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EIGENVALUES OF THE ADJACENCY MATRIX OF
CUBIC LATTICE GRAPHS

RENU LASKAR

A cubic lattice graph is defined to be a graph G, whose
vertices are the ordered triplets on n symbols, such that two
vertices are adjacent if and only if they have two coordinates
in common. If n2(x) denotes the number of vertices y, which
are at distance 2 from x and A(G) denotes the adjacency
matrix of G, then G has the following properties: (Pi) the
number of vertices is n*. (P2) G is connected and regular.
(P8) nz(x) = S(n - I)2. (P4) the distinct eigenvalues of A(G) are
- 3 , n-Z, 2n-3, Z(n - 1). It is shown here that if n > 7,
any graph G (with no loops and multiple edges) having the
properties (Pi) — (P4) must be a cubic lattice graph. An alter-
native characterization of cubic lattice graphs has been given
by the author (J. Comb. Theory, Vol. 3, No. 4, December 1967,
386-401).

We shall consider only finite undirected graphs without loops or

multiple edges. A cubic lattice graph with characterist ic n is defined

to be a graph whose vertices are identified with the nz ordered tr iplets

on n symbols, with two vertices adjacent if and only if their cor-

responding triplets have two coordinates in common. If d(x1 y) denotes

t h e distance between two vertices x and y and Δ(x, y) the number of

vertices adjacent to both x and y, then it has been shown by the

author [6] t h a t for n > 7, the following properties characterize the

cubic latt ice graph with characteristic n:

(δ j The number of vertices is n3.

(62) The graph is connected and regular of degree S(n — 1).

(63) If d(x, y) — 1, then Δ(x, y) — n — 2.

(64) If d(x, y) - 2, then Δ(x, y) = 2.
(65) If d(x, y) = 2, there exist exactly n — 1 vertices z, adjacent

to x such t h a t d(y, z) = 3.

Dowling [4] in a note has shown t h a t t h e property (bδ) is implied

by properties (6^ — (64) for n > 7. Hence for n>7, (6X) — (b4) characterize

a cubic latt ice graph with characteristic n.

The adjacency matr ix A(G) of a graph G is a square (0,1) matr ix

whose rows and columns correspond to the vertices of G, and ai3 = 1

if and only if i and j are adjacent. Let n2(x) denote t h e number of

vertices y a t distance 2 from x.

A cubic lattice graph G with characterist ic n has the following

properties:

The number of vertices is n*.
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(P2) G is connected and regular.
(P8) n2(x) = 3(^-l) 2 for all x in G.
(P4) The distinct eigenvalues of A(G) are - 3, n - 3, 2n - 3, 3(w - 1).
(P,), (P2), (P3) are obvious. (P4) is proved in paragraph 2. We go

on to show that (PL), (P2), (P3), (P4) characterize a cubic lattice graph
with characteristic w. Similar characterization for tethrahedral graphs
has been given by Bose and Laskar [1],

2* Determination of the eigenvalues of A(G). Given v objects,
a relation satisfying the following conditions is said to be an association
scheme with m classes:

(a) Any two objects are either 1st, 2nd, « ,or mth associates,
the relation of association being symmetrical.

(b) Each object a has Πi ith. associates, the number Ui being
independent of a.

(c) If any two objects a and β are ith associates, then the
number of objects which are jth associates of a, and Mh associates
of β, is p)k and is independent of the pair of ΐth associates a and β.

The numbers v, ni and p*7c, ί, j , k = 1, 2, , m are the parameters
of the association scheme.

The concept of an association scheme was first introduced by Bose
and Shimamoto [3].

If we define

where
,2, .

Bi

,m,

= Φl .•) =
1 Λ Uli . . . δί;

••• bu

--•hi,

1, if the objects a and /3 are ith associates
0, otherwise,

and

= (pik) =
p\

k = 0 , 1 , « , m ,

'

then it has been shown by Bose and Mesner [2], that the matrices
J^i, i = 0,1, , m are linearly independent and combine in the same
way as the j?'s under addition as well as multiplication. It was further
shown that if
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B =

then J3 and & have the same distinct eigenvalues. If in particular we
take c0 = 0, cx = 1, c2 = c3 = = cm = 0, it follows that the distinct
eigenvalues of Bx are the same as those of ^ .

