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RANK %» GRASSMANN PRODUCTS
M. J. S. Lim

The general question concerning the structure of subspaces
of a symmetry class of tensors in which every nonzero element
has an irreducible representation as a sum of decomposable (or
pure) elements of a given length is as yet largely unanswered.
This problem relates to the problem of characterizing the linear
transformations on such a symmetry class which map the set
of tensors of ‘‘irreducible length’’ %k into itself; i.e., preserves
the rank k of the tensors. Another related problem is: ‘‘Is
it possible to obtain algebraic relations involving the com-
ponents of a tensor which imply it has rank (‘“‘Irreducible
length’’) k, for any positive integer k’°?

This paper is concerned mostly with the third question for the
C})—dimensional Grassmann Product Space A"U, where U is an n-

dimensional vector space over a field F. It includes some discussion
of the first question for F algebraically closed #id » = 2.

A vector in A’U is said to have rank k if it can be expressed
as the sum of k, and not less than k, nonzero pure »r-vectors in A"U.
We denote the set of such vectors by C;(U). The nonzero pure pro-
ducts in A"U have rank one.

The results obtained in this paper are as follows: (i) the rank
of a vector in AU is unchanged if we extend U, (ii) in the Gras-
smann Algebra AU + AU+ -+-- + A"U + ---, multiplication of a
Grassmann product by a nonzero vector in U either annihilates it or
preserves its rank, (iii) we can associate with each vector z in CyU)
a unique subspace U(z) in U, (iv) if ze Cy(U) and dim U(z) is rk,
then z has rank &k, (W)x, Ay, + -+ + 2, A y,€ CX(U) if and only if
{®,, ¥, -+, ®,, ¥} is independent. Finally, we discuss the rank two sub-
spaces in AU when dim U = 4. If F is algebraically closed, these
subspaces are of dimension one. Otherwise, they can be different,
as the examples show.

In this paper, Q(k, ¢, n) will denote the totality of strictly in-
creasing sequences of k integers chosen from ¢,t+1, ---,n; Sk, t, n)
the totality of sequences of k integers chosen from ¢,¢+ 1, ..., m.

Let «,.+-,x, be a basis of U. For w = (1, ---, 7,) € Q(r, 1, n),
we denote the product »; A -+ A @, by x..

Let p be an r-linear alternating function from zw!_  F— F, E=
{1’ cee, M.

We will need the following known result.

THEOREM 1. (See [2], p. 289-312.) Let

367



368 M. J. S. LIM

z = 2 p(a))xw, (0) € Q(r’ 17 n)) .

Then z is a pure vector if and only if
( 1) ZJO (——l)“p(a, jy)p(jm °* '7j/4—1y jy+1y b '5jr) =0
for all «eS(r —1,1,n) and all (3, +--,7,)€S(r + 1,1, n).

Furthermore, there are (n — r) independent equations in the
system of equations (1).

The following lemma will be useful.

LEMMA 2. Let z = 3, p(w)x,, (@ e Q(r, 1, n); z€ Cy(U)). Let s, m
be integers, 0 < s<7r,0 < m < n, and let

z,:Zp(ly ---,s,a)xl/\ e A2y N\ Xy (aeQ(m_SyS+1’m))-
Then 2’ € C;(U), for some 1,0 <1 < k.

Proof. We pro& first the case k = 1.
Let v = (¢, +--, %,) € Q(r, 1, n). We set

p,(iu c Y ,Lr) = p(ily tt 1'1-)

if 4,=1,--+,4,=s, and s+1=<Z 14, < -+ <1, <m. Otherwise,
(i, ++,%,)=0. Then 2’ = >, 9 (w)x,;(® € Q(r,1,n)). It is easy to show
that the system of equations (1) holds for the »’s; (there are 3 cases
to check; viz., 7, > m or j, > m for some t; not all of the integers
1, ---,s are present in %, ---, 4,_, or not all of the integers 1, ---,s
are present in j,, ---,7,; and, thirdly, all the integers 1,..-,s are
present in ¢, ++-,%,_, and in 5, +--,5, with 7, <m (t =1, ---,r — 1)
and 5, <m (I =0, ---,7). Thus, by Theorem 1, 2’ € C:(U) or is zero.

For z=2+ -+ +2,eCy(U),2,eCi(U) ¢+=1,---,k), we apply
the above result to each term z;, noting that

Z =R+ 2) =2+ -+ 2.

THEOREM 3. Let U’ < U be a subspace.
Then Ci(U') < Ci(U).

Proof. Let x, .-+, %, be a basis of U’, and let =, +---,2, be an
extension of this basis to a basis of U. Let

Yo+ oo + Y e CUU), y; € CL(U) .
Suppose y, + +++ + Yy, =2 + .-+ + 2,€C{(U), 2,€ C1(U). Clearly
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l< k.
To show | = £k, let

z; = 3, p(w)x,, weQ(r, 1, n), 1<j<1.
Since ¥, e C1(U"),1 < ¢ <k, then
i p(j)(a)) — 0
whenever ® = (3, +++, ¢,) and {4, +--,¢,} € {1, ---, s}. Hence

Z, =3, p(w)x,, weQ(r,1,s),

is in C{(U’') by Lemma 2, and since 2z, + «++ + 2, =2, + +++ + 2, =
Yiy 22y Yy thele-

DEFINITION. For ze Cy(U), we define R.(z) = k; i.e., R,: AN'U—J
such that R,(z) = k if and only if ze Cy(U).

