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RANK k GRASSMANN PRODUCTS

M. J. S. LIM

The general question concerning the structure of subspaces
of a symmetry class of tensors in which every nonzero element
has an irreducible representation as a sum of decomposable (or
pure) elements of a given length is as yet largely unanswered.
This problem relates to the problem of characterizing the linear
transformations on such a symmetry class which map the set
of tensors of "irreducible length" k into itself; i.e., preserves
the rank k of the tensors. Another related problem is: "Is
it possible to obtain algebraic relations involving the com-
ponents of a tensor which imply it has rank ("Irreducible
length") k, for any positive integer /b"?

This paper is concerned mostly with the third question for the

( n\
j-dimensional Grassmann Product Space ArU, where U is an n-

dimensional vector space over a field F. It includes some discussion
of the first question for F algebraically closed OβA r = 2.

A vector in /\rU is said to have rank k if it can be expressed
as the sum of jfc, and not less than k, nonzero pure r-vectors in ΛrU.
We denote the set of such vectors by Cr

k(U). The nonzero pure pro-
ducts in ΛrU have rank one.

The results obtained in this paper are as follows: (i) the rank
of a vector in ΛrU is unchanged if we extend U, (ii) in the Gras-
smann Algebra Λ°ί7+ Λ1U+ ••• + ΛrU + •••, multiplication of a
Grassmann product by a nonzero vector in U either annihilates it or
preserves its rank, (iii) we can associate with each vector z in Cr

k(U)
a unique subspace U(z) in U, (iv) if zeCl(U) and dim U(z) is rk,
then z has rank k, (v)x1 A yx•+ ••• + %s A yseCs

2(U) if and only if
{%i> Vι, " , %8> Vs) is independent. Finally, we discuss the rank two sub-
spaces in A2U when dim U — 4. If F is algebraically closed, these
subspaces are of dimension one. Otherwise, they can be different,
as the examples show.

In this paper, Q(k, t, n) will denote the totality of strictly in-
creasing sequences of k integers chosen from ί, ί + 1, , n; S(k, t, n)
the totality of sequences of k integers chosen from t, t + 1, •••, w.

Let x19 , xn be a basis of U. For ω = (ilf , ir) e Q(r, 1, n),
we denote the product xh A Λ %ir by xω.

Let p be an r-linear alternating function from πτ

i=1E —> F, E=

{1, ••-,"}.
We will need the following known result.

THEOREM 1. (See [2], p. 289-312.) Let
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z = Σ P(ω)Xω, (ω G Q(r, 1, n)) .

Then z is a pure vector if and only if

( 1 ) Σ ( - l)μp(a, jμ)ptio, , JV-I, i/i+i, , Jr) = 0

/or αZZ α e £(r — 1,1, n) and all (j0, , jr) e S(r + 1,1, n).

Furthermore, there are (n — r) independent equations in the
system of equations (1).

The following lemma will be useful.

LEMMA 2. Let z = Σ p(<o)xω9 (ω e Q(r, 1, w); 2 e Cl(U)). Let s, m
be integers, O ^ s ^ r , 0 ^ m ^ n, and let

= Σ P ( l . , s, OL)X1 A Λ xs A xa, (<xε Q(w — s, s + 1, m)) .

' e C[(ϋ7), / o r some i, 0 ^ ί ^ &.

Proof. We p r o v l first t h e case k = 1.
Let α> = (i 1 ? ., i r ) e Q(r, 1, w). We set

if ii = 1, , i, = s, and s + 1 S i.+i < < ίr ^ m. Otherwise,
2>'(ii, , ir) = 0. Then 2' = Σ p ' ί ύ ) ) ^ ; (α> e Q(r, 1, n)). It is easy to show
that the system of equations (1) holds for the p' s; (there are 3 cases
to check; viz., it > m or j t > m for some ί; not all of the integers
1, , s are present in ilf , ir^ or not all of the integers 1, , s
are present in j 0 , •• , i r ; and, thirdly, all the integers 1, « ,s are
present in iί9 , ir_γ and in j 0 , , j r with i t ^ m (ί = 1, , r — 1)
and j t ^ m (i = 0, , r)). Thus, by Theorem 1, zf e C[(Z7) or is zero.

