4.7 of [6] in the
arithmetic case, there is an XeA*(A)ω such that

F* = {ReL*\XeRAHA)}.

With another application of Theorem 2.1 of [4] we get XeR%U)

if and only if fϊ*U){X) = 0. Since for all i, R'eF*, X satisfies
{fj*u) = °}i<ω Does it also satisfy {gUA) Φ 0} ? Suppose not; then
there is some i such that g\HA)(X) = 0. Then, as above, Xe TίHA).
Hence TιeF*. So there exist #*<>, . . . , i?» such that

R'o n n Rin s τι.

Thus XωE* ^ F u U ^ U ^ . Yet another application of Theorem
2.1 of [4] shows that the set {/j?u) = 0, . . .,f^A) - 0, g*,U) Φ 0}
cannot be satisfied in A*(A), which contradicts the hypothesis. Thus
X satisfies {/j*U) = 0}<<ω U {g\*U) ̂  °}i<o» a s required.

The next theorem is the analogue in A*(A) of Theorem 1.



178 PHILIP OLIN

THEOREM 4. Suppose {φ^i<ω is a collection of arithmetic formulas
in the variables v — (v0, vl9 v2, •) and the collection is finitely
satisfiable in Λ*(A). Then three exist X, YeA*(A)ω such that

( i ) for all i, Λ*(A) t= φt(X)
(ii) for all i, Λ*(A) \= φt(Y)
(iii) for all j , if XόeE* then Xs = Ys and if XjZE* then

Yd 0 E* and Xά Φ Yd.

Proof. As in Lemma 3 we obtain Xf e Λ*(A)ω and a collection
Kυ = {fίU)(v) = 0}i<ω U {g#u)(v) Φ 0}i<β which Xf satisfies and if any
X" satisfies Kv than X" satisfies (i) above. For the variables
i£ = (w0, %i, w2> * •)> ̂  ^ ^ e ^ e collection gotten from Kv simply
by replacing each v{ by u,. Then (X', X') e (Λ*(A)ω)2 satisfies Kυ U Ku

(where ^(Z, Z') for (Z, Z') 6 (/ί*(A)ω)2 means replace t;< by Zi and %
by Z/). Using the lattice L* of finitary arithmetic relations on
{XωE*f, let Rΐ and JB; denote respectively the arithmetic relations
corresponding to f\v) = 0 and f\u) = 0. Proceeding in the usual
way (see [6]) we let F* be the filter generated by the jβ 's and Λ*'s
and get (X, Y) e {Λ*{A)ω)\ With methods like those of Lemma 3 we
show that X satisfies (i) above and Y satisfies (ii). Because for each
i, X[ — a for a in E* if and only if

{(^,u)e(Xω#*) 2K = a} and {(v, u) e (XωE*)2 \ ut = a}

are in .F*, it follows that if X[ is in E* then X/ = X, = Y, and if
Xi£E* then XiiE* and Y^JS '* . Assume i is such that X/g.K*.
We claim X, ^ Γ4. Suppose not. Let T = {(v, u) e (X^*)21 vt = u^.
Then (X, Y)eTΛHA) and hence TeF*. Proceeding as in Lemma 3
there exist f\ , /*», / J 1, , / ' * such that

{β, ,W - 0, . . . f£A)(v) = 0, /i*U)(^) = 0, , ffrA){v) = 0,vtΦ u{}

cannot be satisfied in Λ*(A). Thus for an appropriate finite set of
φ'8 we have that AJ<PJ(V) Λ Kkψkiu) Λ (vt Φ ut) cannot be satisfied
in A*(A). But (X', X') satisfies AJ<PM A Akφk(u) and XlϊE*. So
by Lemma 2 we can find X" e Λ*{A)ω such that (X", X") satisfies
Ai<Ps(v) A Ak<Pk(u) and XΓ Φ X . But then (X', X") satisfies

As<Pj(v) A Ak<Pk(u) A (Vi Φ Ui) ,

a contradiction. Thus X; ^ Yi(T$F*), completing the theorem.