Consider a cubic lattice graph G with characteristic n. If a relation
of association on the vertices of G is defined, such that two vertices
are 1st, 2nd, or 3rd associates if they are at distances 1, 2 or 3 re-
spectively, then it can be easily checked that G yields a three-class
association scheme. It may be pointed out that the matrix A(G) is
the matrix Bγ and thus the distinct eigenvalues of A(G) are given by
those of the matrix

/O 1 0 0

«1 V\l 2>11 ί>! 1

\

The parameters p)k of the association scheme corresponding to G are
easily calculated. They are given by

n, = S(n - 1) , pι

n = n - 2 , p2

n = 2 , p\γ = 0 ,

p\2 = 2{n-l) , p2

12 = 2(n - 2) , p\2 = 3 ,

Substituting these values in the matrix ^ , the eigenvalues are easily
calculated. They are found to be

-Z,n - 3, 2n - 3, Z(n - 1) .

Thus, we have the following lemma:

LEMMA 2.1. If G is a cubic lattice graph with characteristic n
and if A(G) is the adjacency matrix of G, then the distinct eigenvalues
of (A)G are

(2.1) - 3 , n - 3, 2n - 3, S(n - 1) .

3* Some preliminaries on matrices* Before stating the next
lemma, we need the concept of the polynomial of a graph introduced
by Hoffman [5] Let J be the matrix all of whose entries are unity.
Then for any graph G with adjacency matrix A = A(G), there exists
a polynomial P(x) such that P(A) = J if and only if G is regular and
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connected. The unique polynomial of least degree satisfying this
equation is called the polynomial of G, and is calculated as follows:
if G has v vertices, it is regular of degree d, and the other distinct
eigenvalues of A(G) are a19a29 •• ,at, then

vf[(x - ad
(3.1) P(x) = -if .

Π (<«-*«)

Consider a regular connected graph H (with no loops and multiple
edges) on v = n3 vertices such that the adjacency matrix A — A(H)
has the distinct eigenvalues —3,% — 3, 2n — 3, S(n — 1).

LEMMA 3.1. The matrix A satisfies the equation

A" - A2(Sn - 9) + A(2n2 - 18n + 27)

* + (6n2 - 27n + 27)7 = 6J ,

where J is a v x v matrix all of whose entries are 1, and I is the
v x v identity matrix.

Proof. It follows immediately by calculating the polynomial of
the graph as given in (3.1).

LEMMA 3.2. For any two vertices x, y in H> d(x, y) < 3.

Proof. If in (3.2) we set A{j = 0, A\5 = 0, then A\5 = 6, but this
implies that d{i, j) < 3 for all vertices i, j in H.

LEMMA 3.3. Consider the matrix

B = J{A2 - (n - 2)A - 3(w - 1)/} .

Let n2(i) denote the number of vertices j, such that d(i, j) = 2, and
n3(i) denote the number of vertices k, such that d(i, k) — 3. If n2(i) —
S(n — I)2 for all vertices i in H, then

( i ) B is a (0,1) matrix,
(ii) Δ{x, y) — n — 2, for all vertices x, y in H, such that d(x,y) — 1,
(iii) A(x, y) = 2, for all vertices x, y in H, such that d(x, y) = 2.

Proof. Since H is regular and 3(^—1) is the dominant eigenvalue,
it follows H is regular of degree nx = 3(n — 1).

Divide the set of vertices of H, with respect to a particular vertex
i into four subsets SQ, Slf S2, S3 as follows:
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S0:i

S,: j 1 9 j 2 , , j t , j n i , such that d(i, jt) = 1, £ = 1, 2, , ^
S2:k19k2, •••,&„ •••, An2(ί), such that d(i,ks) = 2,s = 1,2, •• ,w2(i)
S 3 : Zi, Z2, , ir, , Z«3(i), such that d(i, lr) = 3, r = 1, 2, , w3(i).

Thus the vertices in & are tth associates of the vertex ί. The follow-
ing relations can be deduced easily from (3.2) by noting that AJ = JA.