For z = zx + + zk G CjE(C7), ^ e C[(J7) (i = 1, , k), we apply
the above result to each term zif noting that

z' = (z1 + zk)
r = z[ + . + z'k .

THEOREM 3. Let U' c U be a subspace.
Then Cl(Uf) c C£(17).

Proof. Le t xx, , α;s be a basis of [/', and let xly •• ,a?Λ be an
extension of th i s basis to a basis of [7. L e t

2/1 + + ^ G C«*7'), 7/, 6

Suppose ^ + + yk = ^ + + s, e Ci(J7), s< e C[(i7). Clearly
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I ^ k.
To show I ^ k, let

*j = Σ P(d)Mxω, ω e Q(r, l,n),

Since ^ e Cϊ(U'), 1 ^ i ^ fc, then

Σ p(i)(α>) - oΣ
whenever α> = (ί l f •••,%) and {i^ , i r} £ {1, , s}. Hence

is in C[(Uf) by Lemma 2, and since z[ + + z\ — zί + + zt =
Vi, " ,VH, t h e ί ^ ft.

DEFINITION. For ^6 Cl(U), we define jβr(2) = k; i.e., JSr: ΛrU—>J
such that i2r(2) = Jfc if and only if zeCl(U).

We will drop the index r when no confusion arises.

If xeU,ze ΛrU such that z = yΣJp(ω)xωjωeQ(r,l,n), where
a?u •••,#» is a basis of J7, then we write x Λ z for the vector

X p(ω)x A xω,ωe Q(r, 1, w) .

If z = a?i Λ Λ xr is a nonzero pure vector in ΛrU, then we
shall denote the r-dimensional space ζxly •• ,#OT̂ > by I7(«).

T H E O R E M 4. Let y = y, + --- + yke Cr

k(U), yt e C[{U), 1 ^ i ^ k.

( i ) Suppose x A (yι + + 2/*) = 0, a? e U. Then x e U(Vi)f

i = 1, -- . , A.

(ii) Suppose xeU,x<£ U(y1) + + U(yk). Then x Aye Cr

k

+1(U).

Proof, (i) Suppose on the contrary that x $ Uiy,). Then

x A y1 = x A (-Σyλφ 0 .

Thus, we can choose a basis â , , xn of 17 such that

a? = a?i, i/i = a?2 Λ Λ a; r + 1 .

Then

- Σ l / ί ) = «2 Λ Λ a?r+1 + Σ Pi 1 . «)»i Λ Λrβ, (α e Q(r - 1, 2, w)) .
/

Σ
ΐ=2

Hence ( ~ Σ t 2 ^) = yλ + a; Λ v, where V = Σ P ( 1 , <̂ )̂ α e A^U. Taking
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s ;= 1, m = n in Lemma 2, it is easy to see that since R( — ΣiU) =
k — 1, then 22(α? Λ V) ^ k — 1. But & Λ v = — (i/i + + yk) which
implies R(x A v) = k. We have a contradiction. Therefore x e U{y^.
Similarly, x e Ufa), ί = 2, , k.

(ii) Suppose that

& Λ 3/ = Zi + zι e C[+1(ί7), s< G C[+1(?7) , 1 ^ i ^ ί .

Clearly I ^ A;.
To show I ^ kf we choose a basis x19 , ccw of C7 such that ίc =

a?,, and a?2, , xs is a basis of ί/d/x) + + U(yk). Then

2/ = Σ 2>(^)^ω, (ω e Q(r, 2,

Using (i) and the fact that x A (x A y) = a?i Λ (zι + + «/) = 0,
we can express each zά = ^ Λ ( Σ p ( i )(ω)xω); ω e Q(r, 2, π)), 1 <£ i ^ Z.