COROLLARY 5. No member of A*(A) — E* can be defined in
Λ*(A) even by an infinite number of arithmetic formulas.

We conclude this section with another application of the methods
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used above. Nerode has asked whether Q ~ Λ*(A). (In [5] he
showed Q = Λ*(A) and both have power 2*°.) The answer is not
trivially yes because by the following example, pointed out to the
author by M. Morley, the theory of Q (and hence of A*(A)) is not
categorical in any infinite power. Let p0, ply p2, be a sequence of
distinct positive primes, and q0, qly q2, a list of all the other
positive primes. Consider {p< divides x}i<ω U {?< does not divide x}i<0).
This countable collection of arithmetic formulas is clearly finitely
satisfiable in Q. Since Q is αvsaturated, the collection is simul-
taneously satisfiable in Q. But there are 2K° such types realized in
Q. So by a result of Ehrenfeucht, the theory of Q is not categorical
in any infinite power.

In [7] it is shown that, assuming the continuum hypothesis,
Q ~ Λ*(A) if and only if Λ*{A) is saturated. Using the method of
Lemma 3 it can be shown that A*(A) is saturated if and only if for
every collection {fjHA] = 0}ί<ω U {g%U) φ °h«oi where the /'s and #'s are
arithmetic functions having exactly one free variable and possibly
constants from A*(A), if the collection is finitely satisfiable in A*(A)
then it is satisfiable in A*(A).

2. We shall prove shortly that A(A) cannot be defined in A*(A)
by an infinite number of formulas. In particular, one formula will
not define A(A) within A*(A). The former result requires a strengthen-
ing of the proof of Theorem 3.1 of [6]. But the latter can be proved
as a corollary of that theorem.

THEOREM 6. A(A) cannot be defined in A*(A) by means of one
arithmetic formula (and hence by means of a finite number of such
formulas).

Proof. We prove something a little stronger. Suppose φ(x) is
an arithmetic formula of one free variable, XeA(A) - E, and
A*(A) N= φ(X). We shall find Ye A*{A) - (Λ(A) U - Λ(A)) such that
A* (A) 1= φ(Y).

By the remark preceding Lemma 3, we have

/iu)(s) - 0 Λ Λ /ϊu,(α0 = 0 Λ flku)(«) *= 0 Λ • ΛgZU)(v) Φ 0

satisfied by X, and if any X' e A*(A) satisfies this conjunction then
Λ*(A) t= φ(X'). In particular for each j , 1 <̂  j <> m,

fi>u)(X) = 0 Λ Λ fϊu)(X) = 0 Λ 9UΛX) Φ 0 .

Since XeA(A) — E, we can apply the first part of Theorem 11Λ of
[3] to get the existence of an infinite number of members of E which
are solutions in £7* to
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OΠx) = 0 Λ Λ fn(x) - 0 Λ gj(x) Φ 0 .

We can now find a finite set S, S S E*, cardinality of S ^ 2, such
that for each j,l^j<Zm, there is an αy e S satisfying (*) in E*.
Of course S e L * (see [6], using only one coordinate). Let F* be the
filter of L* generated by S. By Theorem 4.7 of [6] there is a
7 e i * ( i ) such that F* - {# e L* | Γ e S ^ , } . Since S e F*, Γe S^U).
For each i, 1 ^ i ^ n, we also have S S{xeE* \ fι{x) = 0} = T\
So ΓeΓj*U ) . Again by Theorem 2.1 of [4] we have /}*U,(Γ) = 0,
1 ^ i ^ w. We claim gJ

Λ*U)(Y) Φ 0, l<,j<.m. Say, for some j ,
gj

ΛHA){Y) = 0. So for Σ7' = {α e.57* | ^(x) = 0}, again by Theorem 2.1
of [4], Ye UiHA). Hence IP'eF* and EF 3 S. Thus

£7* N (a;)(α; ̂ S V flfy(a?) = 0) .