We will drop the index » when no confusion arises.

If xeU,ze A"U such that z = 3 p(w)x,, w € Q(r, 1, n), where
X, ++-,%, 15 a basis of U, then we write © A z for the vector

(@ A x,, we@Q(r,1,n) .

If 2z=2, A -+ A2, is a nonzero pure vector in A"U, then we
shall denote the r-dimensional space <x,, ---, 2,> by U().

THEOREM 4. Let y =y, + «++ + 4,€Cy(U),y;€C{(U),1 £ 1 < k.
(i) Suppose x A Y+ -+ +yy) =0,zeU. Then xe U(y,),
1=1,---, k.
(i1) Suppose xc U,x¢ U(y,) + -+ + U(yy). Then 2 ANye Ci(U).
Proof. (i) Suppose on the contrary that « ¢ U(y,). Then
k
TAY = x/\(—;yi>;&0.

Thus, we can choose a basis «,, ---, 2, of U such that
C=X5,Y =Xy N\ oo N\ Xpyy o

Then
(~i}/> =@ A o A B+ 201, )2 A X, (@EQ(r — 1,2, m)) .

Hence (— 3., y,) = y, + A\ v, where v = >, (1, ®)x, € AN"'U. Taking
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s =1, m = n in Lemma 2, it is easy to see that since R(—3,) =
k—1, then Rx Av)<k—1. But tAv=—(y, + -+ + y,) which
implies R(x A v) = k. We have a contradiction. Therefore = e U(y,).
Similarly, x e U(y,), 7 = 2, «--, k.

(ii) Suppose that

TANY =2+ +2ecC(U),zcC*U), 1=i=1.

Clearly [ < k.
To show ! = k, we choose a basis «,, +++, %, of U such that v =
x, and «,, --+, ¢, is a basis of U(y,) + --+ + U(y,). Then

y =, p(w)x,, (e Qr, 2,n)) .

Using (i) and the fact that s A (x A y) =2, A (2, + +++ +2) =0,
we can express each z; = 2, A S p?(@)x,); weQ(r,2,n), 1 <5< 1.
Now Zg‘:l p(j)(w) = Oy ((D = (?:U ety ir))) 'H/nleSS

(i) oe, i} 42, -+, 8} .

In the latter case, >\'_, p¥(w) = p(w). Therefore, z, + -+ + 2, =
2+ ++- + 2, =2 Ay where

2y = 3, pP(w)x, A x,, (0eQ(r,2,5)) .
Hence y =z’ + --- + 2/, where 2/ = > p¥(w)x,, (v € Q(r, 2, 8)),
which implies R(y) £ 1, i.e., k< 1.

THEOREM 5. Let y,cCi(U),z,€Ci(U), ¢t =1, ---,k) such that
Y+ e +yk:zl+ cee 2
Then U(y,) + «++ + Ulyy) = UR) + -++ + Uzy).

Proof. Suppose on the contrary that there exists a vector x¢
U(y,) such that x¢ U(z) + -+ + U(z,). Since A (y, + +++ + yp) =
2 A (& + -+ + %), then

Re AN+ - +y))=R@eA@+ - +z)=k-1.
But, by Theorem 4 (ii), R(x A (2, + --+ + 2,)) = k, which is a con-
tradiction.
DEFINITION. Let
=2+ - +2,€Ci(U),2eCi(U), i=1,.-4,k.
Then we define U(z) to be the subspace U(z,) + --- + U(z).

THEOREM 6. Let 2,eCi(U), 1 =1, -, k, and let
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dim[Uz) + -+ + U] =71k .
Then R(z, + <+ + 2,) = k.
Proof. Suppose the Theorem is false. Let k be the smallest
integer for which it fails. Clearly k¥ = 2. Let
2+ et 2=y + oo +y,€C(U),y; €C7(U) .
Let e U(z,). Then z¢ U(z,) + --- + U(z,). By the choice of
k,z,+ -+ +2,€Ci_(U) .

Hence, by Theorem 4 (ii),
CNE A+ F) =A@+ ) F=EAG Y

and I =k — 1. But we assumed ! < k. Therefore | = k — 1.
By Theorem 5,

Uz Nz2)+ oo +UxNz)=UxANANy)+ o« +Ux A YY) -

Hence <{z> + U(z,) + -+ + U(z,) =<&> + Uly,) + -+ + UWry).
Now let &’ € U(z,), independent of x. Then again

>+ U®) + -+ + Ur) =<&>+ Uy,) + <+ + Uyiy) -
Taking intersections, we obtain
U@R) + +o- + U@) =Uly) + «++ + UWi) -
By a similar argument,

Vi=U®) + «++ + Uis) + U@Riry) + -+« + Ulzy)
=UW) + -+ + Uy -

Hence U(y,) + -+ + Ui = Ni,V; = {0}, which is impossible. The
result follows.