Now Σ5 =i P ( i )(^) = 0, (ω = (ix, , ir)), unless

In the latter case, Σ5=iP ( i ) ( ω ) = P( ω ) Therefore, ^ + + zι =
s[ + + «J = x Λ y where

z = Σ P( i )(*>K Λ x«, (a) e Q(r, 2, s)) .

Hence y = z[' + . + «;', where z'f = Σ P ( i ) ( « ) 4 , (ω e Q(r, 2, s)),
which implies R(y) S I, i.e., k ^ I.

THEOREM 5. Let yieCl{U),zieC'l{U), (ί = 1, , k) such that

2/i + + 2/* = «i + + s*.

/,) + + c/(?/,) = t^fe) + + U(zk).

Proof. Suppose on the contrary that there exists a vector xe

Z7(i/i) such that x g U{z^ + + U{zk). Since x A (y^ + + 2/fc) =

a; Λ («i + ••• + zk), then

δ ( « Λ ( l / 1 + + 1/*)) = R(x A («! + + **)) ^ k - 1 .

But, by Theorem 4 (ii), β(x Λ fe + + £*)) = A:, which is a con-
tradiction.

DEFINITION. Let

Then we define I7(«) to be the subspace [/(̂ O + + U(zk).

THEOREM 6. Let ^eCΓ(C7), i = 1, •••,£, and ieί
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Ufa) + ••• + U(zk)] = rk .

Then R{zt + + zk) = k.

Proof. Suppose the Theorem is false. Let k be the smallest
integer for which it fails. Clearly k ^ 2. Let

£i + + zh = y, + + y% e C'ΛU), yt e C{(U) .

L e t xe I7(Si). T h e n x<£ U(z2) + ••• + U(zk). B y t h e c h o i c e of

k,z2+ . . . +zkeCr

k-1(U) .

Hence, by Theorem 4 (ii),

x A (z2 + ••• + zk) = x Λ {zι + . . . + zk) = a; Λ (^ + + 2/ι) ,

and Z ̂  A: — 1. But we assumed I < k. Therefore I — k — 1.
By Theorem 5,

U(x A z2) + + C7(a; Λ zk) = U(x A yd + + U(x A yk-,) .

Hence < » + U(z2) + + ^(^) - < » + Ufa) + + U(yh-X)
Now let x; G Z/fe), independent of x. Then again

Taking intersections, we obtain

«7(̂ 2) + + ^(«fc) - Ufa)

By a similar argument,

y. = U{zx) + + [/(^.O + C/(^+1) + + U(zk)

= Ufa) + +

Hence Z/^) + - + U(yk^) = Π*=i ^ = {°}̂  which is impossible. The
result follows.

T H E O R E M 7. Σ ί = i » » Λ 2/1 e CS

2(Z7) i / αwώ 0 ^ 7 / i / ( f e , ?/!,.•• a?β, ?/s}
is independent.

Proof. If {Xi, 2/lf , x8, ys} is dependent, it is easy to show that
•R(Σι'=i χi A yd ^ s — 1. It follows that the condition is necessary.

The converse follows easily from Theorem 6.

COROLLARY 8. Let f = Σί=i χi Λ 2/*, α^c? dim <^1? ^ , -, x8, ysy
<2k, k^s. Then R(f) £ k - 1.

We shall now direct our attention to the rank 2 subspaces of
A2U.
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DEFINITION. A rank 2 subspace H in Λ2U is a subspace whose
nonzero members are in Ci(U).

In this paper, we shall restrict our considerations to the case
dim U — 4. It is clear from Theorem 7 that Cl(U) is empty when
dim U < 4.

LEMMA 9. Let fe Q(U) and let {yly , y4} be any basis of U(f).
Then f has a representation f^=yι/\uJ[-vAwJ where ζu, v, wy =

O2,2/3,2/4>.