Again by Theorem 2.1, A*(A) t= (X)(X$S*U) V gi>U)(X) = 0). But
ajeΛ^iA), a3-eSΛ*U) and ^'*(4)(αi) Φ 0, a contradiction. Thus for all
j , 1 ^ j ^ m, ^*(^)(Γ) ^ 0. Hence 4*(A) |= 9>(Γ). We claim Γg £7*.
If Y=aeE* then, for C7 = {α}, Γ e U ^ , and hence ZJeF* and
U 3 S which contradicts S having cardinality ^ 2 . So Γ ί E * . But
FGSΛ* U ) . NOW by Corollary 5.10 of [4] (in the arithmetic case),
YeΛ*(A) - (Λ(A) U - Λ(A)).

The next theorem is the major result of this paper. We use
the definitions and notation of [6] but always in the arithmetic rather
than the recursive case. Further, for simplicity we take L* to be
the lattice of arithmetic subsets of £7* (since only one variable is
needed) and L the lattice of arithmetic subsets of JS72. Consequently
we ignore the notion of " support".

THEOREM 7. The arithmetic isols Λ(A) cannot be defined in the
arithmetic isolic integers Λ*(A) by an infinite number of arithmetic
formulas.

Proof. We prove a slightly stronger result. Suppose {<£>;};<ω are
arithmetic formulas of one free variable, XeΛ(A) — E, and for each
i, A*(A) h ψi(X). Then we will find Ye Λ*{A) - {Λ{A) \J - A{A))
such that for each i, Λ*(A) f= g>i{Y).

By the remark preceding Lemma 3 we get a collection

{fkAx) = 0}i<ω u {gi*u){χ) Φ 0}i<ω,

with the fj'& and gj's arithmetic functions of one variable, such that
X satisfies the collection and if any Xτ e Λ*(A) satisfies the collection
then for each i, A*(A) 1= ψi(X'). Let Tj S E be the set of nonnega-
tive integer solutions to fj(x) = 0. Since fί*U)(X) = 0 for all j , the
intersection of any finite number of Γ^s is infinite (see [3]). Let
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i*7* be the filter in L* consisting of all R e L* such that R contains
the intersection of some finite number of Tj's, except perhaps for a
finite set. If Uj is the set of all integer solutions to gj(x) = 0 then
jjj g ]?* because, by results of [3] again, since X satisfies every
fj*u)(χ) = 0 and also this particular gs

Λ*U)(x) Φ 0, we have that every
finite intersection of Tj's contains an infinite subset of E not in U\
Let R\ R\ R\ be an enumeration of F* and W\ W\ W\ an
enumeration of L* - F * . As in Theorem 4.7 of [6], let F - {RA | R e ί7*}
F is a realizability filter in L enumerated by (R°)Λ, (i? :)A, (R2)Λ, . . .
We can now prove a lemma essentially the same as Lemma 3.3 of [6],
but using (R')A in place of T\ {Wι)A in place of S\ and (L* - F*)A

in place of L — F. (Note that {(PF*)A}i<« is not an enumeration of
L — F.) Assume this has been done. (The same proof will work.)

We now wish to prove a lemma corresponding to Lemma 3.2 of
[6] but with a stronger conclusion. So we shall define inductively
(two at a time) {of }ί<ω, xi e E\ Let Po, P l f P2, « be an enumeration
of the one-one partial arithmetic functions of one variable. We
shall also inductively define a set G £ E which will contain " integers
to be avoided."