(3.3) Al^Σ.A^

= S(n - ΐ)(n - 2) .

(3.4) Λ}. = ΣΛJ/t

+ 3» - 3) .

Also, since A'J = {3(» — 1)}*/, we get

(3.5) Σ Λ*y = (A'J)«

= 9(w - I)2 ,

(3.6) ^ = Σ Aίi,

Also

(3.7) Σ ^ ί i r = 0 .

Hence it follows from (3.3), (3.5), (3.6), (3.7) that

»2(ι) v w l W 3(i )

- I)2 .

Consider

() () ()
(3.9) X{ = % + Σ δlit + Σ (δ«. - I)2 + Σ δ!!r

ί = l s=l r=l

= Σ Mi - 2*Σ} 6«, + «,(ί).

We first show that

Xi = ^(i) _ 3(% - I)2 .

Since

(3.10) B = i[A2 -(n- 2)A - Z{n - 1)1], we get
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(3.11) Bit = HAti - 2(» - 2)A$t + (n2 - lOn + 10)4ϊ<
+ 6(n2 -Sn + 2)A» + 9(n - 1)2I«] .

Substituting values from (3.3), (3.4), (3.6) in (3.11) we get

But

V

3=1

Hence

(3.12) ±bl3 = 3 ( ^ - l ) 2 .
3=1

Also from (3.10)
n2(i) n2(ί)

It follows from (3.8) that

(3.13) Σ"δ«. = 3 ( » - l ) f .
s = l

Substituting values from (3.12), (3.13) in (3.9) we get

χ{ = n2(i) - 3(n - I)2 .

Now if n2(i) = S(n - I)2 for all i in H, then Xi = 0 for all i in fl".
Then it follows from (3.9) that B is a (0,1) matrix which proves (i).

To prove (ii), we note that if Aijt = 1, then from (3.10), (3.3) and
(3.6) it follows

But since bi3 = 0 or 1, this implies bijt — 0, and hence from (3.10) it
follows that Alj = n - 2.

To prove (iii) we note that if Aί3- — 0, A2

iά Φ 0, then 6iy Φ 0 and
hence A|y = 2.

4* THEOREM. If H is a graph satisfying the following pro-
perties:

(Pi) The number of vertices is n3.
(P2) H is connected and regular.
(P3) rφ) = 3(n - I)2 for all x in H.
(P4) The distinct eigenvalues of A(H) are —3, n — 3, 2n — 3, 3(^ — 1).

Then, for n > 7', H is cubic lattice.
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Proof. From Lemmas (3.1) — (3.3) and the hypothesis H clearly
satisfies the following conditions:

(&x) The number of vertices is nz.
(b2) H is connected and regular of degree 3(n — 1).
(δ3) Δ(x, y) = n — 2 for d(x, y) = 1.
(&4) Δ(x, y) = 2, for d(x, y) = 2.

Hence if n > 7, H is cubic lattice [6], [4].

Note. It is conjectured that the property (P8) of the theorem is
implied by other properties (Px), (P2), (P4).

It may be pointed out that the main purpose of assuming (P3) is
to prove that B is a (0,1) matrix. If we replace (P3) by (PQ and
(Pϊ) as follows:

(P0. H is edge-regular, i.e., Δ(x,y) = Δ for all a?, y, such that

Λ(s,y) = 1,
(Pi') Δ(x, y) — even, for all x, y, such that d(x, y) = 2,

then it can be shown that B is a (0,1) matrix. The proof goes like
this: From (P£) and (3.3) it follows that Δ — n — 2. Substituting value
for Δ in (3.10) and noting (P") we get b{j = 0 if Ai3- — 1, and bi3 = an
integer if A^ = 0. Again from (3.10) and (3.12) it follows that

Σ δ<* = Σ «y
i=i i=i

Thus J5 is a matrix whose entries are either 0 or integer such that
for any row, sum of the elements is equal to the sum of the squares of
the elements, but this implies that B is a (0,1) matrix.

Hence we can also state that for n > 7, (PJ, (P2), (PJ), (PJ'), (P4)
characterize a cubic lattice graph with characteristic n.
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