Proof. Since fe Λ2 <j/i, , 2/4>, then

= Σ P(ω)ifω, (a) e Q(2,1, 4)), p(ω) e ί7,
= 3/i Λ (Σί =2 P(l, 3)Vi) + Σ P ( ^ « (a e Q(2, 2, 4)) ,

which is of the form yγ A u + v A w. It follows from Theorem 7
and its corollary, and the fact that R(f) = 2 that

<u, v, wy = <τ/2,7/3, y4y .

THEOREM 10. Let dim [ 7 = 4 αmZ ϊeί H be a rank 2 subspace
in A2U. Then dim H = 1, provided F is algebraically closed.

Proof. Let / be a nonzero member of H. Then / has a re-
presentation / = xγ A x2 + 3̂ Λ x4 in Cϊ(U). By Theorem 7,

If / ' is any other nonzero member of H, then U(f') = ζx19 , x4)>.
By Lemma 9, / ' = x1 A u + v A w, ζu, v, wy = (x2, x3, x,y. Hence
dim ζv,wyf] <a?3, x4y ^ 1. Without loss of generality, we shall assume
x, e <>, wy Π <>3, <>. Hence

/ ' = α?! Λ u + 3̂ Λ w', ζu, wfy c <x2, x3, x4y .

Let u = Xί=2 δ ^ ; ^ ' = Σί=2,4 te; 6̂ , d4 e ί7. Then for

λ G ί7, z = λ/ + / ' = Xj. A (λx2 + b2x2 + 63̂ 3 +

+ x3 A (λx4 + d2x2 + 6?4α;4) .

The condition that the vectors

xlf (λx2 + b2x2 + 63X3 + 64£4), xs, (Xx4 + d2x2 + d

be independent; i.e., R(z) = 2, is equivalent to the condition that the
determinant
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1 0 0

0 λ + δ2 & 3

0 0 1

0 d2 0

0
be

nonzero. Now

, fu f2) - λ2 λ(cί4 + b2) + (M 4 - ^ W

Since w, w' are independent, (62cZ4 — d2bA) Φ 0. Hence #(λ) is a non-
trivial polynomial in λ, and hence, for some nonzero X in F, g(X) = 0;
i.e., Γ(X9f19f2) = 0. For such a λ, #(2) ^ 1. It follows that dim
H= 1.

The above theorem is false when F is nonalgebraically closed.
For example, the vectors

and

f2 = a?! Λ (# Λ

in Q(U), where Z7 = ζx^ , α;4>, dim [ 7 = 4 , .F7 = Reals, generate a
2-dimensional rank 2 subspace in Λ2U.

It is interesting to note that if F (nonalgebraically closed) has
an irreducible quadratic polynomial h(X), and dim U = 4, then we
can construct 2 independent vectors f19f2 in Cl{U), which will generate
a 2-dimensional rank 2 subspace in Λ2ί7, and such that Γ(X,flff2) =
h(X) (see Theorem 10). The construction is as follows:

Let dim U = 4, £7 = <^ly , #4>. Let fe(λ) = λ2 + a,X + α0 be ir-
reducible in F. The companion matrix of h(X) is

B =
0 1

— a,

Now

det (XI - B) =

XI- B -

1 0 0 0

0 λ 0 - 1

0 0 1 0

0 α0 0 X + α :

- 1

α0 λ

= h(X) Φ 0 .

Taking this determinant to be Γ(X, flf f2) corresponding to z — λ/i + f2,
where f11f2eCt{U)1XeF9 we have

/i = x1 A x2 + X3 Λ

Λ
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The construction is complete. Thus, for example, if F = Rationale
and h(\) = λ2 - 2, then

/i = xι A x2 + ^3 Λ #4

and

f2 = x1 A (-x,) + (-2)»3 Λ x2 ,

and /i,/2 generate a 2-dimensional rank 2 subspace in A2U.

For the work in this paper, I am greatly indebted to Dr. R.
West wick for his generous assistance.
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