From the definition of F* it follows that for each m < ω,
(R° Π Π Rm) - Wm contains an infinite subset of E. We as-
sume that x°,x\ •• ,x2ίl~1 have been defined, that Gn~ι is the finite
part of G defined so far, and that for any index s of the form
{x\ 6°), (α?\ &1), , (a 2 - 1 , b2n~ι) we have (α#)0 n Gn~λ = 0 . (G"1 = 0 ) .
Choose s G (J2° Π Π R2n) - W2n and «' € (i2° Π ΓΊ JB2%+1) - W2n+1

such that ^ > zr. These choices are possible because these sets
contain an infinite number of positive integers. Define x2n e E2 to
satisfy : (i) xf - xf = z, (ii) max {xf-\ xT~ι) < min {xf, x*n), and (iii)
for any index s with an initial segment of the form (x°, 6°), ,
(x2n, b2n), we have (as)0 n Gn~ι = 0 . Taking into account the induc-
tion hypothesis on Gn~\ such a #2ίl exists since there are an infinite
number of members of E2 satisfying (i) and (ii) and since Gn~ι is finite,
almost all of these satisfy (iii). Now let V = \Js(as)o where the
union is taken over all indexes s of the form (a?0, 6°), , (x2n, b2%).
Then there exists x2n+1 e E2 such t h a t : (i) xT+1 - x*n+ι = z', (ii)
max (xln, xln) < min (x2

0

n+ι, xln+1), and (iii) for any index s of the form
(a?0, 6°), . . . ,(α; 2 w + 1 , b2n+1) we have PΛGS.X) Γ) V=0. Again such a

χ2n+i e x i s t s because F is a finite set and of the infinite number of
ways to satisfy (i) and (ii), almost all will satisfy (iii). And we have

X2ne(IJOJΛ n . n {R2n)A~{W2n)A,x2n+ie(i2°)A n n (R2n+γ - (W2n+)A.

Since z > z', we have x2

0

n - xT > x2

0

n+1 - xln+1 and t h u s

Let s be an index of the form (x\ 6°), , (α;2n+1, 62ίί+1). Then
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has cardinality x2n+1 — x\n and (βs)0 has the smaller cardinality
xln+1 — xln. For this s three cases may then occur.

Case I. Pn is not defined on all of (/3β)lβ

Case II. Pn is defined on all of (βs)L and Pn((βs\) S UΛ/3Λ
where the union is taken over all indexes r of the form (x°, 6°), •••,
(x2n+\ b2n+1). In this case, since PΛ(08,)i) has larger cardinality than
(/3s)0, there is an r ^ s and an integer u such that u e P^/S^) n (/Sr)0.

Case III. Cases I and II do not hold. In this case, again since
PΛ(βs)i) has larger cardinality than (βs)0, there is a

Define Gn to consist of Gn~ι together with the u's which come from
indexes s satisfying Case III. Then for any index s of the form
(x°, 6°), , (x2n+\ b2n+1) we have (a8)Q n Gn = 0 (using part (iii) of the
definition of x2n+1). This completes the inductive definitions of
{%i}i<ω and G. We have at least the conclusions of Lemma 3.2 of
[6] with (Ri)A replacing T\ (WY replacing S\ and (L* - F*)
replacing L — F.

Λ

Proceeding now as in [6] we obtain the infinite sequence (x°, y°),
(x\ y1), whose initial segments are the indexes

and such that a = atQ V atl V . Let Y = <αo> — <<*i>. We can
now prove (as in [6]) lemmas corresponding to Lemmas 3.4 and 3.6
of [6]. Assume this has been done. We claim aQ and aγ are
arithmetically isolated sets. If one of them is not, then proceeding
as in Lemma 3.5 of [6] we could show that a0 and aγ are both
arithmetically enumerable. Let c0, cl9 cif and β0, eu e2, be
arithmetic enumerations of a0 and ax respectively. Let H consist of
all pairs of sets of the form

(fo>, , c2n+2}, {eQ, , e 2 J), n = 0 , 1 , 2, . . .