THEOREM 7. i, @; Ay, € CiU) if and only if ({2, ¥, + - @, ¥}
is tndependent.

Proof. If {x,y, -+, 2, ¥y, is dependent, it is easy to show that
RO, x; N y;) <s— 1. It follows that the condition is necessary.
The converse follows easily from Theorem 6.

COROLLARY 8. Let f= >y .2 Avy; and dimlz,y, -, %, Y
2k,k <s. Then R(f)<k— 1.

We shall now direct our attention to the rank 2 subspaces of
NU.



372 M. J. 8. LIM

DEFINITION. A rank 2 subspace H in A*U is a subspace whose
nonzero members are in CX(U).

In this paper, we shall restrict our considerations to the case
dim U =4. It is clear from Theorem 7 that C¥U) is empty when
dim U < 4.

LEMMA 9. Let feCHU) and let {y,, - -+, y.} be any basis of U(f).
Then f has a representation f =y, AN u + v A\ w, where {u,v, w) =

Yy Ysy Y-

Proof. Since fe A*{y,, --+, ¥, then
f=> 0@y, (@weQ(21,4), p(weF,
=y N\ =01, 5)y;) + 3 p(@)y. ; (xeQ(2,2,4)),

which is of the form y, A 4 + v A w. It follows from Theorem 7
and its corollary, and the fact that R(f) = 2 that

<y v, Wy = Ysy Ysy Ys) -

THEOREM 10. Let dim U =4 and let H be a rank 2 subspace
an AU. Then dim H = 1, provided F' is algebraically closed.

Proof. Let f be a nonzero member of H. Then f has a re-
presentation f = x, A x, + %3 A 2, in CXU). By Theorem 7,

U= U(f)=<x1,---,x4>.

If f’ is any other nonzero member of H, then U(f’) = {x,, ---, &).
By Lemma 9, f' ==, Au+ v Aw,lu,v, wy=-<_a,x,sy. Hence
dim v, w) N <{xs, 2> < 1. Without loss of generality, we shall assume
2, € v, wy N {x;, x,). Hence

fr=a Au+ x, Aw,lu, w)c{a, x,, 2, .
Let u = Si, b w = Dis, diw;; by, d;e F. Then for

NeF,z=\f+ f'=x A O\x, + b2, + b2y + b))
+ 2, A (e, + dyx, + dy) .

The condition that the vectors
@y, (N, + bzxz + byws + 64964), X3 (N, + dyx, + d4x4)

be independent; i.e., R(z) = 2, is equivalent to the condition that the
determinant
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1 0 0 0
ON+b b b
rvish) =\, 4 ’ 13 0‘ be

0 d, 0N+ d,
nonzero. Now
FO": fu fz) = A+ N(d4 + bz) + (b2d4 - dsz) = g()") .

Since u, w’' are independent, (b,d, — d.,b,) = 0. Hence g(\) is a non-
trivial polynomial in A, and hence, for some nonzero \ in F, g(x) = 0;
i.e., '\, fi, f;) = 0. For such a A\, R(z) <1. It follows that dim
H=1.

The above theorem is false when F' is nonalgebraically closed.
For example, the vectors

f1:x1/\wz+wa/\w4
and
fo=o A (@ + ) + (0 — @) A @

in CXU), where U =<&, +++,2,», dim U = 4, F = Reals, generate a
2-dimensional rank 2 subspace in A*U.

It is interesting to note that if F' (nonalgebraically closed) has
an irreducible quadratic polynomial A(\), and dim U = 4, then we
can construct 2 independent vectors f;, f, in CXU), which will generate
a 2-dimensional rank 2 subspace in AU, and such that I"(\, fi, f,) =
h(\) (see Theorem 10). The construction is as follows:

Let dim U =4, U =<&,, ---,2,>. Let h(\) = N + a\ + a, be ir-
reducible in F. The companion matrix of A(\) is

0 1 by -1
B:[ }; xI—B:[ ]
—a, —a, ay M+ a,

Now
100 0
0Ox0 -1
det(W] — B) = =h(\) %= 0.
et ( ) 00 1 0 )
0a 0 XN+a,

Taking this determinant to be I"(\, f., f.) corresponding to z = \f, + fa,
where f,, € CXU),ne F, we have

f1=w1/\x2+w3/\x4
fo=w N\ (—x) + o A (a, + a,2) .
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The construction is complete. Thus, for example, if F = Rationals
and A(N) = A\? — 2, then
fi=w, AN, + 2 A\ 2,
and
o= A (=2) + (=2)2 A\ 2,
and f,, f, generate a 2-dimensional rank 2 subspace in A*U.

For the work in this paper, I am greatly indebted to Dr. R.
Westwick for his generous assistance.
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