Then a is attainable from the arithmetic {2}-frame H. But {2} g F*.
So {2} = Wι for some i and by our version of Lemma 3.4 of [6], a
could not be attainable from H, a contradiction. So

We wish to show Y<£Λ(A)\J — Λ(A). This is equivalent to
showing that <<xo> ̂  <αx> and <^!> ^ <αo>. Suppose <αo> ^ <<%!>. If
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W is the set of nonpositive integers then W&F* and so W — Wι

for some i. But WΛ = {(xQ, xj e E2 \ x0 ^ xL}, and since (aoy <. ζa^y
we must have ζaoy — ζa^e WΛHA)1 a contradiction. Now assume
(aoy ^ <(̂ î >. So there is a one-one partial arithmetic function of
one variable, call it P w , such that Pm is defined on aγ and Pm(tfi) S tfo

Recall the definitions of x2m and x2m+1. For the index ί2w+1 Case I
could not have held since Pm is defined on all of ax. If Case II held
then we have the u as described there. But by property (3.10) of
[6] it follows that although uePm(aύ> u could not be in aQ. So
Case II could not have held and Case III must have held. So there
is a wePm(tfi) Π G. But by the construction of G, any ueG could
not be in any (atd)Q and thus u g aQ, a contradiction. So

<αo> ^ <αx>, and Ye Λ*(A) - (Λ(A) U - Λ(A)) .

Now by Theorem 2.1 of [4] (arithmetic case),

But TjeF*, and thus Γ e Γi*U). So for all j < ω,f}.U)(Y) = 0.
Suppose 0J U )(Γ) = 0. By the same theorem, Γ G E/j*U) •- ̂ j*u,(F) = 0.
So Γ e £7j*U). But we showed Uj &F* thus ?7y is some Wi and so

Uj*U). Hence gi*U)(Y) Φ 0 and the proof is complete.

COROLLARY 8. If F*, a filter in L*, cannot be generated by a
singleton set, then there is a YeΛ*(A) — (Λ(A) U — Λ(A)) which
realizes JF*.

Proof. First of all, if F* is generated by some singleton set
{a} for α e £ * , then by Theorem 4.7 of [6], a is the one and only
member of Λ*(A) which realizes F*. Now assume F* cannot be
generated by a singleton set. Again by Theorem 4.7 of [6], there
is an XeA*(A) which realizes JP*. If X e # * it would follow that
ί7* is generated by {X}. So XeA*(A) - E*. If

XeΛ*(A)-(A(A) U - A(A)) ,

we would be done. If not, then using this X we can proceed as in
the theorem to get YeΛ*(A) - (Λ(A) U - Λ(A)) realizing F*.

We remark that the corollary holds also in the recursive case.

3. In this section we prove the analogue for Λ*(A) of one of
the major results of [7].

DEFINITION 9. A subset S of Λ*(A) is said to be indecomposable
if for every arithmetic relation R(xl1 •••,«») and every Xu , Xn e S,
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either (X19 , XJ e RΛ*U) or (X19 , Xn) e RΛ*U) (R is the complement
of R).

If we apply Theorem 4.7 of [6], using just one variable and
taking an ultrafilter F*, then the XeΛ*(A) so realized is inde-
composable (that is, {X} is indecomposable). So indecomposable subsets
of A*(A) exist, and maximal indecomposable subsets properly contain E*.

THEOREM 10. Maximal indecomposable subsets of Λ*(A) are proper
elementary extensions of E*.

Proof. Let S be a maximal indecomposable subset. By the
remarks above we need only show that S is an elementary extension
of E*.

We shall first show that S is closed under arithmetic functions
extended to Λ*(A). Suppose X19 , Xn e S and f(x19 , xn) is an
arithmetic function. Let fA*U)(Xι, , Xn) = Xe Λ*(A). Consider
S' = S U {X}. If it is not indecomposable, there are Yί9 , Yme S
and an arithmetic relation R(x19 , xm+1) such that

(X, Y19 . . - , YJ$R#U) U RΛΠA) .

The following statement is true in E* : (xx) (ajΛ)(a?)(2/i) (yj

[f(Xl9 , Xn) = X A R(f(Xί9 , Xj, Vl, '", Vm) — Λ(», 2/l, , Vm)] -

And, of course, the same statement is true with R replaced by R.
Since / is an arithmetic function and R and R are arithmetic rela-
tions we can apply Theorem 2.1 (ii) of [4] in the arithmetic case.
This gives :

Λ*(A) |= ~RΛ*U)(X, Yίy , Ym)~> ~ RΛ*(A)(fι*u)(Xι, m,Xn)i Yi>'' •> ^m)

and the same statement with R replaced by R. Define an arithmetic
relation R'{xl9 -'-,xn,y19 , yj <-+ R(f(x19 , xn), yί9 , ym). (Note

that R'(x19 '",xn,ylf , ym) ^ R(f(xί9 , O , l/i, , l/J ) Then

_
Combining now we get (Xly , Xn9 Y19 , YJ £ R'AHA) U i & U ) . Since
J?Ί, •• ,XΛ, YΊ, •••, 7mG)S, this contradicts the indecomposability of
S. Hence S' is indecomposable and since S is maximal, S' = S and
XeS. So S is closed under extended arithmetic functions.

The theory of arithmetic has definable Skolem functions. So
every statement of arithmetic is equivalent to a universal statement
in which the matrix is in disjunctive normal form, V Λ P, where P
is of the form u + v = w, wv = w, or u Φ v and u9 v9 w can be
variables, integers, or arithmetic Skolem functions of variables.
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Suppose φ is a true statement of arithmetic. We claim φ is true in
S, with Skolem functions which are the extensions to Λ*(A) of the
arithmetic Skolem functions for φ. φ has the form (xL) (xn)[\/T=iRi\
where each R{ is a conjunction of P's as described above. So assume
X19 , Xn e S. Suppose (X19 , Xn) £ (Ri)Λ*u) for i = 1 to m — 1.
Then by the indecomposability of S, (X19 , Xn) e (Ri)Λ*u) for ί = 1
to m — 1 and thus (Xl9 , Xn) e (ΠE^X^u). But because φ is true
in E*, we have Γ I M * S JR.. Thus (X,, , XJ G ( β j , * u ) . Hence
there is some i^, call it i?, such that (Xx, , Xn) eRA*U). Let P be
one of the conjuncts in R. Then (X19 9 Xn) e PA*U). But a triple
from Λ*(A) which is in the extension of the addition relation in E*
satisfies the addition relation in Λ*(A) similarly for multiplication
and inequality. And since extension commutes with composition,
each P in R is satisfied in Λ*(A) when X{ is substituted for the
variable xiΛ But by the earlier part of this proof, fA*(Λ)(X19 , Xn) e S
for the Skolem function f(x19 •••,#„). Thus φ is true in S. Since
ψ was any statement true in arithmetic we have the converse and
hence S is an elementary extension of E*, as required.

Suppose S is a maximal indecomposable subset of Λ*(A). Let T
be a subset of S, T 2 E*, and let T be the closure of T in S under
arithmetic functions extended to Λ*(A) (S being closed under such
functions). From the proof of the theorem, these functions were
exactly the Skolem functions for S. Hence T is an elementary ex-
tension of E* and T and S are elementarily equivalent. (Clearly T
is contained in every maximal indecomposable S which contains T.)
In particular, if XeΛ*(A) is indecomposable, then

{fΛ*{A)(X) I / is a one-place arithmetic function}

is an elementary extension of E*, which is E* if X is finite and
which properly extends E* if XeΛ*(A) — E*.

The author wishes to acknowledge valuable conversations on the
subject of this paper with Professor A. Nerode. He also acknowledges
helpful suggestions from the referee.
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